苏丹红Ⅰ和三种氯代苯酚的光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要从超分子化学中的主客体识别为出发点,研究了苏丹红I和三种氯代苯酚的光谱性质。首先,选用氧化石墨烯为主体分子,研究了其与苏丹红I的光谱性质,并以功能化的氧化石墨烯修饰的自组装金玻片为基底研究Sudan I的SERS光谱。其次,选用6-位全巯基-β-环糊精为主体分子,将其修饰在银纳米粒子表面作为SERS基底,对三种氯代苯酚(4-氯苯酚、2,6-二氯苯酚、2,4,6-三氯苯酚)进行单一组份的紫外-可见吸收光谱的分析和SERS检测。这种方法主要针对一些与SERS活性基底没有吸附作用或者与基底发生很弱吸附力的分子。由于与SERS基底发生强作用力的分子数目不多,因此这种方法的应用将越来越广泛,以后可以在各个领域进行广泛地应用。
     主要创新性研究成果如下:
     (1)基于氧化石墨烯表面富集π电子和比表面积大的特性,研究了两者之间发生超分子间的π-π堆积作用的紫外-可见吸收光谱和荧光发射光谱性质。以功能化的氧化石墨烯修饰的自组装金玻片为基底研究了Sudan I的SERS光谱,此SERS基底能对Sudan I进行定性地分析,为该SERS基底应用于有害物质的检测提供了有利的证据。
     (2)采用两种SERS活性基底(即自组装银玻片和银树枝),实现了对4-CP的定性分析,并讨论了酸性强弱对SERS效果的影响。
     (3)以6-位全巯基-β-环糊精修饰的银纳米粒子为SERS活性基底,实现了对三种氯代苯酚(4-氯苯酚、2,6-二氯苯酚、2,4,6-三氯苯酚)单一组份的定性分析和定量检测,检测限都达到10-8M;讨论了6-位全巯基-β-环糊精修饰在银纳米粒子表面的覆盖度、环糊精内腔与分子大小的匹配和分子在溶液中的状态对三种氯代苯酚SERS效果的影响,并进一步推断环糊精和三种氯代苯酚分子之间可能存在的作用机理。
Sudan I has been classified as a third category carcinogen by the internationalagency for research on cancer (IARC) and so ban to add to food in most countriesincluding EU countries. But in some countries, Sudan I was found to add in food(such as pepper, egg, pizaa) because of bright color, this is a dangerous signal tohuman health. Chlorophenols have been belonged to a class of recalcitrant environ-ment pollutants and have caused directly or indirectly serious harm to human health.At present, analytical methods of Sudan I and Chlorophenols are time-consuming,high-cost and the complex of treating process, so we need a faster and more portableanalytical techniques for detection.
     Because of the weak interaction of SERS active substrates and the groups ofSudan I and Chlorophenols, so we studied the spectral properties of Sudan I andChlorophenols based on the SERS technology and the principles of recognition andassembly of supramolecular chemistry and finally will achieve the purpose of theSERS detection. The major contributions of this work are as follows:
     (1) Spectroscopy Study of Sudan I and the complex of Sudan I and GrapheneOxide
     We have studied spectral properties of Sudan I by UV-vis spectra, Flouresc-ence spectra, FT-IR spectra and Raman spectra and SERS spectra of Sudan I by usingof gold colloid as substrates, but this method is only qualitative analysis notquantitative detection. Moreover, based on characteristics of Graphene Oxide(GO)that has rich π electrons on surface and large surface area, we studied spectral properties of the complex of Sudan I and GO by π-π stacking interactions, and studiedSERS spectra of Sudan I with functional GO modified by self-assembly goldnanoparticles on slide as SERS substrate. At present, this method can be qualitativeanalysis.
     (2) Spectroscopy Study of three kinds of Chlorophenols
     We have studied spectral properties of three kinds of Chlorophenols which are4-chlorophenol,2,6-dichlorophenol and2,4,6-trichlorophenol by UV-vis spectra,Flourescence spectra and Raman spectra. In addition, for example4-chlorophenol, weinvestigated different PH value affected the SERS spectra on two kinds of substratesthar are silver nanoparticles self-assembled on slide and sliver dendrities. But thismethod is only qualitative analysis not quantitative detection.
