电化学条件下碳—碳,碳—氮键的绿色合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电化学合成,俗称有机电解合成,是一门有机合成与电化学技术相结合的边缘学科,主要研究有机分子或催化煤质在“电极/溶液”界面上电荷相互传递,电能与化学能相互转化及旧键断裂,新键形成的规律。
     伴随着绿色有机合成的发展,化学家们一直在探索怎样使反应条件更温和,后处理过程更简单,更节能和环保。相比传统的氧化还原剂,电子具有环境友好,后处理简单以及条件温和等许多优势,更加符合可持续发展和低碳经济的需求。
     本论文主要研究了电化学条件下碳-碳,碳-氮键的绿色合成方法。全文共包括三个部分,第一部分综述了国内外有机电合成的发展方向和最新进展;第二部分研究了有机电合成高烯丙基醇,脒类化合物和肟类化合物;第三部分研究了各种不同形貌锡的制备和表征。
     首先,我们在已有合成高烯丙基醇方法的基础上,先实现了成对电合成羰基化合物和高烯丙基醇,在此基础上又实现了在电化学条件下一锅法串联从醇合成高烯丙基醇。在阳极上发生醇到羰基化合物的氧化,而在阴极上同时析出金属锡,在电解液中发生烯丙基化反应。与传统的只利用单一电极方法相比较,该方法因为利用了工作电极和对电极而有效的利用了电能,同时反应的底物类型从醛类物质拓展到了醇类物质,反应条件温和。
     随后,我们研究了电化学条件下磺酰叠氮和脂肪胺的脒化反应。脂肪胺在阳极表面发生氧化生成活性中间体烯胺,进而与磺酰叠氮发生1,3-偶极环加成反应最终形成脒类化合物。传统的脒化反应的催化剂被电子取代,后处理过程大大简化,此外脂肪胺的类型由传统的三级胺拓展到了一级和二级胺。反应大都定量转化,条件温和,该反应体系具有重要的工业应用价值。
     我们进一步研究实现了电化学条件下一锅串联反应从醇合成了肟类化合物,硝酸钾既作为电解质又作为氮源。在阳极上发生醇到羰基化合物的氧化,而在阴极上同时析出金属锡,金属锡还原电解液中的硝酸钾原位生成盐酸羟胺,从而和羰基化合物反应生成肟类化合物。研究发现空心锡球有很高的反应活性。该反应拓展了肟化反应氮源的类型。
     最后,我们研究了金属锡形貌的调控和表征。通过调节无机锡盐的浓度,我们得到了不同形貌的金属锡,有空心球,星状,棒状和不规则多面体状。此外,我们还尝试了用高分子化合物作为稳定剂来合成纳米锡,得到锡纳米粒径在5nm左右。
     综上所述,我们将有机化学和电化学相结合发展了新的合成碳-碳,碳-氮键的新方法,它们具有反应条件温和,操作简单,拓展了传统反应底物类型和催化剂类型的优点,同时也具有非常实际的应用价值,为绿色有机合成的发展提供了新的思路和方向。
Organic electrochemistry synthesis, as well known as organic electrosynthesis, is a kind of interdisciplinary subjects of combination of organic synthesis and electrochemistry. The major researches focus on electrons transfer of organic molecule or catalyst between the surface of "electrode and electrolyte", mutual transformation between electric energy and chemical energy and even the principles of the breakage of old bonds and formation of the new bonds.
     With the rapid development of green organic synthesis, chemists always devote their efforts to make the reaction condition milder, the procedure of reaction simpler, more efficiency and environment friendly. Compared with the traditional oxidants and reductants, electrons are environment friendly, post processing simple and mild, which more meeting the requirement of sustainable development and low carbon economy.
     This thesis focuses on the studies on the electrochemical green synthesis of C-C and C-N bonds. There are three parts included in this thesis. The first part is the review of the recent progress and development direction of organic electrosynthesis at home and abroad. The second part involves the organic electrosynthesis of homoallylic alcohols, amidines and oximes. In the third part we study the preparation of different shape of tin and characterization.
