猕猴源肺炎链球菌分离和鉴定及FQ-PCR建立和在阐明其侵染机制研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1猕猴源肺炎链球菌菌株的分离和鉴定
     某猕猴繁殖与饲养场发生猕猴突然死亡的疾病,经临床观察、尸检,细菌的分离与鉴定及对小鼠的致病性试验,初步诊断为肺炎链球菌感染。
     2肺炎链球菌种特异性PCR和FQ-PCR方法的建立
     肺炎链球菌(Streptococcus pneurnoniae, SP)感染是一种重要的人畜共患病,本文根据GenBank登录的SP种特异性DNA序列,设计合成了一对能特异性扩增818 bp DNA片段的引物首次建立了SP种特异性的聚合酶链式反应(PCR)诊断方法;与此同时,设计合成了一对能特异性扩增96bp DNA片段的引物,首次建立了SP种特异性的实时荧光定量聚合酶链式反应(FQ-PCR)诊断方法。此两种方法只能特异性扩增SP,而对草绿色链球菌ATCC49456、口腔链球菌ATCC35037、咽峡炎链球菌ATCC33397、金黄色葡萄球菌、铜绿假单胞菌、大肠埃希菌、嗜肺军团菌、肺炎克雷伯杆菌、粪肠球菌、屎肠球菌等常见人兽共患呼吸道致病菌的扩增结果均为阴性;FQ-PCR诊断方法建立的标准曲线为Y=-3.357X+48.485,相关系数为1.000,PCR循环效率为98.5%;检测SP标准DNA模板的灵敏度为6copies/μL,检测SP细菌数的敏感性为8CFU/μL,重复性差异系数为1.8%。分别应用该技术和传统细菌分离法检测人工感染死亡小鼠的心、肝、脑和肺脏,结果显示两种方法对心、肝、肺脏的阳性检测结果符合率为100%,而FQ-PCR对脑的阳性检测率极显著(P<0.01)高于细菌分离。研究结果表明,该方法快速、灵敏、特异、重复性好且能实时定量检测,可用于SP分离鉴定、SP感染疑似病例检测、SP体内动态分布规律研究及其分子流行病学调查。
     3在肺炎链球菌实验感染小鼠侵染机制研究中的应用
     应用建立的FQ-PCR方法对经腹腔接种和滴鼻途经人工感染SP小鼠组织器官的检测结果表明:
     经腹腔接种该菌后最早可在2h内从血液中检测到,4h能在心、肺、肝和脾中检测到;8h后可在除十二指肠、空肠、回肠、盲肠、直肠、胸腺、胰、鼻、咽喉、气管和脑外各组织器官检测到。24-36h之间各组织器官均能检测到SP且含菌量达到最高,统计显示,心、肺、肝脏、肾脏、脾脏、胰、脑和血的阳性拷贝数高于其它部位达到3-4个数量级,差异极显著,通过此途径接种的小鼠在36h后全部死亡。
     滴鼻组中感染小鼠SP的DNA拷贝数显著低于前一种感染途径。2h在肺中最早检测到,4h后能在血液中被检测到,12h可在除胰、十二指肠、空肠、回肠、盲肠、直肠、脑外的所有组织器官中被检测到,但拷贝数高于腹腔注射组达1-2个数量级。24-36h后全部被检组织器官呈阳性反应且达到最高峰;同样地,心、血、肺脏、肝脏、脾脏、’肾脏的阳性拷贝数明显高于其它部位。直到48h后含菌量开始下降2-3个数量级或不能被检测到阳性结果。然而该菌能在脾、鼻、咽喉、气管和肺中持续到9d仍能被检测到,接种第9天时以肺的含菌量最高。
     SP经两种途径感染后的共同特点是:呼吸系统中以鼻和肺脏的含菌量最高,且能持续存在9d而不被机体清除;主要内脏器官中以心、脾的含菌量较高,且能在脾中持续存在9d而不被机体所清除;该菌感染宿主后能迅速作用于免疫器官,其中以脾的含菌量显著高于其它器官;脑出现阳性结果的时间较晚,但阳性拷贝数到后期逐渐升高。本次的研究结果能对SP的感染侵入机制提供了进一步的认识。
1 Isolation and identification of bacteria from Rhesus monkey
     The Streptococcus pneumoniae disease occurred among rhesus monkeys(Macaca mulatta) suddenly and clusters of sudden deaths have been observed in a rhesus monkeys reproduce and breed farm in Sichuan province of China. According to the results of the clinical observation, necropsies, isolation and identification of bacteria and pathogenicity to mice, we conclude that the agent is Streptococcus pneumoniae.
