豆皮水溶性多糖的结构与功能性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以豆类加工的副产品-豆皮为原料,对豆皮果胶多糖的提取、分离纯化、理化性质、结构分析、体外抗氧化活性、胆酸结合能力以及体内降血脂功能进行了较为系统的研究,研究结果表明:
     豆皮的主要成分为不溶性纤维、可溶性纤维和蛋白质。在单因素试验的基础上,对大豆皮果胶多糖的提取工艺进行二次通用旋转组合优化,得到最佳提取条件为pH值5.5、水料比25:1(mL:g)、提取温度90℃、提取时间68 min、提取2次,大豆皮粗多糖SCP的得率为10.17%;将响应面分析法用于优化绿豆皮多糖的超声辅助提取工艺,对绿豆皮多糖得率影响的因素依次为:超声功率>pH值>超声时间,最适提取条件为:pH值4.6、超声功率155 W、超声时间40 min,重复3次,绿豆皮粗多糖MCP的得率为8.54%。
     将初步纯化后的豆皮多糖SHP和MHP经DEAE-纤维离子交换柱分离和Sephadex G-100凝胶柱层析,SHP得到3个纯化组分:SHP1、SHP2、SHP3,其得率分别为24.31%、49.70%和11.52%,总回收率85.53%。MHP得到2个组分:MHP1、MHP2,其得率分别27.63%、59.21%,总回收率为86.84%。经纯度鉴定,5个多糖组分都为均一性多糖,采用凝胶渗透色谱(GPC)法测定多糖组分的分子量,得SHP1、SHP2、SHP3、MHP1、MHP2的分子量分别为149342 Da、72799 Da、45554 Da、83236 Da、45012 Da。通过对豆皮粗多糖和纯化组分的体外抗氧化活性的测定评价两种豆皮多糖的抗氧化能力,结果显示,MHP、MHP1和MHP2的体外抗氧化活性随浓度的增大而增强,且具有比SHP及其组分更强的还原能力、抗氧化性、O ?2?、? OH和DPPH自由基清除能力以及邻苯三酚自氧化的抑制效果。另外,纯化组分MHP1表现出比粗多糖MHP更强的抗氧化活性。
     比较了粗多糖与纯化组分的体外胆酸结合能力,结果显示粗多糖具有较强的胆酸结合能力,分级纯化后,多糖组分的体外胆酸结合能力呈下降趋势,表明分离纯化过程会对多糖中的其他活性造成损失从而影响其体外胆酸结合的能力,多糖与胆酸的结合与其自身的物化结构及与胆酸的活性结合位点有关。
     采用红外光谱(FT-IR)、核磁共振(NMR)图谱分析、气相色谱(GC)、部分酸水解、高碘酸氧化-Smith降解、甲基化分析等对SHP1、SHP2和SHP3进行了结构分析,显示SHP1、SHP2和SHP3为弱酸性或酸性杂多糖,糖醛酸含量分别为17.31%、57.36%和26.71%,SHP1的中性糖主要为甘露糖和半乳糖,SHP2主要由鼠李糖、半乳糖和阿拉伯糖组成,SHP3则主要由阿拉伯糖、甘露糖、半乳糖和鼠李糖组成。
     经分析,SHP2的主链由→2)Rhap(1→4)GalA(1→2)Rhap→重复单元构成,侧链主要由→1)Araf(3,5→)Araf(3→和→1)Galp(6→3)Araf(1→)Galp(6→组成。
     豆皮多糖具有明显的调节血脂作用。对高脂饮食小鼠每天灌胃50 mg/kg·bw和180 mg/kg·bw的大豆皮多糖组分SHPb和绿豆皮多糖组分MHPa,可有效抑制高脂饮食小鼠体重的过快增长,显著降低血清TC、TG含量,提高HDL-C水平,并能降低动脉粥样硬化指数;能有效抑制肝组织中TC、TG水平。另外,MHPa能显著降低高脂饮食小鼠血清和肝脏的MDA浓度,提高SOD和GSH-Px活力;进食豆皮多糖可增加小鼠体内的胆固醇和胆酸的排泄,降低高脂血症发生的风险。
The extraction, purification, physicochemical properties, structural analysis, in vitro antioxidant activity, of polysaccharide from soybean and mung bean hull, as well as in vitro bile acid binding capacity and hypolipemic effects were investigated in this study. The main contents and results are as follows:
     The main compounds in soybean hull are insoluble fiber, soluble fiber and protein. On the basis of single-factor experiments, the extraction technique of soybean hull polysaccharide was optimized by quadratic general rotary unitized design. The results showed that the optimum extraction conditions of soybean hull polysaccharide were pH of 5.5, ratio of water to solid of 25:1 (mL:g), extraction temperature of 90℃, extraction time of 68 min. Under these conditions, the yield of soybean hull crude polysaccharide (SCP) was 10.17% by two-time extraction. Similarly, the response surface analysis (RSA) was used to optimize the extraction conditions of mung bean hull crude polysaccharide (MCP). The best extraction conditions were pH value of 4.6, ultrasonic power of 155 W, extraction time of 40 min, and repeated 3 times. In this case, the yield of MCP was up to 8.54 %.
