二甲醚重整制氢催化反应过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能以其清洁、高效、可再生被视为本世纪最具发展潜力的能源,目前基于化学过程的移动制氢装置的研究开发,已成为当前燃料电池领域的热点课题之一,二甲醚由于其清洁环保特性成为燃料电池电动汽车的理想氢源之一。对二甲醚水蒸汽重整制氢(DME SR)过程的研究也引起研究者的关注,与其它制氢原料相比,二甲醚具有高能量密度、无毒、氢含量高、储运方便、制氢条件温和等优点,其储存和运输可与现存液化石油气的设施兼容,适用于移动制氢或小型氢源制氢。二甲醚水蒸汽重整制氢不仅扩展了二甲醚在燃料方面的应用领域,而且有利于环境保护,其工艺兼有能源和环保双重意义。
     本文通过热力学模拟计算,确认了二甲醚水蒸汽重整制氢过程的热力学可行性。通过实验探讨了固体酸及铜基催化剂的组成对二甲醚重整复合催化剂性能的影响。二甲醚水解需较强的酸性中心,筛选出的ZSM-5(25)是最适宜的水解催化剂。采用改进的共沉淀法制备出性能良好的甲醇水蒸汽重整催化剂Cu-Zn-Al-Zr (CD501)。为实现二甲醚水解反应与甲醇水蒸汽重整反应的耦合,研制了CD501/Z(25)复合催化剂,评价得其活性和选择性均明显优于其它复合催化剂。
     在固定床反应器中,用优化的催化剂全面地考察了各种工艺条件对二甲醚水蒸汽重整过程反应性能的影响,根据二甲醚水蒸汽重整反应在固定床反应器中的实验数据,回归得到了二甲醚重整反应过程的动力学参数;并将其应用到二甲醚重整制氢过程的模拟计算过程中,取得了良好的效果。
     在膜反应器中,研究纯氢和混合气体条件下氢的渗透规律,将钯银合金膜反应器应用于二甲醚水蒸汽重整反应中,实现水蒸汽重整反应和富氢气体分离净化等单元设计成一体化,实现催化反应与产物分离过程的耦合。采用实验与模拟计算相结合的方法全面系统地研究了各种工艺条件对二甲醚水蒸汽重整制氢过程的影响,总结分析了膜反应器中该催化反应过程的特性规律。本研究结果为更详细的研究二甲醚水蒸汽重整制氢反应过程提供了重要的参考依据。
Hydrogen is a fuel that is regarded as having the most development potential for this century because of its clean, efficient, and renewable characteristics. The use of hydrogen gas in mobile fuel cell has led to a wide interest in the development of technology for on-board H2 production from liquid fuels, e.g., catalytic steam reforming (SR) of dimethyl ether (DME) to produce H2. Among the various hydrocarbon feeds, DME has the advantages of high energy density, non-toxicity, easy availability, safe handling/storage, and that the infrastructure in place for LPG distribution can be readily adapted for DME.
     In this work, the thermodynamics of hydrogen production from DME SR was analyzed to evaluate its feasibility. The type and acidic amount of a solid acid and the composition of a copper-based catalyst were studied to understand their role in the catalytic reactions. DME hydrolysis needs strong acid centers and DME hydrolysis catalysts were studied. ZSM-5(25) was selected as the most suitable solid acid catalyst because it had a strong acidity that gave a high activity in DME hydrolysis. A new methanol SR catalyst Cu-Zn-Al-Zr, codenamed CD501, was developed by optimization of the preparation method. ZSM-5(25) was used together with CD501 as a physical solid mixture to form a bifunctional catalyst for the DME SR reaction, and showed a higher catalytic activity and thermal stability than the traditional catalysts. A synergy of the coupled DME hydrolysis reaction and methanol SR reaction gave a high one-pass DME conversion and the energy consumption was also less.
     After the catalyst system for the process was optimized, DME SR experiments in a fixed bed reactor were carried out to study the effects of the operating conditions. The reaction kinetic parameters for the catalyzed reactions in the process were obtained by regression from experimental results and their use in the simulation of the DME reforming process achieved good results.