     2 The development of species specific PCR and FQ-PCR for Streptococcus pneumoniae
     Streptococcus pneurnoniae (SP) is one of the important zoonosis. Ply, encoding the cytolysin pneumolysin on the species specific DNA sequence of SP from GenBank, the specific primers which showed 818 bp fragment for PCR,96bp fragment for FQ-PCR, and the species specific PCR method and FQ-PCR method for SP detection was developed initially. Applied this assay to Streptococcus including Streptococcus anginosus ATCC 33397,Streptococcus mitis ATCC 49456, Streptococcus oralis ATCC 35037, and several common pathogenic bacterias of nasopharynx such as Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis,Enterococcus faecium indicated that it was highly specific to SP, there was no amplification with no SP genera. Also, a series of sensitivity experiments were performed and proved that the detection limit of this method was 6 copies/μL for genomic DNA,8CFU/μL for bacterial number and the standard deviation was 1.8%.The correlation coefficient for the associated standard curve was 1.000 and PCR efficiency was 98.5%, the formula was Y=-3.357X+48.485.Two artificial infected cases which were infected with SP were chosen to identify the accuracy and sensitivity of the PCR and FQ-PCR method after death.Results showed that the detection of heart,liver, brain and lung were identical between bacteria isolating and FQ-PCR. Used this assay to detect the brain indicated that the positive rates were significant difference(P<0.01),the FQ-PCR method was more sensitive. Thus, this FQ-PCR assay provides a more rapid and accurate method for identification of SP than traditional isolation methods. It will help to the isolation and identification of SP,detecting of SP infection suspected cases and investigation of molecular epidemiology.
     3 Study on the invasion mechanism of Streptococcus pneumoniae with artificial infected mice
     We used this FQ-PCR assay to detect genomic DNA of SP for the artificially infected mice and the results showed that:
     After inoculated by intraperitoneally,the blood was positive at 2 h post inoculation, and the heart, lung, liver, spleen were positive at 4h. All the samples were positive at 8h, except duodenum, jejunum, ileum, cecum, rectum,thymus, pancreas, nose, throat, trachea,and brain. The copy number of SP DNA in each tissue reached a peak at 24-36 h post inoculation, with the heart, lung, liver, kidney, spleen, pancreas, brain and blood containing high concentrations of SP, with copies of SP being~1000-10000 times more than those in other regions. However, all the mice were dead at 36h.
     After inoculated by nose dripping, the copies of SP was lower than the former route. The lung was positive at 2 h post inoculation, and the blood was positive after 4h. All the samples were positive at 12h,except pancreas, duodenum, jejunum, ileum, cecum,rectum and brain,with copies of SP being-10-100 times more than former infected rout. The copy number of SP DNA in each tissue reached a peak at 24-36 h post inoculation, with the heart, lung, liver, spleen, kidney containing high concentrations of SP than those in other regions.It was still present up to 9 d post inoculation in the spleen, nose, throat, trachea and lung, without causing apparent symptoms.
     The common of the two infected routes were as followed, nose and lung had the highest copies number in the respiratory system, and it was still present up to 9 d; With the heart and spleen containing the highest concentrations of SP in the interal organs over the 9d period. Spleen was the primary site for invasion in immune organs of normal mice after challenge.The final organ to show a positive result was the brain at 24 h post inoculation, with low concentrations. This study will help to understand the mechanisms of action of SP infection in vivo.
引文
[1]Jedrzejas MJ. Unveiling molecular mechanisms of pneumococcal surface protein A interactions with antibodies and lactoferrin[J].Clin Chim Acta, 2006,367(1-2):1-10.