     After deproteinization by Sevag reagent and decoloration by macroporous absorbent resin, the pre-purified polysaccharide SHP and MHP were obtained. Subsequently, SHP and MHP were fractioned by DEAE-cellulose anion exchange column and purified by Sephadex G-100 gel permeation column. There were three fractions obtained from SHP marked SHP1, SHP2 and SHP3, and two from MHP marked MHP1 and MHP2. The yields of five fractions were 24.31%, 49.70%, 11.52%, 27.63%, and 59.21%, with molecule weights of 149342 Da, 72799 Da, 45554 Da, 83236 Da, 45012 Da, respectively.
     The evaluation of antioxidant activity of polysaccharide fractions was carried out. The results indicated that the antioxidant capacities of MHP, MHP1 and MHP2 increased with the concentration. Furthermore, The reducing power, antioxidant activity, scavenging activity of O ?2?, ? OH and DPPH free radical, as well as inhibition effects of self-oxidation of 1,2,3-phentriol of MHP, MHP1 and MHP2 were stronger than those of SHP, SHP1, SHP2 and SHP3. Besides, MHP1 exhibited the best antioxidant activity among these three substances.
     The comparison of the ability to bind bile acid in vitro of seven substances demonstrated that SCP and MCP could bind more bile acid than purified fractions. These results indicated that the ability to bind bile acid of polysaccharide was affected by the purification process, physical and chemical structures of purified fractions or active binding sites.
     The Fourier transformation infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) analysis, gas chromatography (GC), partial acid hydrolysis, periodate oxidation– Smith degradation and methylation analysis were adopted to characterize the structures of SHP1, SHP2 and SHP3. The purified fractions were acid heteropolysaccharide without protein or nucleic acid. The content of uronic acid was 17.31%, 57.36%, 26.71%, respectively. Moreover, the neutral sugar of SHP1 mainly was mannose and galactose, while SHP2 consists of rhamnose, galactose and arabinose, SHP3 contains arabinose, mannose and rhamnose.
     Methylation analysis indicated that the main chain of SHP2 was the repeated units of→2)Rhap(1→4)GalA(1→2Rhap(1,4→, and the main branched chain of SHP2 was glycan composed by→1)Araf(3,5→)Araf(3→and→1)Galp(6→3)Araf(1→)Galp(6→.
     The polysaccharides from soybean and mung bean hull could adjust the blood lipid level of mice with high fat diet significantly. After lavage of fraction SHPb and fraction MHPa at the dose of 50 mg/kg·bw and 180 mg/kg·bw for 4 weeks, respectively, the excessive increase of body weight was inhibited. The levels of serum TC, TG, LDL-C and atherosclerotic index (AI) reduced while HDL-C increased significantly. And, the levels of hepatic TC, TG were effectively maintained in a healthy status. Additionally, MHPa could lower the serum and liver malondialdehyde (MDA) concentration of mice with high fat diet and increase activity of SOD and GSH-Px. Obviously, the polysaccharides from soybean and mung bean hull could promote the excretion of TC and bile acid, and lessen the risk of hyperlipoidemia.