     First, based on the existing methods for synthesis of homoallylic alcohols, we realize paired electrosynthesis of carbonyl compounds and homoallylic alcohols, then we also realize one-pot tandem electrosynthsis of homoallylic alcohols from alcohols. At anode, alcohols are oxidized to form carbonyl compounds, while metallic tin is deposited at cathode. These electrolytic products reacted with the allyl bromide gives the homoallylic alcohols. Compared with the single electrode reaction, in which only working electrode is applied, this method improves the efficiency of electric energy. Meanwhile the scope of reaction substrate is broadened from aldehydes to alcohols with mild conditions.
     Second, we study the electrochemical imidation of aliphatic amines via anodic oxidation. At anode, the aliphatic amines are oxidized to form intermediate enamines, which reacted with sulfonyl azides to produce amidines via1,3-dipolar cycloaddition. Traditional catalysts for this reaction are completely avoided. The types of aliphatic amines are broadened from tertiary amines to primary and secondary amines. The transformation is completed quantatively under mild condition, which provide this method with high industrial value.
     Next, we further realize the electrochemical one-pot tandem synthesis of oximes from alcohols with KNO3both as electrolyte and nitrogen source. At anode, the alcohols are oxidized to form carbonyl compounds, while metallic tin is deposited at cathode. The deposited tin mediated the KNO3to in-situ produce hydroxylamine. These electrolytic products mixed to produce the oximes. The results show that the hollow tin spheres have high catalytic reactivity. This reaction broadens the type of nitrogen source of the oximation.
     At last, we tune the shape of metallic tin and characterization. We get different shape of metallic tin, such as hollow sphere, star, rod and irregular polyhedron with adjustment of the concentration of SnCl2. Moreover, we try the preparation of polymer stabilized nano Sn. The diameter is around5nm.
     In conclusion, we combine the organic chemistry with electrochemistry to develop novel methods for the formation of C-C and C-N bonds. These methods maintain the properties of mild conditions, simple procedure, broadening the scope of reaction substrates or catalysts and high industrial value, which provide new thoughts and direction for the development of green organic synthesis.
引文
1. a) Baizer, M. M. in Organic Electrochemistry (Eds.: Baizer, M. M.; Lund, H.), Marcel Dekker, 1991; b)查全性等.电极过程动力学导论,1987;c)马淳安,有机电化学合成导论,2002;
    2. a) Li, C-J. Chem. Rev. 1993, 93, 2023; b) Li, C-J. Chem. Rev. 2005,105, 3095; c) Chanda, A.; Fokin, V. V. Chem. Rev. 2009,109, 725
    3. Hilt, G. Angew. Chem., Int. Ed. 2001, 40, 3399;
    4. Hilt, G. Angew. Chem., Int. Ed. 2003, 42, 1720;
    5. Yoshida, J.-I.; Suga, S. Chem. Eur. J. 2002, 8, 2650.
    6. Zha, Z. G.; Hui, A. L.; Zhou, Y. Q.; Miao, Q.; Wang, Z. Y; Zhang, H. C. Org. Lett. 2005, 7, 1903.
    7. Zhang, L.; Zha, Z. G; Wang, Z. Y; Fu, S. Q. Tetrahedron Lett. 2010, 51, 1426.
    8. Zhang, L; Zha, Z. G; Wang, Z. Y Synlett, 2010,13, 1915.
    9. Zhang, L.; Zha, Z. G; Zhang, Z. L.; Li,Y. F.; Wang, Z. Y. Chem. Commun. 2010, 46, 7196.
    10. Amemiya, F.; Fuse, K.; Fuchigami, T.; Atobe, M. Chem. Commun. 2010, 46, 2730.
    11. Huang, J-M; Dong, Y. Chem. Commun. 2009, 45, 3943;
    12. Huang, J-M.; Ren, H-R. Chem. Commun. 2010, 46, 2286;
    13. Huang, J-M.; Wang, X-X.; Dong, Y. Angew. Chem., Int. Ed. 2011, 50, 924.
    14. Fuchigami, T.; Shimojo, M.; Konno, A.; Nakagawa, K. J. Org. Chem., 1990, 55, 6074.
    15. Suzuki, K.; Inagi, S.; Fuchigami, T. Electrochim. Acta, 2009, 54, 961.
    16. Fuchigami, T.; Fujita, T. J. Org. Chem., 1994, 59, 7190.
    17. Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Org. Lett., 2010,12, 644.