    [2]Rajam QPhillips D J,White E, et al.A functional epitope of the pneumococcal surface adhesin A activates nasopharyngeal cells and increases bacterial internalization[J].Microb Pathogenesis,2008,44(3):186-196.
    [3]Bogaert D,de Groot R,Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease[J]. Lancet Infect Dis,2004,4(3):144-154.
    [4]Prymula R,Peeters P,Chrobok V, et al.Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae:a randomised double-blind efficacy study[J].The Lancet,2006,367(9512):740-748.
    [5]Xu Q,Abeygunawardana C,Ng AS,et al.Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations[J].Anal Biochem,2005,336(2):262-272.
    [6]Slotved HC,Jacobsen JN,Mφller HK, et al.Developing an ELISA using serotype-specific antigens from selected pneumococcal strains of own selection[J]. Vaccine,2007,25(13):2513-2517.
    [7]Kieny MP,LaForce FM. The promise of conjugate vaccines for Africa[J]. Vaccine,2007,25(Supplement1):A108-A110.
    [8]Larsson EA, Sjoberg M,Widmalm G. Synthesis of oligosaccharides related to the repeating unit of the capsular polysaccharide from Streptococcus pneumoniae type 37[J]. Carbohyd Res,2005,340(1):7-13.
    [9]Skovsted IC,Kerm MB,Sonne-Hansen J,et al. Purification and structure characterization of the active component in the pneumococcal 22F polysaccharide capsule used for adsorption in pneumococcal enzyme-linked immunosorbent assays[J].Vaccine,2007,25(35):6490-6500.
    [10]Reason DC,Zhou J.Correlation of antigenic epitope and antibody gene usage in the human immune response to Streptococcus pneumoniae type 23F capsular polysaccharide[J].Clin Immunol,2004,111(1):132-136.
    [11]Pletz MW,Maus U,Krug N, et al.Pneumococcal vaccines:mechanism of action, impact on epidemiology and adaption of the species[J].Int J Antimicrob Ag,2008,32(3):199-206.
    [12]Lemercinier X,Jones C.Full assignment of the 1H and 13C spectra and revision of the O-acetylation site of the capsular polysaccharide of Streptococcus pneumoniae Type 33F, a component of the current pneumococcal polysaccharide vaccine[J].Carbohy Res,2006,341(1):68-74.
    [13]Hennessy TW, Singleton RJ, Bulkow LR, et al. Impact of heptavalent pneumococcal conjugate vaccine on invasive disease, antimicrobial resistance and colonization in Alaska Natives:progress towards elimination of a health disparity[J].Vaccine,2005,23(48-49):5464-5473.
    [14]Deshpande LM,Sader HS,Debbia E, et al.Emergence and epidemiology of fluoroquinolone-resistant Streptococcus pneumoniae strains from Italy:report from the SENTRY Antimicrobial Surveillance Program (2001-2004) [J]. Diag Micr Infect Dis,2006,54(3):157-164.
    [15]Korsgaard J,Mφller JK,Kilian M. Antibiotic treatment and the diagnosis of Streptococcus pneumoniae in lower respiratory tract infections in adults[J]. Int J Infect Dis,2005,9(5):274-279.
    [16]Cazzola M,Salzillo A,De Giglio C, et al.Treatment of acute exacerbation of severe-to-very severe COPD with azithromycin in patients vaccinated against Streptococcus pneumoniae[J].Resp Med,2005,99(6):663-669.
    [17]Volonakis K,Souli M,Kapaskelis A, et al. Evolution of resistance patterns and identification of risk factors for Streptococcus pneumoniae colonisation in daycare centre attendees in Athens, Greece[J]. Int J Antimicrob Ag,2006,28(4):297-301.
    [18]Bayraktar MR,Durmaz B,Kalcioglu MT, et al. Nasopharyngeal carriage, antimicrobial susceptibility, serotype distribution and clonal relatedness of Streptococcus pneumoniae isolates in healthy children in Malatya, Turkey[J]. Int J Antimicrob Ag,2005,26(3):241-246.