引文
[1]杨宁.仙人掌多糖的分离纯化及降血糖的研究[D].华南理工大学博士学位论文,2007.
    [2] http://www.hudong.com/wiki/%E5%A4%9A%E7%B3%96, 2010-02-21.
    [3] http://baike.baidu.com/view/84137.htm, 2010-02-21.
    [4] Zhang Y. W., Wu C. Y., Cheng J. T. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-κB and IκB in renal cortex of streptozotoxin-induced diabetic rats [J]. Journal of Ethnopharmacology, 2007, 114:387-392.
    [5]张惟杰.糖缀合物在细胞识别中的作用[J].生物化学杂志, 1985,2(1):1-6.
    [6] Na Y. S., Kim W. J., Kim S. M., et al. Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens [J]. International Immunopharmacology, 2010, 10: 364-370.
    [7]聂凌鸿.淮山活性多糖的分离纯化、结构与生物活性的研究[D].华南理工大学博士学位论文,2004.
    [8]王学宏,李明春.中药多糖的免疫及抗肿瘤作用研究进展[J].齐鲁医学杂志,2000,15(3):230-231.
    [9]王维通.从细胞识别的研究到糖技术药物的开发-记1993年美国首届糖技术会议[J].生物工程进展,1993,13(6):65-69.
    [10]张艺,杨明,孟宪丽,等.日本研究多糖的新进展[J].国外医学中医中药分册,1997,19(3):46-48.
    [11] Wu Q., Tan Z. P., Liu H. D., et al. Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice [J]. International Journal of Biological Macromolecules, 2010, 46: 284-288.
    [12] Yang X. B., Zhao Y., Li G. L., et al. Chemical composition and immuno-stimulating properties of polusaccharide biological response modifier isolation from Radix Angelica sinensis [J]. Food Chemistry, 2008, 106: 269-276.
    [13] Huang Q. L., Jin Y., Zhang L. N., et al. Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter [J]. Carbohydrate Polymers, 2007, 70: 324-333.
    [14] Ma M., Liu G. H., Yu Z. H., et al. Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice feed high-fat diet in vivo [J]. Food Chemistry, 2009, 113: 872-877.
    [15]王琪琳,王海仁.海洋生物多糖药用功能的新进展[J].生物学通报,2002,37(7):12-13.
    [16]王克夷.作为信息分子的糖类[J].化学进展,1996,8(2):98-108.
    [17] http://www.bjkp.gov.cn/kxbl/smqy/gdnr/1/k10333-05.htm,糖类遗传密码, 2010-02-21.
    [18] Yin G. H., Dang Y. L. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box-Behnken statistical design [J]. Carbohydrate Polymers, 2008, 74: 603-610.
    [19] Furuta H., Maeda H. Rheological properties of water-soluble polysaccharides extracted under weak acidic condition [J]. Food Hydrocolloids, 1999, 13: 267-274.
    [20] Matulewice M. C., Cerezo A. S. Alkali-soluble polysaccharides from Chaetangiumfastigitum: Structure of a xylan [J]. Phytochemistry, 1987, 26: 1033-1035.
    [21] Yamaguchi F., Ota Y., Hatanaka C. Extraction and purification of pectic polysaccharides from soybean okara and enzymatic analysis of their structures [J]. Carbohydrate Polymers, 1996, 30: 265-273.
    [22] Sugiura M. Methods in carbohydrate extraction from Fungi [J]. The Japanese Journal of Pharmcology, 1980, 30: 506-508.
    [23] Hromadkova Z., Ebringerova A., Valachovic P. Comparison of classical and ultrasonic-assisted extraction of polysaccharides from Salvia officinalis L. [J]. Ultrasonics Sonochemistry, 1999, 5: 163-168.
    [24] Yang B., Zhao M. M., Shi J., et al. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp [J]. Food Chemistry, 2008, 106: 685-690.
    [25] Staub A. M. Removeal of protein-Sevag method. Methods in Carbohydrate Chemistry, 1965, 5, 5-6.