    18. Fuchigami, T.; Yamamoto, K.; Nakagawa, Y. J. Org. Chem., 1991, 56, 137.
    19. a) Tajima, T.; Fuchigami, T. J. Am. Chem. Soc, 2005, 127, 2848; b) Tajima, T.; Fuchigami, T. Chem. Eur. J., 2005,11, 6192.
    20. Tajima, T.; Fuchigami, T. Angew. Chem. Int. Ed., 2005, 44,4760.
    21. a) Moeller, K. D.; Marzabadi, M. R.; New, D. G; Chiang, M. Y; Keith, S. J. Am. Chem. Soc., 1990, 112, 6123; b) Hudson, C. M.; Marzabadi, M. R.; Moeller, K. D.; New, D. G.J. Am. Chem. Soc., 1991,773,7372.
    22. Moeller, K. D.; Tinao, L. V. J. Am. Chem. Soc, 1992,114, 1033.
    23. Wu, H.; Moeller, K. D. Org. Lett. 2007, 9,4599.
    24. Redden, A.; Moeller, K. D. Org. Lett. 2011,13, 1678.
    25. Sutterer, A.; Moeller, K. D. J. Am. Chem. Soc, 2000,122, 5636.
    26. a) Xu, H-C; Moeller, K. D. J. Am. Chem. Soc, 2008,130, 13542; b) Xu, H-C; Moeller, K. D. J. Am. Chem. Soc, 2010, 132, 2839.
    27. Xu, H-C.; Moeller, K. D. Org. Lett. 2010,12, 5174.
    28. Malkowsky, I. M.; Rommel, C. E.; Wedeking, K.; Frohlich, R.; Bergander, K.; Nieger, M.; Quaiser, C; Griesbach, U.; Putter, H.; Waldvogel, S. R. Eur. J. Org. Chem., 2006, 241.
    29. Grimshaw, J. Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier, Amsterdam, 2000, chapter 6.
    30. Malkowsky, I. ML; Griesbach, U.; Putter, H.; Waldvogel, S. R. Eur. J. Org. Chem., 2006,4569.
    31. Kirste, A.; Nieger, M.; Malkowsky, I. M.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Chem. Eur. J., 2009, 15, 2273.
    32. Kirste, A.; Schnakenburg, G; Stecker, F.; Fischer, A.; Waldvogel, S. R. Angew. Chem. Int. Ed., 2010,49,971.
    33. a) Barjau, J.; Schnakenburg, G; Waldvogel, S. R. Angew. Chem. Int. Ed., 2011, 50, 1415; b) Malkowsky, I. M.; Rommel, C. E.; Wedeking, K.; Frohlich, R.; Bergander, K.; Nieger, M.; Quaiser, C.; Griesbach, U.; Putter, H.; Waldvogel, S. R. Eur. J. Org. Chem. 2006, 241; c) Barjau, J.; Konigs, P.; Kataeva, O.; Waldvogel, S. R. Synlett 2008, 2309.
    34. Kirste, A.; Schnakenburg, G; Waldvogel, S. R. Org. Lett., 2011,13, 3126.
    35. a) Kirste, A.; Elsler, B.; Schnakenburg, G; Waldvogel, S. R. J. Am. Chem. Soc, 2012,134, 3571; b) Schafer, H. J. Angew. Chem., Int. Ed. 1981, 20, 911; c) Little, R. D.; Moeller, K. D. Electrochem. Soc. Interface 2002,11, 36; d) Moeller, K. D. Tetrahedron 2000, 56, 9527; e) Moeller, K. D. Top. Curr. Chem. 1997,185, 49; f) Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.
    36. a) Zard, S. Z. Radical Reactions in Organic Synthesis, Oxford University Press, Oxford, 2003; b) Albert, M.; Fensterbank, L.; Lacote, E.; Malacria, M. Top. Curr. Chem. 2006, 264, 1.
    37. a) Doyle, M. P.; DeBruyn, D. J.; Scholten, D. J. J. Org. Chem. 1973, 38, 625. Kennedy and Smith's INIFER (INIFER= initiator-transfer) method is also recognized as a cation chain reaction; for example, b) Kennedy, J. P.; Smith, R. A. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 1523; c) Mayr, H.; Schade, C. Makromol. Chem. Rapid Commun. 1988, 9, 483.
    38. Carbocation Chemistry (Eds.: Olah, G A.; Prakash, G. K. S.), Wiley, New Jersey, 2004.
    39. Cationic Polymerization, ACS Symposium Ser. 665 (Eds.: Faust, R.; Shaffer, T. D.),American Chemical Society, Washington, DC, 1997.