     (3) SERS Detection of three kinds of Chlorophenols with CD-SH modified bysilver nanoparticles as SERS substrate
     We used a new type of SERS substrate that consists of Per-6-thio-β-cyclodextrin(CD-SH) modified by silver nanoparticles for SERS detection of a kind of molecular,be analogous to Chlorophenols with weak affinity to metallic surfaces. This method isbased on supramolecular principle of recognition and self-assembly. Moreover, wediscussed in detail the influence of SERS spectra of three kinds of Chlorophenols bysurface coverage of silver nanoparticles modified by CD-SH, matching effect of thecavity of cyclodextrin and the size of Chlorophenols and the state of Chlorophenols insolution. And from this to further, we analysed mechanism that may exist inChlorophenols with cyclodextrin inclusion complexes.
引文
[1] Pelletier M J. Quantitative Analysis Using Raman Spectrometry [J]. AppliedSpectroscopy,2003,57:20A.
    [2] Rajendrani, Mukhopadhyay. Raman flexes its muscles[J]. Anal Chem,2007,57:3265-3270.
    [3] Won-in K, Thongkam Y, Pongkrapan. Raman spectroscopic study onarchaeological glasses in Thailand: Ancient Thai Glass[J]. Spectrochimic Acta PartA-Moleculer and Biomolecular spectroscopy,2011,83:231-235.
    [4] De Ferri Lavinia, Lottici Pier Paolo, Lorenzi Andrea, Montenero Angelo,Salvioli-Mariani Emma. Study of silica nanoparticles-polysiloxane hydrophobictreatments for stone-based monument protection[J]. Journal of Cultural Heritage,2011,12:356-363.
    [5] Castro Kepa, Abalos Benito, Martinez-Arkarazo Irantzu, Etxebarria Nestor.Manuel Madariaga Juan. Scientific examination of classic Spanish stamps with colourerror, a non-invasive micro-Raman and micro-XRF approach: The King Alfonso XIII(1889-1901"Pelon")15cents definitive issue[J]. Journal of Cultural Heritage,2008,9:189-195.
    [6] Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandr R Dasari, Michael SFeld. Surface-enhanced non-linear Raman scattering at the single-molecule level[J].Chem Phys,1999,247:155-162.
    [7] Janina Kneipp, Harald Kneipp, William L Rice, Katrin Kneipp. Optical Probes forBiological Applications Based on Surface-Enhanced Raman Scattering fromIndocyanine Green on Gold Nanoparticles[J]. Anal Chem,2005,77(8):2381-2385.
    [8] Nielsen A S, Batchelder D N, Pyrz R. Estimation of crystallinity of isotacticpolypropylene using Raman spectroscopy[J]. Polymer,2002,43:2671-2676.
    [9] Fleischmannn M, Hendra P J, McQuillan A J. Raman spectra of pyridineabsorbed at a silver electrode[J]. Chem Phys Lett,1974,26:163-165.
    [10] Jeanmaire D J, Van Duyne R P. Surface raman spectroelectrochemistry part Iheterocyclic, aromatic, and aliphatic amines absorbed on the anodized sliverelectrode[J]. J Electroanal Chem,1977,84:1-4.
    [11] Albrecht M G, Creighton J A. Anomalously intense raman spectra of pyridine ata silver electrode[J]. J Am Chem Soc,1977,99:5215-5218.
    [12] Brown R J C, Milton M J T. Nanostructures and nanostructured substrates forSurface Enhanced Raman Scattering (SERS)[J]. Journal of Raman Spectroscopy,2008,39(10):1313-1326.
    [13] Natan M J. Concluding Remarks Surface Enhanced Raman Scattering[J].Faraday Discussions,2006,132:321-328.
    [14] Tian Z Q, Ren B, De Yin Wu. Surface-Enhanced Raman Scattering: From Nobleto Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. J PhysChem B,2002,106(37):9463–9483.
    [15] Bjerneld E J, Foldes-Papp Z, Kall M, Rigler R. Single-MoleculeSurface-Enhanced Raman and Fluorescence Correlation Spectroscopy of HorseradishPeroxidase[J]. The Journal of Physical Chemistry B,2002,106(6):1213-1218.
    [16] Vlckova B, Gu X J, Moskovits M. SERS Excitation Profiles of PhthalazineAdsorbed on Single Colloidal Silver Aggregates as a Function of Cluster Size[J]. JPhys Chem B,1997,101:1588-1593.v
    [17] Moskovits M. Surface Enhanced Spectroscopy[J]. Reviews of Modern Physics,1985,57(3):783-826.
    [18] Mo Y J, Lei J, Li X Y, Wachter P. Surface Enhanced Raman Scattering ofRhodamine6g and Dye-1555Adsorbesd on Roughened Copper Surfaces[J]. SolidState Communications,1988,66:127-131.