    [26] Tomoda M., Shimada K., Shimizu N., et al. The carbohydrate structure of a mucilage from the roots of Hibiscus moscheutos L. [J]. Carbohydrate Research, 1986, 151: 29-35.
    [27] Renard C. M. G. C., Weightman R. M., Thibault J.-F. The xylose-rich pectins from pea hull [J]. International Journal of Biological Macromolecules, 1997, 21: 155-162.
    [28] Roberts M. A., Zhong H.-J., Prodolliet J., et al. Separation of high-molecular-mass carrageenan polysaccharides by capillary electrophoresis with laser-induced fluorescence detection [J]. Journal of Chromatography A, 1998, 817: 353-366.
    [29] Franco-Fraguas L., Pia A., Ferreira F., et al. Preparative purification of soybean agglutinin by affinity chromatography and its immobilization for polysaccharide isolation [J]. Journal of Chromatography B, 2003, 790: 365-372.
    [30] Roy I., Sardar M., Gupta M. N. Exploiting unusual affinity of usual polysaccharides from separation of enzymes on fluidized beds [J]. Enzyme and Microbial Technology, 2000, 27: 53-65
    [31] Sutherland I. W. Affinity column for separation of pyruvylated and non-pyruvylated polysaccharides [J]. Journal of Chromatography, 1981, 213: 301-306.
    [32] Cheng L., Kindel P. K. Effect of cations on the elution of pectic polysaccharides fromanion-exchange resins [J]. Analytical Biochemistry, 1995, 228: 109-114.
    [33] Peng Y. F., Zhang L. N., Zeng F. B., et al. Structure and antitumor activity of extracellular polysaccharides from mecelium [J]. Carbohydrate Polymers, 2003, 54: 297-303.
    [34] Sun Y. X., Liu J. C. Structural characterization of water-soluble polysaccharides from the Roots of Codonopsis pilosula and its immunity activity [J]. International Journal of Boilogical Macromolecules, 2008, 43: 279-282.
    [35]王建华.枸杞多糖的结构与保健功能评价[D].华中农业大学博士学位论文,2001.
    [36]张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987.
    [37] Wang Y. F., Wei X. L., Jin Z. Y. Structure analysis of a neutral polysaccharide isolated from green tea [J]. Food Research International, 2009, 42: 739-745.
    [38] Ebringerova A., Kardosova A., Hromadkova Z., et al. Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants [J]. Fitoterapia, 2003, 74: 52-61.
    [39]郭忠武,王来曦.糖化学研究进展[J].化学进展,1995,7(1):10-29.
    [40] Dpto I. Q., Facultad C. Q. The three-dimensional structures of the pectic polysaccharides [J]. Plant Physiology and Biochemistry, 2000, 38: 37-55.
    [41] Li P., Yuan Q. P., Rashid F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. [J]. Carbohydrate Polymers, 2009, 78: 80-88.
    [42] Maciel J. S., Chaves L. S., Souza B. W. S., et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharde from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers, 2008, 71: 559-565.
    [43] Sun Y. L., Cui S. W., Tang J., et al. Structural features of pectin polysaccharide from Angelica sinensis (Oliv.) Diels [J]. Carbohydrate Polymers, 2010, 80: 545-551.
    [44] Sheng S. Q., Cherniak R. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 10 determined by NMR spectroscopy [J]. Carbohydrate Research, 1997, 305: 65-72.
    [45] Takeda M., Nakamori T., Hatta M., et al. Structure of the polysaccharide isolated from the sheath of Sphaerotilus natans [J]. International Journal of Biological Macromolecules, 2003, 33: 245-250.
    [46] Edashige Y., Ishii T. Hemicellulosic polysaccharides from bamboo shoot cell walls [J]. Phytochemistry, 1998, 49: 1675-1682.
    [47] Honda S., Suwki S., Nitta A. Application of high-performance capillary electrophoresis to analysis of carbohydrates, especially those in glycoproteins [J]. Methods, 1992, 4: 233-243.
    [48] Grobl M., Harrison S., Kaml I., et al. Characterisation of natural polysaccharides (plant gums) used as binding media for artistic and historic works by capillary zone electrophroesis [J]. Journal of Chromatography A, 2005, 1077: 80-89.