     In a membrane reactor (MR), hydrogen permeation through a palladium-silver membrane was investigated in the presence of pure hydrogen and gas mixture of hydrogen and other reaction and product components. A palladium-silver alloy membrane reactors was used to carry out DME SR by preforming both reaction and hydrogen separation in the same device. Experiment and simulation of hydrogen production process using a MR were performed. The reactor and catalyst performance data presented can provide fundamental data for a DME SR process design.
引文
[1] Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing. J Power Sources, 2003, 114:32-53.
    [2] Isono T, Suzuki S, Kaneko M, et al. Development of a high-performance PEFC module operated by reformed gas. J Power Sources, 2000, 86:269-273.
    [3]戴贵平,刘敏,王茂章,等.纳米碳管电化学储氢的研究进展.新型碳材料, 2002, 17:70-74.
    [4]朱申敏.燃料电池储氢材料的研究进展.上海氯碱化工, 2004, 4:31-33.
    [5] Atkinson K, Roth S, Hirscher M, et al. Carbon nanostructures: an efficient hydrogen storage medium for fuel cells. Fuel Cells Bullet, 2001, 38:9-12.
    [6]亓爱笃.甲醇氧化重整制氢过程的研究[博士学位论文].大连:中国科学院大连化学物理研究所, 1999.
    [7] Klaiber T. Fuel cells for transport: can the promise be fulfilled? Technical requirements and demands from customers. J Power Sources, 1996, 61:61-69
    [8] Liwei Pan, Shudong Wang. Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems. Int J Hydrogen Energy, 2005, 30:937-979.
    [9] Ahmed S, Kumar R, Krumplet M. Fuel processing for fuel cell power systems. Fuel Cells Bullet, 2007, 12:4-7.
    [10] Sardesai A, Tartamella T, Midha C, et al. Statistical analysis of olefins yield in fixed bed conversion of dimethyl ether. Fuel Sci Technol Int, 1996, 14:669-684.
    [11] Sardesai A, Tartamella T, Lee S. Performance of ZSM-5 catalyst in the dimethyl ether to olefins process. Petrol Sci Technol, 1999, 17:273-289.
    [12] Duprat F, Morales V C. Modifications of ZSM-5 zeolite catalyst for dimethyl ether conversion to olefins. Indian J Chem Technol, 2001, 8:482-486.
    [13]魏文德.有机化工原料大全.北京:化学工业出版社, 1989:177-181.
    [14]杨名革.二甲醚的生产工艺.化肥工业, 1997, 24:50-52.
    [15] Wang Z L, Wang J F, Diao J, et al. The synergy effect of process coupling for dimethyl ether synthesis in slurry reactors. Chem Eng Technol, 2001, 24:507-511.
    [16] Topp-Jorgensen J., Hansen H K, Rostrup-Nielsen J R, et al. Conversion of coal to gasoline in one single synthesis loop. American Institute of Chemical Engineers, National Meeting. New York: AIChE, 1986:15.
    [17] Brennan J A. Development studies on selected converseon of synthesis gas from coal to high octane gasoline. Final Report US DOE, Contact No: EX-76-c-01-2276 Oct. 1978.
    [18]倪维斗,靳晖,李政,等.二甲醚经济:解决中国能源与环境问题的重大关键.煤化工, 2003, 8:3-9.
    [19]安军信.清洁燃料二甲醚的生产技术和发展前景.石油技术与应用, 2001, 19:389-392.
    [20]邵玉艳,尹鸽平,高云智等.二甲醚电氧化及其阳极催化剂研究.无机化学学报, 2004, 20:1453-1458.
    [21] Sobyanin V A, Cavallaro S, Freni S. Dimethyl ether steam reforming to feed molten carbonate fuel cells. Appl Catal A Gen, 2000, 14:1139-1142.
    [22] Galvita V V, Semin G L, Belyaev V D, et al. Production of hydrogen from dimethyl ether. Appl Catal A Gen, 2001, 216:85-90.
    [23] Matsumoto T, Nishiguchi T, Kanai H, et al. Steam reforming of dimethyl ether over H-moedenite-Cu/CeO2 catalysts. Appl Catal A Gen, 2004, 276:267-273.