    [19] Blatchford C G, Cambell J R, Creighton J S. Plasma resonance enhanced ramanscattering by absorbates on gold colloids: The effects of aggregation[J]. SurfaceScience,1982,120:435-455.
    [20] Katherine A Willets, Richard P, Van Duyne. Localized Surface Plasmon Reso-nance Spectroscopy and Sensing[J]. Annu Rev Phys Chem,2007,58:267-297.
    [21] Furtak T E, Roy D. Nature of the active site in surface-enhanced ramanscattering[J]. Physical Review Letters,1983,50(17):1301-1304.
    [22] Demuth J E, Christmann K, Sanda P N. The vibrations and structure of pyridinechemisorbed on Ag(111): the occurrence of a compressional phase transformation[J].Chemical Physics Letters,1980,76(2):201-206.
    [23] Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part I.Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silverelectrode[J]. Journal of electroanalytical chemistry,1977,84(1):1-20.
    [24] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridineat a silver electrode[J]. J Am Chem Soc,1977,99(15):5215-5217.
    [25] Lombardi J R, Birke R L, Lu Tianhong, et al. Charge-transfer theory of surfaceenhanced raman spectroscopy: herzberg-teller contributions[J]. The Journal ofChemical Physics,1986,84(8):4174-4180.
    [26] Huang Yi-Fan, Zhu Hong-Ping, Liu Guo-Kun, Wu De-Yin, Ren Bin, TianZhong-Qun. When the Signal Is Not from the Original Molecule To Be Detected:Chemical Transformation of para-Aminothiophenol on Ag during the SERS[J]. J AmChem Soc,2010,132:9244-9246.
    [27] Ganbold Erdene-Ochir, Park Jin-Ho, Dembereldorj Uuriintuya, Ock Kwang-Su,Joo Sang-Woo. Charge-dependent adsorption of Rhodamine6G on gold nanoparticlesurfaces: fluorescence and Raman study[J]. J Raman Spectrosc,2011,42:1614-1619.
    [28] Yoon J H, Park J S, Yoon S. Time-Dependent and Symmetry-Selective Charge-Transfer Contribution to SERS in Gold Nanoparticle Aggregates[J]. Langmuir,2009,25:12475-12480.
    [29] Sun Z H, Wang C X, Yang J X, Zhao B, Lombardi J R. Nanoparticle metal-Semi-conductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhancedRaman spectroscopy[J]. J Phys Chem C,2008,112(15):6093-6098.
    [30] Yang L B, Jiang X, Ruan W D, Yang J X, Zhao B, Xu W Q, Lombardi J R.Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag-TiO(2)Nanocomposites[J]. J Phys Chem C,2009,113(36):16226-16231.
    [31] Mao Z, Song W, Chen L, Ji W, Xue X X, Ruan W D, Li Z S, Mao H J, Ma S,Lombardi J R, Zhao B. Metal-Semiconductor Contacts Induce the Charge-TransferMechanism of Surface-Enhanced Raman Scattering[J]. J Phys Chem C,2011,115(37):18378-18383.
    [32] Ji W, Kitahama Y, Xue X X, Zhao B, Ozaki Y.Generation of PronouncedResonance Profile of Charge-Transfer Contributions to Surface-Enhanced RamanScattering[J]. J Phys Chem C,2012,116(3):2515-2520.
    [33] Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Super-molecules, and Molecular Devices. Angew Chem Int Ed Engl,1988,27:89-112.
    [34] Schneider Hans-J rg. Binding Mechanisms in Supramolecular Complexes[J].Angew Chem Int Ed,2009,48:3924-3977.
    [35] Georgy K Fukin, Sergey V Lindeman, Jay K Kochi. Molecular Structures ofCation···π(Arene) Interactions for Alkali Metals with π-and σ-Modalities[J]. J AmChem Soc,2002,124:8329-8336.
    [36] Rakotondradany Felaniaina, Palmer Alison, Toader Violeta, Chen Bingzhi,Whitehead M A, Sleiman Hanadi F. Hydrogen-bond self-assembly of DNA-analoguesinto hexameric rosettes[J]. Chem Commun,2005,43:5441–5443.
    [37] Sandeep Kumar Dey, Gopal Das Cryst. Fluoride Selectivity InducedTransforma-tion of Charged Anion Complexes into Unimolecular Capsule of aπ-Acidic Triamide Receptor Stabilized by Strong N–H···F–and C–H···F–HydrogenBonds[J]. Cryst Growth Des,2011,11:4463–4473.