    40. a) Yoshida, J.; Takada, K.; Ishichi, Y.; Isoe, S. J. Chem. Soc, Chem. Commun., 1994, 2361; b) Yoshida, J.; Maekawa, T.; Murata, T.; Matsunaga, S.; Isoe, S. J. Am. Chem. Soc., 1990,112, 1962.
    41. a) Yoshida, J.; Isoe, S. Tetrahedron Lett., 1987, 28, 6621; b) Suda, K.; Hotoda, K.; Watanabe, J.; Shiozawa, K.; Takanami, T. J. Chem. Soc, Perkin Trans. 1., 1992, 1283; c) Yoshida, J.; Ishichi, Y.; Nishiwaki, K.; Shiozawa, S.; Isoe, S. Tetrahedron Lett., 1992, 33, 2599.
    42. Yoshida, J.; Sugawara, M.; Kise, N. Tetrahedron Lett, 1996, 37, 3157.
    43. Yoshida, J.; Sugawara, M.; Tatsumi, M.; Kise, N. J. Org. Chem. 1998, 63, 5950.
    44. Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. J. Am. Chem. Soc. 1999,121, 9546.
    45. Suga, S.; Suzuki, S.; Yamamoto, A.; Yoshida, J. J. Am. Chem. Soc. 2000,122,10244.
    46. Suga, S.; Okajima, M.; Fujiwara, K.; Yoshida, J. J. Am. Chem. Soc. 2001,123, 7941.
    47. Yoshida, J.; Suga, S. Chem. Eur. J. 2002, 8, 2650.
    48. Suga, S.; Suzuki, S.; Yoshida, J. J. Am. Chem. Soc. 2002,124, 30.
    49. Suga, S.; Watanabe, M.; Yoshida, J. J. Am. Chem. Soc. 2002,124, 14824.
    50. Suga, S.; Nagaki, A.; Tsutsui, Y; Yoshida, J. Org. Lett. 2003, 5, 945.
    51. Suga, S.; Nagaki, A.; Yoshida, J. Chem. Commun. 2003, 354.
    52. Suzuki, S.; Matsumoto, K.; Kawamura, K.; Suga, S.; Yoshida, J. Org. Lett. 2004, 6, 3755.
    53. Suga, S.; Nishida, T.; Yamada, D.; Nagaki, A.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 14338.
    54. Suga, S.; Suzuki, S.; Yoshida, J. Org. Lett. 200S, 7,4717.
    55. Suga, S.; Matsumoto, K.; Ueoka, K.; Yoshida, J. J. Am. Chem. Soc. 2006,128, 7710.
    56. Matsumoto, K.; Fujie, S.; Ueoka, K.; Suga, S.; Yoshida, J. Angew. Chem. Int. Ed. 2008, 47, 2506.
    57. Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami, T.; Yoshida, J. Angew. Chem. Int. Ed. 2011,50,5153.
    58. Ashikari, Y; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2011, 133, 11840.
    59. Ashikari, Y; Nokami, T.; Yoshida, J. Org. Lett. 2012,14, 938.
    60. Mitsudo, K.; Kaide, T.; Nakamoto, E.; Yoshida, K.; Tanaka, H. J. Am. Chem. Soc. 2007, 129, 2246.
    61. Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009,131, 11310.
    62. Jensen, K. L.; Franke, P. T.; Nielsen, L. T.; Daasbjerg, K.; J(?)rgensen, K. A. Angew. Chem. Int. Ed. 2010, 49, 129.
    63. Kulisch, J.; Nieger, M.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2011, 50, 5564.
    64. Sawamura, T.; Takahashi, K.; Inagi, S.; Fuchigatni, T. Angew. Chem. Int. Ed. 2012, 57, 4413.
    1. a) Denmark, S. E.; Nguyen, S. T. Org. Lett. 2009, 11, 781; b) Li, C-J. Chem. Rev. 1993, 93, 2023; c) Li, C-J. Chem. Rev. 2005, 105, 3095; d) Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
    2. a) Hilt, G. Angew. Chem., Int. Ed. 2001, 40, 3399; b) Hilt, G. Angew. Chem., Int. Ed. 2003, 42, 1720; c) Zha, Z. G; Hui, A. L.; Zhou, Y. Q.; Miao, Q.; Wang, Z. Y; Zhang, H. C. Org. Lett. 2005, 7, 1903; d) Huang, J-M.; Dong, Y. Chem. Commun. 2009, 26, 3943; e) Huang, J-M.; Ren, H-R. Chem. Commun. 2010, 46, 2286; f) Huang, J-M.; Wang, X-X.; Dong, Y. Angew. Chem., Int. Ed. 2011, 50, 924; g) Amemiya, F.; Fuse, K.; Fuchigami, T.; Atobe, M. Chem. Commun. 2010, 46, 2730.