    [24] Takeishi K, Suzuki H. Steam reforming of dimethyl ether. Appl Catal A Gen, 2004, 260:111-117.
    [25]陈兵,董新法,林维明等.甲醇燃料电池电动车上制氢方法研究进展.天然气化工, 2000, 1:47-50.
    [26] Wang S, Ishihara T, Takita Y. Partial oxidation of dimethyl ether over various supported metal catalysts. Appl Catal A Gen, 2002, 228:167-176.
    [27] Solymosi F, Cserenyi J, Ovari L. Decomposition and oxidation of dimethyl ether on Rh catalysts. J Catal, 1997, 171:476-484.
    [28] Sobyanin V A, Cavallaro S, Freni S. Dimethyl ether steam reforming to feed molten carbonate fuel cells ( MCFCs ). Appl Catal A Gen, 2000, 14:1139-1142.
    [29] Semelsberger T A, Borup R L. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis. J Power Sources, 2005, 152:87-96.
    [30] Faungnawakij K, Kikuchi R, Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. J Power Sources, 2007, 164:73-79.
    [31] Zhang Qijian, Li Xiaohong, Fujimoto K. Hydrogen production by partial oxidation and reforming of DME. Appl Surf Sci, 2005, 288:169-174.
    [32] Yamada Y, Mathew T, Ueda A, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether. Appl Catal A Gen, 2006, 301:2593-2597.
    [33] Nishiguchi T, Oka K, Matsumoto T, et al. A novel DME steam– reforming catalyst designed with fact database on - demand. Appl Surf Sci, 2006, 301:66-74.
    [34] Nilsson M, Pettersson L J, Lindstrom B. Hydrogen generation from dimethyl ether for fuel cell auxiliary power units. Energy & Fuels, 2006, 20:2164-2169.
    [35] Mathew T, Yamada Y, Ueda A, et al. Effect of Support on the activity of Ga2O3 species for steam reforming of dimethyl ether. Appl Catal A Gen, 2006, 300:58-66.
    [36] Mathew T, Yamada Y, Ueda A, et al. Metal oxide catalysts for DME steam reforming: Ga2O3 and Ga2O3-AL2O3 catalysts with and without copper. Appl Catal A Gen, 2005, 286:11-22.
    [37] Sanctacesaira E, Carra S. Kinetics of the steam reforming of methanol. Riv Combust, 1978, 32:227-232.
    [38] Amphlett J C, Mann R F. Hydrogen production by the catalytic steam reforming of methanol part 3: Kinetics of methanol decomposition using C18HC catalyst. Chem Eng J, 1988, 66:950-956.
    [39] Jiang C J, Trimm D L, Wainwright M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts. Appl Catal A Gen, 1993, 93:245-255.
    [40] Dumpelmann R. Kinetische untersuchungen des methol reforming under wassergaskonvertierungsreaktion in einem kreislaufreajtor. PhD, Zurich: Eidgenossischen Technischen Hochschule, 1992, 120-124.
    [41] Idem R O, Bakhshi N N. Kinetic modeling of the producing of hydrogen from the methanol steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst. Chem Eng Sci, 1996, 51:3697-3708.
    [42] Pepply B A, Amphlett J C. Methanol steam reforming on Cu/ZnO/Al2O3, part 2: A comprehensive kinetic mode. Energy Fuels, 2006, 20:2164-2169.
    [43] Gasteiger H A, Markovic N, Ross P N, et al. CO Electroxidation on well characterized Pt-Ru. J Phys Chem, 1994, 98:617-622.
    [44] Schmidt V M, Brocherhoff P, Hohlein B, et al. Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources, 1994, 49: 299-313.
    [45] Isono T, Suzuki S, Kaneko M, et al. Development of a high-performance PEFC module operated by reformed gas. J Power Sources, 2000, 86:269-273.
    [46] Sekizawa K, Yano S, Eguchi H, et al. Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Appl Catal A Gen, 1998, 169: 291-297.
    [47] Ponec V. New trends in CO activation. Stud Surf Sci, 1991, 64:118-122.