    [38] Jian Liu, Julio Alvarez, Winston Ong, Esteban Roman, Angel E. Kaifer. PhaseTransfer of Hydrophilic, Cyclodextrin-Modified Gold Nanoparticles to ChloroformSolutions[J]. J Am Chem Soc,2001,123:11148-11154.
    [39] Yuan C, Jin Z Y, Wang C G. Modified Cyclodextnn and its Application[J].Cereals&Oils,2006,5:38-40.
    [40] Liu J, Xu R, Kaifer A E. In Situ Modification of the Surface of Gold ColloidalParticles Preparation of Cyclodextrin-Based Rotaxanes Supported on Gold Nano-spheres[J]. Langmuir,1998,14:7337-7339.
    [41] Lala N, Lalbegi S P, Adyanthaya S D, Sastry M. Phase Transfer of AqueousGold Colloidal Particles Capped with Inclusion Complexes of Cyclodextrin andAlkanethiol Molecules into Chloroform[J]. Langmuir,2001,17:3766-3768.
    [42] Wang Y, Wong J E.“Pulling” Nanoparticles into water: Phase Transfer of OleicAcid Stabized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrins[J]. Nano Lett,2003,3:1555-1559.
    [43] Hou Y, Kondoh H, Shimojo,M, Sako,E.o, Ozaki,N, Kogure,T, Ohta T. InorganicNanocrystal Self-Assembly via Inclusion Interaction of β-Cyclodextrins: Toward3DSpherical Magnetite[J]. J Phys Chem B,2005109:4845-4852.
    [44] Zhao Y, Chen Y, Wang M, Liu Y. Multi[2]rotaxanes with Gold Nanoparticles asCenters[J]. Org Lett,2006,8:1267-1270.
    [45] Kennedy D C, Hoop K A, Tay L L, Pezacki J P. Development of nanoparticleprobes for multiplex SERS imaging of cell surface proteins[J]. Nanoscale,2010,2(8):1413-1416.
    [46] Wang Jin, Kong LingTao, Guo Zheng, Xua JingYao, Liu JinHuai. Synthesis ofnovel decorated one-dimensional gold nanoparticle and its application inultrasensitive detection of insecticide[J]. J Mater Chem,2010,20:5271–5279.
    [47] Hyunhyub Ko, Srikanth Singamaneni, Vladimir V, Tsukruk. NanostructuredSurfaces and Assemblies as SERS Media[J]. Small,2008,4(10):1576-1599.
    [48] Parra-Alfambra A M, Casero E, Petit-Dom_nguez M D, Barbadillo M, ParienteF, Vazquez L V, Lorenzo E. New nanostructured electrochemical biosensors based onthree-dimensional (3-mercaptopropyl)-trimethoxysilane network[J]. Analyst,2011,136:340-347.
    [49]颜雪.重金属离子的磁富集及基于表面增强拉曼光谱的检测[M],苏州:苏州大学,2010.
    [50] Xie Y F, Wang X, Ruan W D, Song W, Zhao B. Applications ofSurface-Enhanced Raman Spectroscopy to Detection of Polycyclic AromaticHydrocarbons[J]. Spectroscopy and Spectral Analysis,2011,31(9):2319-2323.
    [51] Jones C L, Bantz k c, Haynes C L. Partition layer-modified substrates forreversible surface-enhanced Raman scattering detection of polycyclic aromatichydrocarbons[J]. Analytical and bioanalytical chemistry,2009,394(1):303-311.
    [52] leyton p, cordova I, lizama vergara P A,et al. Humic acids as molecularassemblers in the surface-enhanced Raman scattering detection of polycyclic aromatichydrocarbons[J]. Vibrational Spectroscopy,2008,46(2):77-81.
    [53] Guerrini L, Garcia-Ramos J V, Domingo C, et al. Nanosensors based onviologen functionalized silver nanoparticles: few molecules surface-enhanced Ramanspectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hotspots[J]. Anal Chem,2009,81(4):1418-1425.
    [54] Leyton P, Go′mez-Jeria J S, Sanchez-Cortes S, Domingo C, Campos-Vallette M.Carbon Nanotube Bundles as Molecular Assemblies for the Detection of PolycyclicAromatic Hydrocarbons: Surface-Enhanced Resonance Raman Spectroscopy andTheoretical Studies[J]. J Phys Chem B,2006,110:6470-6474.
    [55] Guerrini L, Garcia Ramos J V, Domingo C,et al. Sensing Polycyclic AromaticHydrocarbons with Dithiocarbamate-Functionalized Ag Nanoparticles bySurface-Enhanced Raman Scattering[J].Analytical chemistry,2009,81(3):953-960.