    [49] Morvan C., Jauneau A., Flaman A., et al. Degradation of flax polysaccharides with purified endo-polygalacturonase [J]. Carbohydrate Polymers, 1990, 13: 149-163.
    [50] Kim Y. O., Park H. W., Kim J. H., et al. Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus [J]. Life Science, 2006, 79: 72-80.
    [51] Huisman M. M. H., Schols H. A., Voragen A. G. J. Enzymatic degradation of cell wall polysaccharides from soybean meal [J]. Carbohydrate Polymers, 1999, 38: 299-307.
    [52]甘璐,张声华.枸杞多糖的抗肿瘤活性和对免疫功能的影响[J].营养学报,2003,25(2):200-202.
    [53] Chen G., Luo Y. C., Ji B. P. et al. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol- enriched diet [J]. Journal of Food Science, 2008, 73: H103-108.
    [54] Hong Y. K., Wu H. T., Ma T., et al. Effect of Glycyrrhiza glabra polysaccharide on immune and antioxidant activities in high-fat mice [J]. International Journal of Biological Macromolecules, 2009, 45: 61-64.
    [55] Qiao D. L., Ke C. L., Hu B., et al. Antioxidant activities of polysaccharide from Hyriopsis cumingii [J]. Carbohydrate Polymers, 2009, 78: 199-204.
    [56] Gao B., Yang G. Z. Immunoregulatory effect and antitumor, antiviral, antivirus activity of Ganoderma applanatum [J]. International Journal of Immunopharmacology, 1991, 13: 731.
    [57] Arthur T., Julia Y. W., Dennis L. K., Biological chemistry of immunomodulation by zwitterionic polysaccharides [J]. Carbohydrate Research, 2003, 338: 2531-2538.
    [58] Han S. B., Park S. H., Lee K. H., et al. Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells [J]. International Immunopharmacology, 2001, 1: 1969-1978.
    [59] Kin G. Y., Choi G. S., Lee S. H., et al. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-αfrom peritoneal macrophages [J]. Journal of Ethnopharmacology, 2004, 95: 69-76.
    [60]吴梧桐,高美凤,吴文俊.多糖的抗肿瘤作用研究进展[J].中国天然药物,2003,1(3):182- 186.
    [61] Liu J. J., Huang T. S., Hsu M. L., et al. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action [J]. Toxicology and Applied Pharmacology, 2004, 201: 186- 193.
    [62] Yang X .P., Guo D. Y., Zhang J. M., et al. Characterization and antitumor activity of pollen polysaccharide [J]. International Immunopharmacology, 2007, 7: 427-434.
    [63] Saima Y., Das A. K., Sarkar K. K., et al An antitumor pectic polysaccharide from Feronia limonia [J]. International Journal of Biological Macromolecules, 2000, 27: 333-335.
    [64] Glombitza K. W. Hypoglycemic and antihyperglycemic effects of Zizyphus spinachristi in rats [J]. Planta Medica, 1994, 16: 34.
    [65] Luo Q., Cai Y. Z., Yan J., et al. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum [J]. Life Science, 2004, 76: 137-149.
    [66] Tadashi K. Effect of polysaccharide (TAP) from the fruiting bodies of Tremella auranitia on glucose metabolism in mouse liver [J]. Biotechemistry, 2006, 64: 417-420.
    [67] Jia W., Guo W., Tang L., et al. Antidiabetic herbal drugs officially approved in China [J]. Phytotherapy Research, 2003, 17: 1127-1134.
    [68] Kiho T., Okubo K., Usui S., et al. Structural featural and hypoglycemic activity of a polysaccharide from the cultured mycelium of Cordyceps sinensis [J]. Biological & Pharmaceutical Bulletin, 1999, 22: 966-970.
    [69] Hu Y. B., Wang Z., Xu S. Y. Corn bran dietary fiber modified by xylanase improves the mRNA expression of genes involved in lipids metabolism in rats [J]. Food Chemistry, 2008, 109: 499-505.
    [70] Yu P. Z., Li N., Liu X. G., et al. Antihyperlipidemic effects of different molecular weightsulfated polysaccharides from Ulva pertusa (Chlorophyta) [J]. Pharmacological Research, 2003, 48: 543-549.