    [48] Kahlich M J, Gasteiger H A, Behm R J, et al. Kinetic of the selective CO oxidation in H2-rich pas on Pt/Al2O3. J Catal, 1997, 171:93-105.
    [49]李青,钟顺和. CO2氧化乙烷脱氢制乙烯膜催化反应的研究.催化学报, 2000, 21:183-185.
    [50]邓谦,蔡铁军,彭振山等.多孔金属片载杂多化合物膜的催化性能.催化学报, 2000, 21:481-483.
    [51] Niwa S I, Eswaramoorthy M, Itoh N, et al. A one-step conversion of benzene to phenol with a palladium membrane. Science, 2002, 295:105-107.
    [52] Itoh N, Niwa S I, Mizukami F, et al. Catalytic palladium membrane for reductive oxidation of benzene to phenol. Catal Commun, 2003, 4:243-245.
    [53] Weyten H, Luyten J, Seize K, et al. Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor. Catal Today, 2003, 56: 3-11.
    [54]周忠清,膜反应器的理论分析.化学反应工程与工艺. 1991, 7:237-245.
    [55] Han J, Kin I S, Choi K S. High purity hydrogen generator for on-site hydrogen production. Int J Hydrogen Energy, 2002, 27:1043-1047.
    [56] Lin Y M, Rei M H. Separation of hydrogen from the gas mixture out of catalytic reformer by using supported palladium membrane. Separation Purif Technol, 2001, 25:87-95.
    [57] Laffler D G, Taylor K, Mason D. A light hydrocarbon fuel processor producing high-purity hydrogen. J Power Sources, 2003, 117:84-91.
    [58] Alewis F. The palladium hydrogen system. London Academic press, 1967, 94-99.
    [59] Huang Q, Paul D, Seibig B. Advances in solvent-free manufacturing of polymer membranes. Membr Technol, 2001, 140:6-9.
    [60] Tae-Hyum Yang, Su-II P, Young-Gi Y. Hydrogen transport through Pd electrode current transient analysis. Eletrodchim Acta, 1997, 42:2701-2707.
    [61] Uemiya S, Matsuda T, Kikuchi E. Hydrogen permeable palladium-alloy membrane supported on porous ceramics. J Membr Sci, 1991, 56:315-325.
    [62] Amandusson H, Ekedahl L-G, Dannetun H. Hydrogen permeation through surface modified Pd and Pd/Ag membranes. J Membr Sci, 2001, 193:35-47.
    [63]蒋柏泉.钯-银合金膜分离氢气的研究.化学工程, 1996, 24:48-52.
    [64]黄仲涛.无机膜技术及其应用.北京:中国石化出版社, 1999, 336-337.
    [65] Yan S, Maeda H, Kusakabe K, et al.Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Ind Eng Chem Res, 1994, 33:616-622.
    [66] Jun C S, In K S, Wha Y L. Performance of double-pipe membrane reactor comprising heteropolyacid catalyst and polymer membrane for the MTBE (methyl tert-butyl ether) decomposition. J Membr Sci, 2000,176:159-175.
    [67] Xomeritakis G, Lin Y S. Fabrication of a thin palladium membrane supported in a porous substrate by chemical vapor deposition. J Membr Sci, 1996,120:261-272.
    [68] McCool B, Xomeritakis G.Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes. J Membr Sci, 1999, 161:67-76.
    [69] Paglieri S N, Foo K Y, Way J D. A new preparation technique for Pd/Alumina membranes with enhanced high-temperature stability. Ind Eng Chem Res, 1999, 38:1925-1936.
    [70] Dittmeyer R, Hollein V, Daub K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Mol Catal A Chem, 2001, 173:135-184.
    [71] Li A, Liang W, Hughes R.The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. J Membr Sci, 2000, 165:135-141.
    [72] Salazar K V, Carroll D W, Trkula M, et al. Hydrogen uptake on film surfaces produced by a unique codeposition . Appl Surf Sci, 2003, 214:20-26.
    [73] Yeung K L, Arvind V. Novel preparation techniques for thin metal-ceramic composite membranes. AIChE J, 1995, 41:2131-2139.