    3. a) Raju, T.; Manivasagan, S.; Revathy, B.; Kulangiappear, K.; Muthukumaran, A. Tetrahedron Lett. 2007, 48, 3681; b) Yoshida, T.; Kuroboshi, M.; Oshitani, J.; Gotoh, K.; Tanaka, H. Synlett. 2007,17, 2691; c) Mitsudo, K.; Kumagai, H.; Takabatake, F.; Kubota, J.; Tanaka, H. Tetrahedron Lett. 2007, 48, 8994; d) Hoormann, D.; Jorissen, J.; Putter, H. Chem. -Ing. -Tech. 2005, 77, 1363; e) Putter, H.; Hannebaum, H. Proc. - Electrochem. Soc. 2000,15, 25.
    4. Zhang, L.; Zha, Z. G; Wang, Z. Y.; Fu, S. Q. Tetrahedron Lett. 2010, 51, 1426.
    5. M. M. Baizer in Organic Electrochemistry (Eds.: Baizer, M. M.; Lund, H.), Marcel Dekker, 1991, chap. 35, pp. 1421-1430; and selected examples: a) Takahashi, Y; Tokuda, M.; Itoh, M.; Suzuki, A. Synthesis 1976, 616; b) Wei, X. D.; Speiser, B. Electrochim. Acta 1995, 40, 2477; c) Ishifune, M.; Yamashita, H.; Matsuda, M.; Ishida, H.; Yamashita, N.; Kera, Y; Kashimura, S.; Masuda, H.; Murase, H. Electrochim. Acta 2001, 46, 3259; d) Kim, S.; Uchiyama, R.; Kitano, Y.; Tada, M.; Chiba, K. J. Electroanal. Chem. 2001, 507, 152.
    6. Grimshaw, J. electrochemical reactions and mechanisms in organic chemistry, Elsevier, Amsterdam, 2000.
    7. Details are in Experimental section.
    8. Without electrolysis, the homoallylic alcohol was not obtained and benzyl alcohol was recovered.
    9. a) Nad, S.; Breinbauer, R. Angew. Chem., Int. Ed. 2004, 43, 2297; b) Tajima, T.; Fuchigami, T. Angew. Chem., Int. Ed. 2005, 44, 4760; c) Tajima, T.; Fuchigami, T. J. Am. Chem. Soc. 2005, 127, 2848.
    1. a) Boyd, G. V. In The Chemistry of Amidines and Imidates; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; Vol. 2, Chapter 8; b) Barker, J.; Kilner, M. Coord. Chem. Rev. 1994,133, 219.
    2. a) Takuwa, T.; Minowa, T.; Onishi, J. Y; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2004, 77,1717. b) Kumagai, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2004, 43, 478. c) Lange, U. E. W; Schafer, B.; Baucke, D.; Buschmann, E.; Mack, H. Tetrahedron Lett. 1999,40, 7067.
    3. a) Chang, S.; Lee, M.; Jung, D. Y; Yoo, E. J.; Cho, S. H.; Han, S. K. J. Am. Chem. Soc. 2006, 128, 12366. b) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005,127, 2038.
    4. (a) Xu, X. L.; Ge, Z. C; Cheng, D. P.; Ma, L.; Lu, C. S.; Zhang, Q. E; Yao, N.; Li, X. N. Org. Lett. 2010, 12, 897. (b) Xu, X. L.; Li, X. N.; Ma, L.; Ye, N.; Weng, B. J. J. Am. Chem. Soc. 2008, 130, 14048.