    [56] Xie Y F, Wang X, Han X X, et al. Sensing of polycyclic aromatic hydrocarbonswith cyclodextrin inclusion complexes on silver nanoparticles by surface-enhancedRaman scattering[J]. Analyst,2010,135(6):1389-1394.
    [57] Zeljka Krpetic, Luca Guerrini, lain A Larmour, John Realinski, Karen Faulds,Duncan Graham. Importance of Nanoparticle Size in Colorimetric and SERS-BasedMultimodal Trace Detection of Ni(II) Ions with Functional Gold Nanoparticles[J].Small,2012,8(5):707-714.
    [58] Alvarez-Puebla R A, Liz-Marzan L M. Environmental applications of plasmonassisted Raman scattering[J]. Energy Environ Sci,2010,3:1011–1017.
    [59] Yang L B, Ma L, Chen G Y, Liu J H, Tian Z Q. Ultrasensitive SERS Detection ofTNT by Imprinting Molecular Recognition Using a New Type of Stable Substrate[J].Chem Eur J,2010,16:12683-12693.
    [60] Stiborova M, Mart′nek V, Rydlova H, Hodek P, Frei E. Sudan I Is a PotentialCarcinogen for Humans: Evidence for Its Metabolic Activation and Detoxication byHuman Recombinant Cytochrome P4501A1and Liver Microsomes[J]. Cancer Res,2002,62:5678-5684.
    [61] Donna L D, Maiuolo L, Mazzotti F, Luca D D, Sindona G. Assay of Sudan IContamination of Foodstuff by Atmospheric Pressure Chemical Ionization TandemMass Spectrometry and Isotope Dilution[J]. Anal Chem,2004,76:5104-5108.
    [62] Riin Rebane, Ivo Leito, Sergei Yurchenko, Koit Herodes. A review of analyticaltechniques for determination of Sudan I–IV dyes in food matrixes[J]. Journal ofChromatography A,2010,1217:2747–2757.
    [63] Daood H G, Biacs M A. Simultaneous Determination of Sudan Dyes andCarotenoids in Red Pepper and Tomato Products by HPLC[J]. J Chromatogr Sci,2005,43:461–465.
    [64] Sproll C, Ruge W, Strichow N, Attig D, Marx. G. Quantitative determination ofSudan dyes in foods using HPLC-DAD and HPLC MS/MS[J]. Deutsche LebensmittelRundschau,2005,101:481–484.
    [65] Pielesz A, Baranowska I, Rybak A, Wlochowicz A. Detection andDetermination of Aromatic Amines as Products of Reductive Splitting from SelectedAzo Dyes[J]. Ecotoxicol Environ Safety,2002,53:42-47.
    [66] Tateo F, Bononi M. Fast Determination of Sudan I by HPLC/APCI-MS in HotChilli, Spices, and Oven-Baked Foods[J]. J Agric Food Chem,2004,52:655-658.
    [67] Zhang Y P, Zhang Y J, Gong W, Gopalan A I, Lee K P. Rapid separation ofSudan dyes by reverse-phase high performance liquid chromatography throughstatistically designed experiments[J]. J Chromatogr A,2005,1098:183-187.
    [68] Calbiani F, Elviri M C L, Mangia A, Pistara L, Zagnoni I. Development andin-house validation of a liquid chromatography–electrospray–tandem massspectrometry method for the simultaneous determination of Sudan I, Sudan II, SudanIII and Sudan IV in hot chilli products[J]. J Chromatogr A,2004,1042:123-130.
    [69] Wang Y, Wei D, Yang H, Yang Y, Xing W, Li Y, Deng A. Development of ahighly sensitive and specific monoclonal antibody-based enzyme-linked immune-sorbent assay (ELISA) for detection of Sudan I in food samples[J]. Talanta,2009,77:1783-1789.
    [70] Han D, Yu M, Knopp D, Niessner R, Wu M, Deng A. Development of a HighlySensitive and Specific Enzyme-Linked Immunosorbent Assay for Detection of SudanI in Food Samples[J]. J Agric Food Chem,2007,55:6424-6430.
    [71] Gao X, Liu H, Song Z, He X, Dong F. Rapid assay of picogram level of sudan Iin hot chilli sauce by flow injection chemiluminescence[J]. Spectrosc-Int J,2007,21:135-141.
    [72] Puoci F, Iemma C G F, Muzzalupo R, Spizzirri U G, Picci N. Molecularlyimprinted solid phase extraction for detection of sudan I in food matrices[J]. FoodChem,2005,93:349-356.