    [74] Li A, Liang W O, Hughes R. Fabrication of dense palladium composite membranes for hydrogen separation. Catal Today, 2000, 56:45-51.
    [75] Wang D, Tong J H, Xu H G. Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Catal Today, 2004, 93/95:689-693.
    [76] Tong J H, Makoto H, Hirokazu T, et al. Back extraction of lactic acid with microporous hollow fiber membrane. J Membr Sci, 1999, 157:189-198.
    [77] Tong J H, Suda H, Harava K, et al. A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter. J Membr Sci, 2005, 260:10-18.
    [78] Tong J H, Matsumura Y, Hirokazu T. Extraction of lactic acid from fermented broth with microporous hollow fiber membranes. J Membr Sci, 1998, 143: 81-91.
    [79] Cheng Y S, Yeung K L. Effects of electroless plating chemistry on the synthesis of palladium membranes. J Membr Sci, 2001, 182: 195-203.
    [80] Ozaki T, Zhang Y, Komaki M et al. Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless palting technique. Int J Hydrogen Energy, 2003, 28:297-302.
    [81] Yeung K L, Christiansen S C, Varma A. Palladium composite membranes by electroless plating technique: relationships between plating kinetics, film microstructure and membrane performance. J Membr Sci, 1999, 159:107-122.
    [82] Souleimanova R S, Mukasyan A S, Varma A. Study of structure formation during electroless plating of thin metal-composite membranes. Chem Eng Sci, 1999, 54:3369-3377.
    [83] Souleimanova R S, Mukasyan A S, Varma A. Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique. J Membr Sci, 2000, 166:249-257.
    [84] Varma A, Yeung K L, Souleimanova R S. Novel approach for dense nanoscale-grained metal films. Ind Eng Chem Res, 2002, 41:6323-6325.
    [85] Cheng Y S, Yeung K L. Palladium–silver composite membranes by electroless plating technique. J Membr Sci, 1999, 158:127-141.
    [86]蒋柏泉,顾騋,余强等.渗透压对化学镀自催化共沉积钯银的影响.膜科学与技术, 2003, 23:10-13.
    [87]王和义,傅依备,黄玮.甲基乙烯基硅橡胶泡沫的辐射效应.化学学报, 2001, 59:388-393.
    [88]张永峰,马玲俊,郭为民等.非金属化学镀的活化工艺.材料开发与应用, 2000, 15:31-34.
    [89] Nam S E, Lee K H. Preparation and characterization of palladium alloy composite membranes with a diffusion barrier for hydrogen separation. Ind Eng Chem Res, 2005, 44:100-105.
    [90]晋勇,赵海波,田良等.微波烧结技术的应用与进展.工具技术, 2003, 37:12-17.
    [91] Xomeritakis G, Lin Y S. CVD synthesis and gas permeation properties of thin palladium/alumina membranes. AIChE J, 1998, 44:174-183.
    [92] Aasberg-Petersen K, Nielsen C S,Jorgensen S L. Membrane reforming for hydrogen. Catal Today, 1999, 46:193-201.
    [93] Dunn S. Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy, 20002, 27:235-264.
    [94] Wieland S, Melin T, Lamm A. Membrane reactors for hydrogen production. Chem Eng Sci, 2002, 57: 1571-1576.
    [95] Basile A, Paturzo L, Lagana F. The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catal Today, 2001, 67:65-75.
    [96] Basile A, Gallucci F, Paturzo L. A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study. Catal Today, 2005, 104:244-250.
    [97] Koffler S A, Hudson J B, Ansell G S. Hydrogen permeation through alphapalladium, Trans AIME. 1969, 245:1735-1740.
    [98] Iroh N, Xu W C. Selective hydrogenation of phenol to cyclohexanone using palladium-based membranes as catalysts. Appl Catal A Gen, 1993, 107:83-100.
    [99] Gallucci F, Falco M De, Tosti S, et al. The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances. Int J Hydrogen Energy, 2007, 32:4052-4058.
    [100] Uemiya S. Reduction of perchlorate in dilute aqueous solutions over monometallic nano-catalysts: exemplified by tin. Sep Purif Method, 1999, 28:51-85.