    [19]Haddad MB,Porucznik CA,Joyce KE,et al.Risk Factors for Pediatric Invasive Pneumococcal Disease in the Intermountain West,1996-2002[J].Ann Epidemiol,2008,18(2):139-146.
    [20]Harboe ZB,Valentiner-Branth P,Benfield TL,et al. Estimated effect of pneumococcal conjugate vaccination on invasive pneumococcal disease and associated mortality, Denmark 2000-2005[J].Vaccine,2008,26(29-30):3765-37 71.
    [21]Holliman RE,Liddy H, Johnson JD,et al.Epidemiology of invasive pneumococcal disease in Kumasi, Ghana[J].T Roy Soc Trop Med H,2007,101 (4):405-413.
    [22]Song JH,Oh WS,Kang CI, et al.Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries:a prospective study by the Asian network for surveillance of resistant pathogens[J]. Int J Antimicrob Ag,2008,31(2):107-114.
    [23]Koppel EA,Saeland E,de Cooker DJ, et al.DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14[J].Immunobiology,2005,210: 203-210.
    [24]Paterson GK,Mitchell TJ.The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis[J].Microbes Infect,2006,8(1):145-153.
    [25]孟江萍,尹一兵,张雪梅,等.肺炎链球菌体内诱导基因的筛选及初步鉴定[J].微生物学报,2006,46(4):537-541.
    [26]孟江萍,尹一兵,袁军,等.肺炎链球菌荚膜缺陷菌株的构建及功能研究[J].第四军医大学学报,2004,25(24):2226-2229.
    [27]Campillo NE, Pa'ez JA,Lagartera L, et al.Homology modelling and active-site-mutagenesis study of the catalytic domain of the pneumococcal phosphorylcholine esterase[J].Bioorg Med Chem,2005,13(23):6404-6413.
    [28]Moore LJ,Pridmore AC,Lee ME, et al.Induction of pro-inflammatory cytokine release by human macrophages during exposure of Streptococcus pneumoniae to penicillin is influenced by minimum inhibitory concentration ratio[J].Int J Antimicrob Ag,2005,26(3):188-196.
    [29]Marriott HM,Dockrell DH.Streptococcus pneumoniae:The role of apoptosis in host defense and pathogenesis[J].Int J Biochem Cell B,2006,38(11):1848-1854.
    [30]Yeung AH,Tinling SP,Brodie HA. Inhibition of Post-Meningitic Cochlear Injury With Cerebrospinal Fluid Irrigation[J].Otolaryng Head Neck,2006,134 (2):214-224.
    [31]Bogaert D,Hermans PWM,Adrian PV, et al. Pneumococcal vaccines:an update on current strategies[J].Vaccine,2004,22(17-18):2209-2220.
    [32]Vialle S,Sepulcri P,Dubayle J, et al. The teichoic acid (C-polysaccharide) synthesized by Streptococcus pneumoniae serotype 5 has a specific structure[J]. Carbohyd Res,2005,340(1):91-96.
    [33]Faria-Neto JR,Chyu K-Y,Li X,et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice[J].Atherosclerosis,2006, 189(1):83-90.
    [34]Coats MT,Benjamin WH,Hollingshead SK, et al.Antibodies to the pneumococcal surface protein A, PspA, can be produced in splenectomized mice and can protect splenectomized mice from infection with Streptococcus pneumoniae[J].Vaccine,2005,23(33):4257-4262.
    [35]Ochs MM,Bartlett W,Briles DE, et al.Vaccine-induced human antibodies to PspA augment complement C3 deposition on Streptococcus pneumoniae[J]. Microb Pathogenesis,2008,44(3):204-214.
    [36]Brandileone MCC,Andrade ALSS,Teles EM, et al. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil:towards novel pneumococcal protein vaccines[J].Vaccine,2004,22(29-30):3890-3896.
    [37]Senkovich O,Cook WJ,Mirza S, et al. Structure of a Complex of Human Lactoferrin N-lobe with Pneumococcal Surface Protein A Provides Insight into Microbial Defense Mechanism[J].J Mol Biol,2007,370(4):701-713.