    5. Wang, S. J.; Wang, Z. Y; Zheng, X. Q. Chem. Commun. 2009, 7372.
    6. (a) Organic Electrochemistry, 4th ed. (Eds.: Lund, H.; Hammerich, O.), Marcel Dekker, New York, 2001. (b) Grimshaw, J. Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier, Amsterdam, 2000. (c) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008,108,2265. (d) Jutand, A. Chem. Rev. 2008,108, 2300.
    7. (a) Dapo, R. F.; Mann, C. K. Anal. Chem. 1963, 35, 677. (b) Mann, C. K. Anal. Chem. 1964, 36, 2424. (c) Barnes, K. K.; Mann, C. K. J. Org. Chem. 1967,32,1474. (d) Smith, P. J.; Mann, C. K. J. Org. Chem. 1968, 33, 316. (e) Smith, P. J.; Mann, C. K. J. Org. Chem. 1969, 34, 1821. (f) Portis, L. C.; Mann, C. K. J. Org. Chem. 1970, 35, 2175. (g) Ross, S. D. Tetrahedron Lett. 1973, 15, 1237. (h) Chiba, T.; Takata, Y. J. Org. Chem. 1977, 42, 2973.
    8. (a) Larumbe, D.; Gallardo, I.; Andrieux, C.-P. J. Electroanal. Chem. 1991, 304, 241. (b) Larumbe, D.; Moreno, M.; Gallardo, I.; Bertran, J.; Andrieux, C.-P. J. Chem. Soc. Perkin Trans. 2 1991, 1437. (c) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N. Langmuir 2004, 20, 8243. (d) Gallardo, I.; Vila,N. J. Org. Chem. 2008, 73, 6647.
    9. Details are in the Experimental section.
    10. Without electrolysis, the sulfonyl amidine was not obtained, and TsN3 was recovered.
    11. Chang, P. L.-F.; Dittmer, D. C. J. Org. Chem. 1969, 34, 2791.
    12. Abdulla, R. F.; Fuhr, K. H.; Williams, J. C. Jr. J. Org. Chem. 1979, 44, 1349.
    1. For the selected references for transformation of oximes to nitriles and amides: a) Shono, T.; Matsumura, Y.; Tsubata, K.; Kamada, T.; Kishi, K. J. Org. Chem. 1989, 54, 2249-2251; b) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209-4211; c) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem. 2007, 119, 3996-3999; Angew. Chem. Int. Ed. 2007, 46, 3922-3925; d) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 3599-3601; e) Fujiwara, H.; Ogasawara, Y; Yamaguchi, K.; Mizuno, N. Angew. Chem. 2007, 119, 5294-5297; Angew. Chem. Int. Ed. 2007, 46, 5202-5205; f) Ramon, R. S.; Bosson, J.; Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. J. Org. Chem. 2010, 75, 1197-1202.
    2. Robertoson, G M. Comprehensive Functional Group Transformation, Vol. 3 (Ed.: Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.), Elsevier, Oxford, 1995, pp. 425-441.
    3. a) Raja, R.; Sankar, G; Thomas, J. M. J. Am. Chem. Soc. 2001,123, 8153-8154; b) Fornasari, G.; Trifiro, F.; Catal. Today, 1998, 41, 443-455; c) Armor, J. N. J. Am. Chem. Soc. 1980, 102, 1453-1454.
    4. a) Cesana, A.; Mantegazza, M. A.; Pastori, M. J. Mol. Catal. A: Chem. 1997, 117, 367-373; b) Dal Pozzo, L.; Fornasari, G; Monti, T. Catal. Commun. 2002, 3, 369-375; c) Ichihashi, H.; Sato, H. Appl. Catal. A, 2001, 221, 359-366; d) Wu, P.; Komatsu, T.; Yashima, T. J. Catal. 1997, 168, 400-411; e) Le Bars, J.; Dakka, J.; Sheldon, R. A. Appl. Catal. A, 1996, 136, 69-80; f) Bhaumik, A.; Samanta, S.; Mal, N. K. Microporous Mesoporous Mater. 2004, 68, 29-35; g) Liu, T.; Meng, X.; Wang, Y.; Liang, X.; Mi, Z.; Qi, X.; Li, S.; Wu, W.; Min, E.; Fu, S. Ind. Eng. Chem. Res. 2004, 43, 166-172; h) Liang, X.; Mi, Z.; Wang, Y; Wang, L.; Zhang, X.; Liu, T. Chem. Eng. Technol. 2004, 27,176-180; i) Sloboda-Rozner, D.; Neumann, R. Green Chem. 2006, 8, 679-681.