    [101] Lin Y S. Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol, 2001, 25:39-55.
    [102] Paglieri S N, Way J D. Innovations in palladium membrane research. Sep Purif Method, 2002, 31:1-169.
    [103] Gao H Y, Lin Y S, Zhang B Q, et al. Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res, 2004, 43:6920-6930.
    [104] Saracco G, Neomagus H W J P, Versteeg G F, et al. High-temperature membrane reactors: potential and problems. Chem Eng Sci, 1999, 54:1997-2017.
    [105] Dittmeyer R, Hollein V, Daub K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Mol Catal A Chem, 2001, 173:135-184.
    [106]李安武,熊国兴,郑禄彬.钯膜的研究进展.化学进展, 1994, 6:141-150.
    [107]胡云光.膜反应器在石油化工中的应用.石油化工, 1994, 23:400-406.
    [108]王和义,傅依备.钯基合金膜应用研究进展.膜科学与技术, 2002, 22:41-44.
    [109]宁英男,张海燕,匡洞庭.钯膜制备新技术.化工进展, 2002, 21:342-344.
    [110]雷敏志,陈森凤.钯膜与钯膜反应器应用研究进展.材料导报, 2004, 18:41-44.
    [111]张春盈,杨长春,郭彩峰.钯复合膜研究进展.有色金属, 2005, 57:51-54.
    [112]黄彦,李雪,范益群,等.透氢钯复合膜的原理、制备及表征.化学进展, 2006, 18:230-238.
    [113]时钧,徐南平.透氢钯复合膜的原理、制备及表征.化学进展, 1995, 7:167-172.
    [114]李雪辉,王乐夫,黄仲涛.渗透汽化-酯化复合膜反应器中催化特性研究.天然气化工, 1999, 24:5-7.
    [115] Weyten H, Luyten J, Seize K, et al. Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor. Catal Today, 2003, 56:3-11.
    [116] Guo Y L, Lu G Z, Wang Y S, et al. Preparation and characterization of Pd–Ag/ceramic composite membrane and application to enhancement of catalytic dehydrogenation of isobutane. Sep Purif Technol, 2003, 32:271-279.
    [117] Quicker P, Hollein V, Dittmeyer R. Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactors. Catal Today, 2000, 56:21-34.
    [118] Itoh N. A membrane reactor using palladium. AIChE J, 1978, 33:1576-1581.
    [119] Itoh N, Niwa S I, Mizukami F, et al. Catalytic palladium membrane for reductive oxidation of benzene to phenol. Catal Commun, 2003, 4:243-246.
    [120] Kikuchi E. Membrane reactor application to hydrogen production. Catal Today, 2000, 56:97-101.
    [121] Basile A, Paturzo L, Lagana F. The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catal Today, 2001, 67:65-75.
    [122] Paturzo L, Basile A. Methane conversion to syngas in a composite palladium membrane reactor with increasing number of Pd layers. Ind Eng Chem Res, 2002, 41:1703-1710.
    [123] Moustafa T M, Elnashaie S S. Simultaneous production of styrene and cyclohexane in an integrated membrane reactor. J Membr Sci, 2000, 178:171-184.
    [124] Keiski R L. Desponds O, Chang Y F, et al. Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts. Appl Catal Gen, 1993, 101:317- 338.
    [125] Basile A, Drioli E, Santell F, et al. A study on catalytic membrane reactors for water gas shift reaction. Gas Sep Purif, 1996, 10:53-61.
    [126] Ma D H, Lund C R F. Assessing high-temperature water-gas shift membrane reactors, Ind Eng Chem Res, 2003, 42:711-717.
    [127] Uemiya S, Sato N, Ando H, et al. The water gas shift reaction assisted by a palladium membrane reactor. Ind Eng Chem Res, 1991, 30:585-589.
    [128] Damle A S, Gangwal S K, Venkataraman V K. A simple model for a water gas shift membrane reactor. Gas Sep Purif, 1994, 8:101-106.
    [129] Violante V, Basile A, Drioli E. Composite catalytic membrane reactor analysis for the water gas shift reaction in the tritium fusion fuel cycle. Fusion Eng Design, 1995, 30:217-223 .