    [38]Heeg C,Franken C,van der Linden M, et al.Genetic diversity of pneumococcal surface protein A of Streptococcus pneumoniae meningitis in German children[J].Vaccine,2007,25(6):1030-1035.
    [39]Moore QC,Bosarge JR,Quin LR, et al. Enhanced protective immunity against pneumococcal infection with PspA DNA and protein[J]. Vaccine,2006, 24(29-30):5755-5761.
    [40]Linder A,Hollingshead S,Janulczyk R, et al. Human antibody response towards the pneumococcal surface proteins PspA and PspC during invasive pneumococcal infection[J].Vaccine,2007,25(2):341-345.
    [41]胥文春,曹炬,许颂霄,等.肺炎链球菌毒力因子PspA的原核表达、纯化及鉴定[J].重庆医科大学学报,2007,32(6):571-574.
    [42]胥文春,曹炬,许颂霄,等.PspA免疫小鼠抗肺炎链球菌侵袭性感染研究[J].第四军医大学学报,2007,28(9):783-786.
    [43]Cao J,Chen D,Xu W, et al.Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP[J]. Vaccine,2007,25(27):4996-5005.
    [44]Campos IB,Darrieux M,Ferreira DM,et al. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A:induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge[J].Microbes Infect,2008,10(5):481-488.
    [45]Daniels CC,Briles TC,Mirza S,et al.Capsule does not block antibody binding to PspA, a surface virulence protein of Streptococcus pneumoniae[J]. Microb Pathogenesis,2006,40(5):228-233.
    [46]Csordas FCL, Perciani CT, Darrieux M, et al.Protection induced by pneumococcal surface protein A (PspA) is enhanced by conjugation to a Streptococcus pneumoniae capsular polysaccharide[J]. Vaccine,2008, 26(23):2925-2929.
    [47]Ogunniyi AD,Paton JC,Kirby AC, et al. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection[J]. Vaccine,2008,26(36):4676-4685.
    [48]Anderton JM,Rajam G,Romero-Steiner S,et al.E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae[J].Microb Pathogenesis,2007,42(5-6):225-236.
    [49]Oliveira MLS,Areas APM,Campos I B, et al.Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A[J]. Microbes Infect,2006,8(4):1016-1024.
    [50]Baril L,Briles D E,Crozier P, et al.Characterization of antibodies to PspA and PsaA in adults over 50 years of age with invasive pneumococcal disease[J]. Vaccine,2004,23(6):789-793.
    [51]何斌,朱虹,端青.重组肺炎链球菌表面黏附素A (rPsaA)的融合表达及抗原性分析[J].微生物学免疫学进展,2007,35(2):12-14.
    [52]Holmlund E,Quiambao B,Ollgren J, et al. Development of natural antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A and pneumolysin in Filipino pregnant women and their infants in relation to pneumococcal carriage[J].Vaccine,2006,24(1):57-65.
    [53]张雪梅,尹一兵,朱旦,等.肺炎链球菌的转化缺陷导致细菌毒力减弱[J].中华微生物学和免疫学杂志,2005,25(2):146-151.
    [54]Tilley SJ,Orlova EV,Gilbert RJC, et al. Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin[J].Cell,2005,121(2):247-256.
    [55]Lim JH,Stirling B,Derry J, et al. Tumor Suppressor CYLD Regulates Acute Lung Injury in Lethal Streptococcus pneumoniae Infections[J].Immunity, 2007,27(2):349-360.
    [56]Gilbert RJC, Jimenez JL,Chen S,et al.Two Structural Transitions in Membrane Pore Formation by Pneumolysin, the Pore-Forming Toxin of Streptococcus pneumoniae[J].Cell,1999,97(5):647-655.
    [57]Huo Z,Spencer O,Miles J, et al. Antibody response to pneumolysin and to pneumococcal capsular polysaccharide in healthy individuals and Streptococcus pneumoniae infected patients[J].Vaccine,2004,22(9-10):1157-1161.
    [58]陈保德,尹一兵,张雪梅.肺炎链球菌毒力基因体内荧光报告系统的构建[J].微生物学通报,2004,31(5):55-59.