    5. a) Sodium salt of tungstic acids: Kahr, K. Angew. Chem. 1960, 72, 135-137; b) Peroxo tungstophosphate: Sakaue, S.; Sakata, Y.; Nishiyama, Y.; Ishii, Y. Chem. Lett. 1992, 289-291; c) [Mo(O)(O2)(H2O)(hmpa)] (hrnpa=hexamethylphosphoramide): 1) Tollari, S.; Bruni, S.; Bianchi, C.; Rainoni, L. M.; Porta, F. J. Mol Catal. 1993, 83, 311-322; 2) Reddy, J. S.; Sayari, A. Appl. Catal. A 1995, 128, 231-242; d) Titanium silicate: Jacob, P. A.; Reddy, J. S. J. Chem. Soc. Perkin Trans. 1 1993, 2665-2666; e) Methyltrioxorhenium (MTO): Yamazaki, S. Bull. Chem. Soc. Jpn. 1997, 70, 877-883; f) l,l-diphenyl-2-picrylhydrazyl (DPPH) and WO3/Al2O3: Suzuki, K.; Watanabe, T.; Murahashi, S.-I. Angew. Chem. 2008, 120, 2109-2111; Angew. Chem. Int. Ed. 2008, 47,2079-2081.
    6. a) Okamoto, T.; Kobayashi, K.; Oka, S.; Tanimoto, S. J. Org. Chem., 1987, 52, 5089-5092; b) Okamoto, T.; Kobayashi, K.; Oka, S.; Tanimoto, S. J. Org. Chem., 1988, 53, 4897-4901; c) Kato, K.; Mukaiyama, T. Chem. Lett., 1990, 19, 1395-1398; d) Kato, K; Mukaiyama, T. Chem. Lett., 1990,19, 1917-1920; e) Kato, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn., 1991, 64, 2948-2953; f) Sugamoto, K.; Hamasuna, Y.; Matsushita, Y; Matsui, T. Synlett, 1998, 1270-1272; g) Prateeptongkum, S.; Jovel, I.; Jackstell, R.; Vogl, N.; Weckbecker, C; Beller, M. Chem. Commun., 2009, 1990-1992.
    7. a) Rajeshwar, K.; Ibanez, J. G Environmental Electrochemistry-Fundamentals and Applications in Pollution Abatement, Academic Press, San Diego, 1997; b) Organic Electrochemistry, 4th ed. (Eds.: Lund, H. and Hammerich, O.), Marcel Dekker, New York, 2001; c) Grimshaw, J. Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier, Amsterdam, 2000; d) A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley-VCH, 2003.
    8. For the selected references for electrochemical reduction of nitrate and nitrite: a) Hiratsu, T.; Suzuki, S.; Yamaguchi, K. Chem. Commun., 2005, 4534-4535; b) Lu, C.; Lu, S. G; Qiu, W. H.; Liu, Q. G Electrochim. Acta, 1999, 44, 2193-2197; c) Fanning, J. C. Coord. Rev. Chem. 2000,199, 159-179; d) Polatides, C; Dortsiou, M.; Kyriacou, G. Electrochim. Acta, 2005, 50, 5237-5241; e) Brylev, O.; Sarrazin, M.; Roue, L.; Belanger, D. Electrochim. Ada, 2007, 52, 6237-6247; f) Tada, K.; Shimazu, K. J. Electroanal. Chem., 2005, 577, 303-309; g) Tada, K.; Kawaguchi, T.; Shimazu, K. J. Electroanal. Chem., 2004, 572, 93-99; h) Katsounaros, I.; Ipsakis, D.; Polatides, C.; Kyriacou, G. Electrochim. Acta, 2006, 52, 1329-1338; i) Casella, I. G; Gatta, M. J. Electroanal. Chem. 2004, 568, 183-188; j) Bae, S. E.; Stewart, K. L.; Gewirth, A. A. J. Am. Chem. Soc. 2007, 129, 10171-10180; k) Pronkin, S. N.; Simonov, P. A.; Zaikovskii, V. I.; Savinova, E. R. J. Mol. CatalA: Chem., 2007, 265, 141-147; 1) Tian, Y; Wang, J. X.; Wang, Z.; Wang, S. C. Synth. Met., 2004,143, 309-313; m) Chen, S. M.; Hsueh, S. H. J. Electrochem. Soc., 2003,150, D175-D183; n) Toth, J. E.; Anson, F. C. J. Am. Chem. Soc, 1989, 111, 2444-2451; o) Chen, Y-X.; Chen, S-P.; Chen, Q-S.; Zhou, Z-Y; Sun, S-G Electrochim. Ada, 2008, 53, 6938-6943; p) Chen, Y-X.; Chen, S-P.; Zhou, Z-Y.; Tian, N.; Jiang, Y-X.; Sun, S-G.; Ding, Y.; Wang, Z-L. J. Am. Chem. Soc. 2009, 131, 10860-10862.