    [130] Ettouney H M, Masiar B, Bouhamra W S. High temperature CO shift conversion (HTSC) to using catalytic membrane reactors. Trans IChemE, 1996, 74:649-652.
    [131] Basile A, Criscuoli A, Santella F. Membrane reactor for water gas shift reaction. Gas Sep Purif, 1996, 10:243-254.
    [132] Bracht M, Alderliesten P T, Kloster P, et al. Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study. Energy Convers Mgmt, 1997, 38:159-163.
    [133] Criscuoli A, Basile A, Drioli E. An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catal Today, 2000, 56:53-64.
    [134] Criscuoli A, Basile A, Drioli E. An economic feasibility study for water gas shift membrane reactor. J Membr Sci, 2001, 181:21-27.
    [135] Tosti S, Basile A, Chiappetta G, et al. Pd-Ag membrane reactors for water gas shift reaction. Chem Eng J, 2003, 93:23-28 .
    [136] Basile A, Paturzo L, Gallucci F. Co-current and counter-current modes for water gas shift membrane reactor. Catal Today, 2003, 82:275-281.
    [137] Han J, Kin I S, Choi K S. Effect of pore structure of catalyst layer in a PEMFC on its performance. Int J Hydrogen Energy, 2002, 27:1043-1047.
    [138] Hara S, Xu W C. Kinetics and hydrogen removal effect for methanol decomposition. Ind Eng Chem Res, 1999, 38:488-492.
    [139] Lin Y M, Rei M H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catal Today, 2000, 67:77-84.
    [140] Itoh N, Kaneko Y, Igarashi A. Efficient Hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor. Ind Eng Chem Res, 2002, 41:4702-4706.
    [141] Basile A, Gallucci F, Paturzo L. A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study. Catal Today, 2005, 104:244-250.
    [142] Kirshna B, Nair L, Michael P, et al. Hydrogen generation in a Pd membrane fuel processor: Productivity effects during methanol steam reforming. Chem Eng Sci, 2006, 61:6616-6636.
    [143] Gallucci F, Basile A, Tosti S, et al. Methanol and ethanol steam reforming in membrane reactors: An experimental study. Int J Hydrogen Energy, 2007, 32:1201-1210.
    [144] Lin Y M, Rel M H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catal Today, 2001, 67:77-84.
    [145] Basile A, Tereschenko G F, Orekhova N V, et al. An experimental investigation on methanol steam reforming with oxygen addition in a flat Pd-Ag membrane reactor. Int J Hydrogen Energy, 2006, 31:1615-1622.
    [146] Lin Y M, Rei M H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. Int J Hydrogen Energy, 2000, 25:211-219.
    [147]王宝珠.关于催化干气膜法分离氢气-柴油加氢精制方案的探讨.石油与天然气化工, 1997, 26:22-30.
    [148]王卫平,潘秀莲,张小亮.钯/陶瓷中空纤维复合膜反应器中的水煤气变换反应.催化学报, 2005, 26:1042-1046.
    [149]亓爱笃,王树东,汪学伦.车载燃料电池移动制氢机浅议.天然气化工, 2001, 26:39-42.
    [150]王艳辉,王树东,吴迪镛. PEMFC制氢技术现状.环境科学进展, 1999, 7:73-76.
    [151] Alewis F. The palladium hydrogen system. London Academic press, 1967, 94-98 .
    [152] Jung S H, Kusakabe K, Morooka S, et al. Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane. J membr Sci, 2000, 170:53-60.
    [153] Ali J K, Hasler P, Newson E J, et al. Irreversible poisoning of Pd-Ag membranes, Internationsl Journal of Hydrogen Energy. Int J Hydrogen Energy, 1994, 19:877-880.