    [73] Du. Meiju, Han Xiaogang, Zhou Zihao, Wu Shouguo. Determination of Sudan Iin hot chili powder by using an activated glassy carbon electrode[J]. Food Chem,2007,105:883-888.
    [74] Ming L, Xi X, Chen T, Liu J. Electrochemical Determination of Trace Sudan IContamination in Chili Powder at Carbon Nanotube Modified Electrodes[J]. Sensors,2008,8:1890-1900.
    [75] Du Meiju, Han Xiaogang, Zhou Zihao, Wu Shouguo. Determination of Sudan Iin hot chili powder by using an activated glassy carbon electrode[J]. Food Chem.2007,105:883–888.
    [76] Wu Liping, Li Yuanfang, Huang Chengzhi, Zhang Qin. Visual Detection ofSudan Dyes Based on the Plasmon Resonance Light Scattering Signals of SilverNanoparticles[J]. Anal Chem,2006,78:5570-5577.
    [77] Zhou Xiaofang, Fang Yan, Zhang Pengxiang. A new substrate for surfaceenhanced Raman scattering of dye Sudan molecules[J]. Spectrochimica Acta Part A,2007,67:122-124.
    [78] Zhang Lisheng, Zhang Pengxiang, Fang Yan. Magnetron sputtering of silvernanowires using anodic aluminum oxide template: A new active substrate of surfaceenhanced Raman scattering and an investigation of its enhanced mechanism[J].Analytica Chimica Acta,2007,591:214–218.
    [79] Zhang Mingliang, Fan Xia, Zhou Hongwei, Shao Mingwang, Zapien J Antonio,Wong Ning-Bew, Lee Shuit-Tong. A High-Efficiency Surface-Enhanced RamanScattering Substrate Based on Silicon Nanowires Array Decorated with SilverNanoparticles[J]. J Phys Chem C,2010,114:1969–1975.
    [80] Cheung William, Shadi Iqbal T, Xu Yun, Goodacre Royston. QuantitativeAnalysis of the Banned Food Dye Sudan-1Using Surface Enhanced RamanScattering with Multivariate Chemometrics[J]. J Phys Chem C,2010,114:7285–7290.
    [81] Carolina V, Di Anibal Lluís F, Marsal M, Pilar Callao, Itziar Ruisánchez.Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as ascreening tool for detecting Sudan I dye in culinary spices[J]. Spectrochimica ActaPart A,2012,87:135-141.
    [82] Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold suspensions[J]. Nature Phys Sci,1973,241:20-22.
    [83] Liu Xianping, Li Lei, Wang Xiaoru, Li Xianchun, Dai Jinfeng, Zhang Liang.Response of EEMS and SFS of CDOM Solution to CDOM Concentration[J].Advances In Marine Science,2006,24(4):472-476.
    [84] Geim A K, Novoselov K S. The rise of grapheme[J]. Nat Mater,2007,6:183-191.
    [85] Li D, Kaner R B. Graphene-Based Materials[J]. Science,2008,320:1170-1171.
    [86] Katsnelson M I. Graphene: carbon in two dimensions[J]. Mater Today,2007,10:20-27.
    [87] Rao C N R, Biswas K, Subrahmanyam K S, Govindaraj A. Graphene, the newnanocarbon[J]. J Mater Chem,2009,19:2457-2469.
    [88] Novoselov K S, Geim A K, S. Morozov V, Jiang D, Katsnelson M I, GrigorievaI V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions ingrapheme[J]. Nature,2005,438:197-200.
    [89] Zhang Y, Tan J W, Stormer H L, Kim P. Experimental observation of thequantum Hall effect and Berry's phase in grapheme[J]. Nature,2005,438:201-204.
    [90] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, MaanJ C, Boebinger G S, Kim P, Geim A K, Room-Temperature Quantum Hall Effect inGraphene[J]. Science,2007,315:1379-1387.
    [91] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V,Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
    [92] Han M Y, Oezyilmaz B, Zhang Y, Kim P. Energy Band-Gap Engineering ofGraphene Nanoribbons[J]. Phys Rev Lett,2007,98:206805-206808.
    [93] Lee C, Wei X, Kysar J.W, Hone J. Measurement of the Elastic Properties andIntrinsic Strength of Monolayer Graphene[J]. Science,2008,321:385-388.
    [94] Lerf A, He H, Forster M, Klinowski. Structure of Graphite Oxide Revisited[J]. JPhys Chem B,1998,102:4477–4482.
    [95] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, EvmenenkoG, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxidepaper[J]. Nature,2007,448:457–460.