    9. a) Zha, Z. G.; Hui, A. L.; Zhou, Y Q.; Miao, Q.; Wang, Z. Y.; Zhang, H. C. Org. Lett. 2005, 7, 1903-1905. b) Zhang, L.; Zha, Z. G.; Wang, Z. Y.; Fu, S. Q. Tetrahedron Lett. 2010, 51, 1426-1429. c) Zhang, L.; Zha, Z. G.; Wang, Z. Y. Synlett, 2010, 13, 1915-1918. d) Zhang, L.; Zha, Z. G. Zhang, Z. L; Li, Y E; Wang, Z. Y. Chem. Commun. 2010, 46, 7196-7198. e) Zhang, L.; Su, J-H.; Wang, S. J.; Wan, C. F.; Zha, Z. G.; Du, J. F.; Wang, Z. Y. Chem. Commun. 2011,47, 5488-5490.
    10. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements. 2nd Edition. Reed Educational and Professional Publishing Ltd. pp. 431-432. 1997.
    11. Details are in the Experimental part.
    12. Reaction conditions:the mixture of alcohol (2 mmol), ZnCl2 (1 mmol), NH4OH (3 mL) and KNO3 saturated solution (3 mL) was electrolyzed at a constant current of 25 mA for six hours in an undivided cell, which was equipped with a three-electrode system at room temperature, details in supporting information. Isolated yields are given.
    1.张立德,牟季美 纳米材料和纳米结构,科学出版社:北京,2001.
    2. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481.
    3. Ofir, Y.; Xiao, Q. J.; Samanta, B.; Arumugam, P.; Tuominen, M. T.; Rotello, V. M. Abstr Pap Am Chem S 2007,234.
    4. (a) Reetz, M. T.; Helbig, W. J. Am. Chem. Soc. 1994,116, 7401; (b) Eggimann, B. L.; Siepmann, J. I. J. Phys. Chem. C 2007, 112, 210; (c) Reetz, M. T.; Winter, M.; Breinbauer, R.; Thurn-Albrecht, T.; Vogel, W. Chem. Eur. J. 2001, 7, 1084; (d) Huang, S.; Ma, H.; Zhang, X.; Yong, E; Feng, X.; Pan, W.; Wang, X.; Wang, Y; Chen, S. J. Phys. Chem. B 2005,109, 19823; (e) Nagaraju, D. H.; Lakshminarayanan, V. Langmuir 2008, 24, 13855; (f) Yin, B.; Ma, H.; Wang, S.; Chen, S. J. Phys. Chem. B 2003, 707, 8898; (g) Reetz, M. T.; Helbig, W.; Quaiser, S. A. Chem. Mater. 1995, 7, 2227.
    5. a) Tian, N.; Zhou, Z-Y.; Sun, S-G.; Ding, Y.; Wang, Z. L. Science, 2007, 316, 732; b) Liao, H-G.; Jiang, Y-X.; Zhou, Z-Y.; Chen, S-P.; Sun, S-G; Angew. Chem. Int. Ed. 2008, 47, 9100; c) Tian, N.; Zhou, Z-Y.; Sun, S-G.; Chem. Comm. 2009, 1502; d) Chen, Y-X.; Chen, S-P.; Zhou, Z-Y; Tian, N.; Jiang, Y-X.; Sun, S-G.; Ding, Y.; Wang, Z. L. J. Am. Chem. Soc., 2009, 131, 10860; e) Chen, Y-X.; Chen, S-P.; Chen, Q-S.; Zhou, Z-Y.; Sun, S-G. Electrochim. Acta, 2008, 53, 6938.
    6. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 726,9142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700