    [71] Li H. P., Zhang M. M., Ma G. J. Hypolipidemic effect of the polysaccharide from Pholiota nameko [J]. Nutrition, 2010, doi:10.1016/j.nut.2009.06.009
    [72]罗祖友,严奉伟,薛照辉,等.藤茶多糖的抗氧化作用研究[J].食品科学,2004,25(11):291
    [73] Lee B. C., Bae J. T., Pyo H. B., et al. Biological activities of the polysaccharides froduced from submerged culture of the edible Basidiomycete grifola frondosa [J]. Enzyme and Microbial Technology, 2003, 32: 574-581.
    [74] Zhang Q., Liu N., Liu X., et al. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity [J]. Carbohydrate Research, 2004, 339: 105-111.
    [75]冉靓,杨小生,王伯初,等.抗氧化多糖的研究进展[J].时珍国医国药,2006,17(4):494-496.
    [76] Volpi N., Tarugi P. Influenceof chondroitin sufate charge density, sulfate group position, and molecular mass on Cu2+ -mediated oxidation of human low-density lipoproteins: effect of normal human plasma-derived chondroitin sulfate [J], The Journal of Biochemistry, 1999, 125: 297-304.
    [77]张静丽,王宏勋,张雯,等.灵芝、枸杞多糖复合抗氧化作用[J],食品与机械,2004,20(6):11-13.
    [78] Chi A. P., Chen J. P., Wang Z. Z., et al. Morphological and structural characterization of a polysaccahride from Gynostemma pentaphyllum Makino and its anti-exercise fatigue activity [J]. Carbohydrate Polymers, 2008, 74: 868-874.
    [79] Cheng J. J., Lin C. Y., Lur H. S., Properties and biological functions of polysaccharides and ethanolic extracts isolated from medicinal fungus, Fomitopsis pinicola [J]. Process Biochemistry, 2008, 43: 829-834.
    [80] Ananthi S., Raghavendran H. R. B., Sunil A. G., et al. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga) [J]. Food and Chemical Toxicology, 2010, 48: 187-192.
    [81]梁忠岩,张翼伸.斜顶菌水溶性多糖的构象研究[J].生物化学杂志,1985,1(5-6):141-147.
    [82]王长云,管华诗.多糖抗病毒作用研究进展I:多糖抗病毒作用[J].生物工程进展,2000,20 (1):17-20.
    [83] Nanba H., Kuroda H. The chemical structure of an antitum or polysaccharide in mycelia of Cochliobolus myabeanus [J]. Chemical & Pharmaceutical Bulltin, 1987, 35: 1285-1288.
    [84] Cosgrove D. J. Expansive growth of plant cell walls [J]. Plant Physiology and Biochemistry, 2000, 38: 109-124.
    [85] Carpita N. C. Structure and biogenesis of the cell walls of grasses [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 445-476.
    [86] Willats W. G. T., McCartney L., Mackie W., et al. Pectin: cell biology and prospects for functional analysis [J]. Plant Molecular Biology, 2001, 47: 9-27.
    [87] O’Neill M. A., Albersheim P., Darvill A. The pectic polysaccharides of primary cell walls [M]. In: P.M. Dey (Ed.) Methods in Plant Biochemistry, vol. 2, Academic Press, London, 1990, pp: 415-441.
    [88] Willats W. G. T., Knox J. P., Mikkelsen J. D. Pectin: new insights into an old polymer are starting to gel [J]. Trends in Food & Technology, 2006, 17: 97-104.
    [89]孙元琳.当归多糖的制备、结构分析和抗辐射效应研究[D].江南大学博士学位论文, 2006.
    [90] Komalavilas P., Mort A. J. The acetylation at O-3 of galacturonic acid in the rhamnose- rich region of pectins [J]. Carbohydrate Research, 1989, 189: 261-272.
    [91] Saulnier L., Thibault J.-F. Ferulic acid and diferulic acid as components of sugar-beet pectins and maize bran heteroxylans [J]. Journal of the Science of Food and Agriculture, 1999, 79: 396-402.