    [59]Abdeldaim GMK,Stralin K,Olcen P, et al.Toward a quantitative DNA-based definition of pneumococcal pneumonia:a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment[J]. Diagn Micr Infect Dis,2008,60(2):143-150.
    [60]Kais M,Spindler C,Kalin M, et al.Quantitative detection of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR[J].Diagn Micr Infect Dis,2006,55(3):169-178.
    [61]Kaijalainen T,Saukkoriipi A,Bloigu A, et al. Real-time pneumolysin polymerase chain reaction with melting curve analysis differentiates pneumococcus from other [alpha]-hemolytic streptococci[J].Diagn Micr Infect Dis,2005,53(4):293-299.
    [62]Coates H,Thornton R,Langlands J, et al.The role of chronic infection in children with otitis media with effusion:Evidence for intracellular persistence of bacteria[J].Otolaryng Head Neck,2008,138(6):778-781.
    [63]Saukkoriipi A,Leskel K,Herva E, et al.Streptococcus pneumoniae in nasopharyngeal secretions of healthy children:comparison of real-time PCR and culture from STGG-transport medium[J].Mol Cell Probe,2004,18(3):147-153.
    [64]杨永红,王棣.肺炎链球菌自溶素和溶血素基因的Pcr法测定[J].微生物学免疫学进展,2000,28(2):49-53.
    [65]袁竹青,吴忠道,余新炳,等.肺炎链球菌不同菌株自溶酶基因的克隆、序列分析及重组表达[J].中华传染病杂志,2005,23(2):87-90.
    [66]鲜墨,张莉滟,童荔,.等.肺炎链球菌自溶酶蛋白抗原表位的预测、克隆及重组表达[J].中国人兽共患病学报,2007,23(5):453-458.
    [67]Messmer TO,Sampson JS,Stinson A, et al.Comparison of four polymerase chain reaction assays for specificity in the identification of Streptococcus pneumoniae[J].Diagn Microb Infect Dis,2004,49(4):249-254.
    [68]Kee C,Palladino S,Kay I, et al.Feasibility of real-time polymerase chain reaction in whole blood to identify Streptococcus pneumoniae in patients with community-acquired pneumonia[J].Diagn Microb Infect Dis,2008,61(1):72-75.
    [69]Williamson YM,Gowrisankar R,Longo DL, et al. Adherence of nontypeable Streptococcus pneumoniae to human conjunctival epithelial cells[J].Microb Pathogenesis,2008,44(3):175-185.
    [70]Annika S,Arto P,Terhi K, et al. Real-time quantitative PCR for the detection of Streptococcus pneumoniae in the middle ear fluid of children with acute otitis media[J].Mol Cell Probe,2002,16:385-390.
    [71]Madeleine K, Carl S,Mats K, et al.Quantitative detection of Streptococcus pneumoniae,Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR[J].Diagn Microb Infect Dis 2006, 55:169-178.
    [72]Maria da GSC, Maria LT,Karen McC, et al. Evaluation and Improvement of Real-Time PCR Assays Targeting lytA, ply, and psaA Genes for Detection of Pneumococcal DNA[J].J Clin Microbiol,2007,45:2460-2466.
    [73]Niclas J,Mats K,Christian GG, et al.Quantitative detection of Streptococcus pneumoniae from sputum samples with real-time quantitative polymerase chain reaction for etiologic diagnosis of community-acquired pneumonia[J]. Diagn Micr Infect Dis,2008,60:255-261.
    [74]Hyong Sun K, Dong-Min K,Ganesh PN, et al. Comparison of Conventional, Nested, and Real-Time PCR Assays for Rapid and Accurate Detection of Vibrio vulnificus[J].J Clin Microbiol,2008,46,2992-2998.
    [75]Sedgleya CM, Nagela AC, Shelburne CE, et al.Quantitative real-time PCR detection of oral Enterococcus faecalis in humans[J].Arch Oral Biol,2005, 50:575-583.
    [76]Emil K, Domenica S,Charles S, et al. Detection of bacterial DNA in atheromatous plaques by quantitative PCR[J].Microbes Infect,2006, 8:687-693.