    [96] Guo Y J, Guo S.J, Ren J T, Zhai Y M, Dong S J, Wang E K. CyclodextrinFunctionalized Graphene Nanosheets with High Supramolecular RecognitionCapability: Synthesis and Host Guest Inclusion for Enhanced ElectrochemicalPerformance[J]. ACS Nano,2010,4:4001–4010.
    [97] Balapanuru J, Yang J X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q H,Loh K P. A Graphene Oxide–Organic Dye Ionic Complex with DNA-Sensing andOptical-Limiting Properties[J]. Angew Chem Int Ed,2010,49:6549–6553.
    [98] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. A Graphene Platform forSensing Biomolecules[J]. Angew Chem,2009,121:4879-4881.
    [99] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, FangH P, Fan C H. A Graphene Nanoprobe for Rapid, Sensitive, and MulticolorFluorescent DNA Analysis[J]. Adv Funct Mater,2010,20:453-459.
    [100] Mohanty N, Berry V. Graphene-Based Single-Bacterium Resolution Biodeviceand DNA Transistor: Interfacing Graphene Derivatives with Nanoscale andMicroscale Biocomponents[J]. Nano Lett,2008,8:4469-4476.
    [101] Liu Z, Robinson J, Sun X M, Dai H J. PEGylated Nanographene Oxide forDelivery of Water-Insoluble Cancer Drugs[J]. J Am Chem Soc,2008,130:10876-10877.
    [102] Xu Yuxi, Zhao Lu, Bai Hua, et al. Chemically Converted Graphene InducedMolecular Flattening of5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and ItsApplication for Optical Detection of Cadmium (II) Ions[J]. J Am Chem Soc,2009,131:13490-13497.
    [103] Liu Xiaojuan, Cao Linyuan, Song Wei, Ai Kelong, Lu Lehui. FunctionalizingMetal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection ofAromatic Molecules by Surface-Enhanced Raman Spectroscopy[J]. Appl MaterInterfaces,2011,3:2944–2952.
    [104] Skoog D A, Holler F J, Nieman T A. Philadelphia: Hartcourt Brace&Company,1998.
    [105] Yu Haihu, Yu Dingshan, Zhou Lingde, Wang Haixia, Jiang Desheng.Self-assembly of Water Soluble Multi-wall Carbon Nanotube/Copper PhthalocyanineDye Multilayer Films[J]. Chinese Journal of Chemical Physics,2005,18(6):1039-1042.
    [106] Yang Xugang, Wu Qilin. Raman spectroscopy Analysis and Application.Beijing, Nationl Defense Industry Press,2008:211-214.
    [107] Liu Tiebing, Mao Jianwei, Lu Chengxue. Review on photochemicaldegradation of chlorophenol[J]. Journal of Zhejiang University of Science andTechnology,2010,22(2):114-119.
    [108] Zhang Chungui, Xu Huaxia, Jiang Qingnan, Wang Jiangwei. MicrobialDegradation and Photolysis of Pentachlorophenol[J]. Chinese Journal of Ecology,1997,16(3):19-22.
    [109] Yang Qiaolin. Dionysios D. Dionysiou. Photolytic degradation of chlorinatedphenols in room temperature ionicliquids[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2004,165:229-240.
    [110] Pettier C, Jiang Y, Lamy M F. Ultrasound and environment: sonochemicaldestruction of chloromatic derivatives[J]. Environ Sci Technol,1998,32(9):1316-1318.
    [111] Zheng Xuxu, Yu Huang, Yin Zhongyi, Fang Mingjian, Hou Keshan, LiXiaohong. Catalytic Activity and Kinetic Equation of Nitrogen-doped TiO2Nanoparticle for4-Chlorophenol Under Visible Light[J]. Journal of MaterialsEngineering,2008,10:39-42.
    [112] Aditya Rastogi, Souhail R Al Abed, Dionysios D Dionysiou. Effect ofinorganic, synthetic and naturally occurring chelating agents on Fe(II) mediatedadvanced oxidation of chlorophenols[J]. Water research,2009,43:684-694.
    [113] Angeles Mantilla, Gabriela Jacome-Acatitla, Getsemaní Morales-Mendoza,Francisco Tzompantzi, Ricardo Gomez. Photoassisted Degradation of4-Chloro-phenol and p-Cresol Using MgAl Hydrotalcites[J]. Ind Eng Chem Res,2011,50:2762–2767.
    [114] Castillo I del, Herna′ndez P, Lafuente A, Rodr′guez-Llorente I D, Caviedes MA, Pajuelo E. Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles[J]. Water research,2012,46:1723-1734.