    [154] Antoniazzi A B, Haasz A A, Stangeby P C. The effect of adsorbed carbon and sulphur on hydrogen permeation through palladium. J Nucl Mater, 1989, 162/164:1065-1070
    [155] Hara S, Sakaki K, Itoh N. Decline in hydrogen permeation due to concentration polarization and CO hindrance in a palladium membrane reactor. Ind Eng Chem Res, 1999, 38:4919-4918
    [156] Gallucci F, Chiaravalloti F, Tosti S, et al. The effect of mixture gas on hydrogen permeation through a palladium membrane: experimental study and theoretical approach. Int J Hydrogen Energy, 20007, 32:1837-1845
    [157] Li A, Liang W, Hughes R. The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. J Membr Sci, 2000, 165:135-141
    [158] Hou K, Hughes R. The effect of mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. J Member Sci, 2002, 206:119-130
    [159] Amandusson H, Ekedahl L G, dannetun H. Methanol-induced hydrogen permeation through a palladium membrane. Surface Sci, 1999, 442:199-205.
    [160] Tanaka Y, Kikuchi R, Takeguchi T, et al. Steam reforming of dimethyl ether over composite catalysts ofγ-Al2O3 and Cu-based spinel. Appl Catal B Environ, 2005, 57:211-222.
    [161] Gobina E, Hou K, Hughes R. Ethane dehydrogenation in a catalytic membrane reactor coupled with a reactive sweep gas. Chem Eng Sci, 1995, 50:2311-2319.
    [162] Raich B A, Foley H C. Supra-equilibrium conversion in palladium membrane reactors: Kinetic sensitivity and time dependence. Appl Catal B Environ, 2005, 57:211-222.
    [163] Sheintuch M, Dessau R M. Observations, modeling and optimization of yield, selectivity and activity during dehydrogenation of isobutane and propane in a Pd membrane reactor. Chem Eng Sci, 1996, 51:535-547.
    [164] Hermann C, Ouicker P, Dittmever R. Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor. J Membr Sci, 1997, 136:161-172.
    [165] Harold M P, Nair B, Kolios G. Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems. Chem Eng Sci, 2003, 58:2551-2571.
    [166] Gallucci F, Paturzo L, Basile A. A simulation study of the steam reforming of methane in a dense tubular membrane reactor. Int J Hydrogen Energy, 2004, 29:611-617.
    [167] Lin Y M, Liu S L, Chuang C H, et al. Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: Experimental and modeling. Catal Today, 2003, 82:127-139.
    [168] Brunetti A, Caravella A, Barbieri G, et al. Simulation study of water gas shift reaction in a membrane reactor. J Membr Sci, 2007, 306:329-340.
    [169] Gallucci F, Basile A. Co-current and counter-current modes for methanol steam reforming membrane reactor. Int J Hydrogen Energy, 2006, 31:2243-2249.
    [170] Fu C H, Wu J C S. Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. Int J Hydrogen Energy, 2007, 32:4830-4839.
    [171] Huang J, Azzami L E, Winston Ho W S. Modeling of CO2-selective water gas shift membrane reactor for fuel cell. J Membr Sci, 2005, 261:67-75.
    [172] Okubo T, Haruta K, Kusakabe K, et al. Preparation of a sol-gel derived thin membrane on a porous ceramic hollow fiber by the filtration technique. J Membr Sci, 1991, 59:73-78.
    [173] Pan X L, Stroh N, Brunner H, et al. Deposition of sol-gel derived membranes onα-Al2O3 hollow fibers by a vacuum-assisted dip-coating process. J Membr Sci, 2003, 226:111-118.
    [174] Lutz A E, Bradshaw R W, Keller J O, et al. Thermodynamic analysis of hydrogen production by steam reforming. Int J Hydrogen Energy. 2003, 28:159- 167.
    [175] Reynolds W C. The element potential method for chemical equilibrium analysis: implementation in the interactive program. Stanford University, Department of Mechanical Engineering, 1986, 213-220.
    [176] Pope S B. Gibbs function continuation for the stable computation of chemical equilibrium. Combust Flame,2004, 139:222-226.
    [177] Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids. 4th ed. New York: McGraw Hill, 1987.
    [178] Smith J M, Van Ness H C, Abbott M M. Introduction to chemical engineering thermodynamics. 6th ed. Boston: McGraw Hill, 2001.
    [179] Daubert T E, Danner R P. Physical and thermodynamic properties of pure chemicals ( data compilation ). New York: Hemisphere Publishing Corporation, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700