    [77]Korppi M, Koskela M, Jalonen E, et al.Serologically indicated pneumococcal respiratory infection in children[J].Scand J Infect Dis,1992,24:437.
    [78]Norrby SR, Pope KA.Pneumococcal pneumonia[J].J Infect,1979,1:109-120.
    [79]Kaijalainen T, Rintamaki S,Herva E, et al.Evaluation of gene-technological and conventional methods in the identification of Streptococcus pneumoniae[J].J Microbiol Methods,2002,51:111-118.
    [80]Sφrensen UB,Heinrichsen J.Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen[J].J Clin Microbiol,1987, 25:1854-1859.
    [81]Murdoch DR. Impact of rapid microbiological testing on the management of lower respiratory tract infection[J].Clin Infect Dis,2005,41:1445-1447.
    [82]Murdoch DR, Laing RTR, Mills GD, et al.Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia[J]. J Clin Microbiol,2001,39:3495-3498.
    [83]Dowell SF, Garman RL, Liu G,et al. Evaluation of Binax NOW, an assay for detection of pneumococcal antigen in urine samples performed among pediatric patients[J]. Clin Infect Dis,2001,32:824-825.
    [84]Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America, and American Thoracic Society Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults[J].Clin Infect Dis 2007,44(Suppl 2):S27-S72.
    [85]Boulware DR, Daley CL, Merrifield C, et al.Rapid diagnosis of pneumococcal pneumonia among HIV-infected adults with urine antigen detection[J]. J Infect, 2007,55:300-309.
    [86]Van der Auwera P, Andre A, Bulliard G, et al.Comparison of latex agglutination and counterimmunoeletrophoresis in the diagnosis of acute Streptococcus pneumoniae infections[J].Eur J Clin Microbiol Infect Dis,1983,2(6):534-540.
    [87]Dominguez J, Andreo F, Blanco S,et al.Rapid detection of pneumococcal antigen in serum samples for diagnosing pneumococcal pneumonia[J].J Infect,2006, 53(1):21-24.
    [88]韩俊英,曾瑞萍.荧光定量PCR技术及其应用[J].国外医学遗传学分册,2000,23(3):117-120.
    [89]Kolb S, Knief C, Stubuner S,et al. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays[J].Appl Environ Microb, 2003,69(5):2423-2429.
    [90]Becker S,Boger P, Oehlmann R, et al. PCR bias in ecological analysis:a case study for quantitative Taq nuclease assays in analysises of microbial communities[J].Appl Environ Microb,2000,66(11):4945-4953.
    [91]Novak R, Tuomanen E. Pathogenesis of pneumococcal pneumonia[J].Semin Respir Infect,1999,14(3):209-217.
    [92]Barocchi MA, Ries J, Zogaj X, et al.A pneumococcal pilus influences virulence and host inflammatory responses[J].Proc Natl Acad Sci US A,2006,103(8):2857-2862.
    [93]Mathias WP, Ulrich M, Norbert K, et al.Pneumococcal vaccines:mechanism of action, impact on epidemiology and adaption of the species[J].Int J Antimicrob Ag,2008,32:199-206.
    [94]Ozdemir B,Beyazova U, Camurdan AD, et al.Nasopharyngeal carriage of Streptococcus pneumoniae in healthy Turkish infants[J].J Inf,2008,56:332-339.
    [95]Mehmet RB,Bengul D, Mahmut TK, et al. Nasopharyngeal carriage, antimicrobial susceptibility,serotype distribution and clonal relatedness of Streptococcus pneumoniae isolates in healthy children in Malatya, Turkey[J].Int J Antimicrob Ag,2005,26:241-246.
    [96]Sabirov A, Metzger DW.Mouse models for the study of mucosal vaccination against otitis media[J].Vaccine,2008,26:1501-1524.
    [97]Carlos JO, Geli G,Kevin PF, et al.Tissue-Specific Contributions of Pneumococcal Virulence Factors to Pathogenesis[J].J Infect Dis,2004,190: 1661-1669.
    [98]Kadioglu A, Weiser JN, Paton JN, et al.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease[J].Nature,2008, 6:288-301.