    [115] Fattahi N, Samadi S, Assadi Y, Assadi Y, Hosseini M R M. Solid-phaseextraction combined with dispersive liquid–liquid microextraction-ultra preconcen-tration of chlorophenols in aqueous samples[J]. J Chromatography A,2007,1169:63-69.
    [116] Artur Camille G, Miller Rowan, Meyer Matthias, et al. Single-molecule SERSdetection of C60[J]. Physical Chemistry Chemical Physics,2012,14(9):3219-3225.
    [117] Zhang Xiaoyu, Shah Nilam C, Van Duyne Richard P. Sensitive and selectivechem/biosensing based onsurface-enhanced Raman spectroscopy (SERS)[J].Vibrational Spectroscopy,2006,42:2-8.
    [118] Sebastian Schlucker. SERS Microscopy: Nanoparticle Probes and BiomedicalApplications[J]. ChemPhysChem,2009,10:1344-1354.
    [119] Han Xiaoxia, Xie Yunfei, Zhao Bing, Ozaki Yukihiro. Highly Sensitive ProteinConcentration Assay over a Wide Range via Surface-Enhanced Raman Scattering ofCoomassie Brilliant Blue[J]. Anal Chem,2010,82:4325–4328.
    [120] Dinish U S, Yaw Fu Chit, Seng Soh Kiat. Highly sensitive SERS detection ofcancer proteins in low sample volume using hollow core photonic crystal fiber[J].Biosensors&bioelectronics,2012,33(1):293-298.
    [121] Lee P C, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes OnSilver and Gold Sols[J]. The Journal of Physical Chemistry,1982,86(17):3391-3395.
    [122] Wei Song, Yuchuan Cheng, Huiying Jia, Weiqing Xu, Bing Zhao. Surfaceenhanced Raman scattering based on silver dendrites substrate[J]. Journal of Colloidand Interface Science,2006,298:765–768.
    [123] Jean Claudio Santos Costa, R mulo Augusto Ando, Antonio Carlos Sant’Ana,Liane Marcia Rossi, Paulo Sérgio Santos, Márcia Laudelina Arruda Temperini, PaolaCorio. High performance gold nanorods and silver nanocubes in surface-enhancedRaman spectroscopy of pesticides[J]. Phys Chem Chem Phys,2009,11:7491-7498.
    [124] Li Xuanhua, Chen Guangyu, Yang Liangbao, Jin Zhen, Liu Jinhuai. Multifun-ctional Au-Coated TiO2Nanotube Arrays as Recyclable SERS Substrates forMultifold Organic Pollutants Detection[J]. Adv Funct Mater,2010,20:2815–2824.
    [125] Li X Q, Qi Z H, Liang K, et al. An Artificial Supramolecular Nanozyme Basedon β-Cyclodextrin-Modified Gold Nanoparticles[J]. Catal Lett,2008,124(3-4):413-417.
    [126] Gadelle A, Defaye J. Selective Halogenation at Primary Positions ofCyclomaltooligosaccharides and a Synthesis of Per-3,6-anhydro Cyclomaltooligo-saccharides[J]. Angew Chem Int Ed Engl,1991,30:78-80.
    [127] Ashton P R, Koniger R, Stoddart J F, Alker D, Harding V D. Amino AcidDerivatives of β-Cyclodextrin[J]. J Org Chem,1996,61(3):903-908.
    [128] Rojas M T, Koeniger R, Stoddart J F, Kaifer A E. Supported MonolayersContaining Preformed Binding Sites. Synthesis and Interfacial Binding Properties of aThiolated beta-Cyclodextrin Derivative[J]. J Am Chem Soc,1995,117(1):336-343.
    [129] Wei Danyi, Shu Junlong, Qi Wenbin. Inclusion effect of β-cyclodextrin andsome of its derivatives on phenols[J]. Chemical Reagents,1999,21(5):261-263.
    [130] Norberto Castillo, Russell J Boyd. The host-guest inclusion complex ofp-chlorophenol inside α-cyclodextrin: An atoms in molecules study[J]. ChemicalPhysics Letters,2005,416:70-74.
    [131] Li Jianmei, Meng Xiangguang, Hu Changwei, Du Juan. Adsorption of phenol,p-chlorophenol and p-nitrophenol onto functional chitosan[J]. Bioresource Techno-logy,2009,100:1168-1173.
    [132] Li Fei, Dong Jinqiao, Shen Qing. The Function of Hydrogen Bond in PolymerBlends I.Characters and Affecting Factors of Hydrogen Bond[J]. Polymer Bulletin,2009,7:45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700