    [99]Jambo KL, Sepako E, Heyderman RS,et al. Potential role for mucosally active vaccines against pneumococcal pneumonia[J].Trends Microbiol,2009,18(2):81-89.
    [100]Tom van der P, Steven MO, et al.Pathogenesis, treatment, and prevention of pneumococcal pneumonia[J].Lancet 2009,374:1543-1556.
    [101]McCool TL, Weiser JN.Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization[J].Infect Immun,2004,72(10): 5807-5813.
    [102]Chi F, Leider M, Leendertz F, et al. New Streptococcus pneumoniae Clones in Deceased Wild Chimpanzees[J].J bacteriol,2007,189:6085-6088.
    [103]Conference report. Mucosal perspectives in pneumococcal vaccine development: A meeting summary A one-day international workshop focusing on stimulating research and collaborations on this topic[J].Vaccine,2010,28:2-6.
    [104]Pilette C,Ouadrhiri Y, Godding V, et al.Lung mucosal immunity:immunoglobu lin-A revisited[J].Eur Respir J,2001,18(3):571-588.
    [105]Timens W, Boes A, Rozeboom-Uiterwijk T, et al. Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response [J].J Immunol,1989,143(10):3200-3206.
    [106]Gordon SB,Irving GR, Lawson RA, et al.Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins[J].Infect Immun,2000,68:2286-2293.
    [107]Dockrell DH, Marriott HM, Prince LR, et al.Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection[J].J Immunol,2003,171:5380-5388.
    [108]Knapp S, Leemans JC, Florquin S,et al. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia[J]. Am J Respir Cit Care Med,2003,167:171-179.
    [109]Marriott HM, Hellewell PG, Cross SS,et al.Decreased alveolar macrophage apoptosis is associated with increased pulmonary inflammation in a murine model of pneumococcal pneumonia[J].J Immunol,2006,177:6480-6488.
    [110]Srivastava A, Henneke P, Visintin A, et al. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease[J].Infect Immun,2005,73:6479-6487.
    [111]Hirst RA, Kadioglu A, O'Callaghan C, et al. The role of pneumolysin in pneumococcal pneumonia and meningitis[J].Clin Exp Immunol,2004,138(2): 195-201.
    [112]Attali C, Durmort C, Vernet T, et al.The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage[J].Infect Immun,2008, 76:5350-5356.
    [113]Kyaw MH, Christie P, Jones IG, et al.The changing epidemiology.of bacterial meningitis and invasive non-meningitic bacterial disease in scotland during the period 1983-99[J].Scand J Infect Dis,2002,34:289-298.
    [114]Pericone CD,Overweg K, Hermans PW, et al.Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract[J].Infect Immun,2000,68:3990-3997.
    [115]McLeod JW, Gordon J. Production of hydrogen peroxide by bacteria[J]. Biochem J,1922,16:499-506.
    [116]Nishioka T, Kimura M, Takahama U. Effects of pH and thiocyanate on hydrogen peroxide-induced evolution of molecular oxygen in human mixed saliva[J]. Arch Oral Biol,1996,41:911-917.
    [117]Swiatlo E, Champlin FR, Holman SC, et al. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae[J].Infect Immun,2002,70:412-415.
    [118]Weiser JN, Kapoor M. Effect of intrastrain variation in the amount of capsular polysaccharide on genetic transformation of Streptococcus pneumoniae: implications for virulence studies of encapsulated strains[J]. Infect Immun, 1999,67:3690-3692.
    [119]Kawakami K, Yamamoto N, Kinjo Y, et al.Critical role of Valphal4+natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection[J].Eur J Immunol,2003,33:3322-3330.
    [120]Hammerschmidt S,Wolff S,Hocke A, et al.Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells[J]. Infect Immun,2005,73:4653-4667.
    [121]Jedrzejas MJ.Pneumococcal virulence factors:structure and function[J]. Microbiol Mol Biol Rev,2001;65:187-207.
    [122]Weller RO,Djuanda E,Yow HY,et al.Lymphatic drainage of the brain and the pathophysiology of neurological disease [J].Acta Neuropathol,2009,117: 1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700