    [92] Ridley B. L., O’Neill M. A., Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.
    [93] Doco T., Williams P., Vidal S., et al. Rhamnogalacturonan II, a dominant polysaccharide in juicis produced by enzymic liquefaction of fruits and vegetables [J]. Carbohydrate Research, 1997, 297: 181-186.
    [94] Pellerin P., O’Neill M. A. The interaction of the pectic polysaccharide rhamnogalacturonan II with heavy metals and lanthanides in wines and fruit juices [J]. Analusis, 1998, 26: M32-36.
    [95] Shin K. S., Kiyohara H., Matsumoto T., et al. Rhamnogalacturonan II dimers cross-linkedby borate diesters from the leaves of Panax ginseng C. A. Meyer are responsible for expression of their IL-6 production enhancing activities [J]. Carbohydrate Research, 1998, 307: 97-106.
    [96] Kobayashi M., Matoh T., Azuma J. Two chains of rhamnogalacturonan II are cross linked borate-diol ester bonds in higher plant cell walls [J]. Plant Physiology, 1996, 110: 1017- 1020.
    [97] O’Neill M. A., Warrenfeltz D., Kates K., et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester– in vitro conditions for the formation and hydrolysis of the dimer [J]. Journal of Biological Chemistry, 1996, 271: 22923-22930.
    [98] Caffall K. H., Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides [J]. Carbohydrate Research, 2009, 344: 1879-1900.
    [99] Yamada H. Contribution of pectins on health care [M]. In J. Visser, & A. G. J. Voragen (Eds.), Pectins and pectinases, 1996, pp: 173-190.
    [100] Olano-Martin E., Rimbach G. H., Gibson G. R., et al. Pectin and peitic- oligosaccharides induce apoptosis in in vitro human colonic adenocarcinama cells [J]. Anticancer Research, 2003, 23: 341-346.
    [101] Yamada H., Kiyohara H., Matsumoto T. Recent studies on possible functions of bioactive pectins and pectic polysaccharides from medicinal herbs [M]. In F. Voragen, H. Schols, & R. Visser (Eds.), Advances in pectin and pectinase research, 2003, pp: 481-490.
    [102] Leroux J., Langendorff V., Schick G., et al. Emulsion stabilizing properties of pectin [J]. Food Hydrocolloids, 2003, 17: 455-462.
    [103] Nakauma M., Funami T., Noda S., et al. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties [J]. Food Hydrocolloids, 2008, 22: 1254- 1267.
    [104] Kirby A. R., MacDougall A. J., Morris V. J. Atomic force microscopy of tomato and sugar beet pectin molecules [J]. Carbohydrate Polymers, 2008, 71: 640-647.
    [105] Glinsky V. V., Raz A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets [J]. Carbohydrate Research, 2009, 344: 1788-1791.
    [106] Manville I. A., Bradway E. M., McMinis A. S. Pectin as a detoxication mechanism [J]. American Journal of Digestive Deseases and Nutrition, 1936, 3: 570-572.
    [107] Ismail M. F., Gad M. Z., Hamdy M. A. Study of the hypolipidemic properties of pectin, garlic and ginseng in hypercholesterolemic rabbits [J]. Pharmacological Research, 1999, 39: 157-166.
    [108] Kim M. High-methoxyl pectin has greater enhancing effect on glucose uptake in intestinal perfused rats [J]. Nutrition, 2005, 21: 372-377.
    [109] http://baike.baidu.com/view/25129.htm, 2010-03-01.
    [110] Luthria D. L., Biswas R., Natarajan S. Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean [J]. Food Chemistry, 2007, 105: 325-333.
    [111] Speroni F., Beaumal V., Lamballerie de M., et al. Gelation of soybean proteins induced by sequential high-pressure and thermal treatments [J]. Food Hydrocolloids, 2009, 23: 1433-1442.
    [112] Hsu R., Miller J. B., Yachnin S., et al. Purification and characterization of a glycopeptide derived from phaseolus vulgaris leukoagglutinating phythohemagglutinin [J]. Biochimica Biophysica Acta (BBA), 1979, 579: 386-395.
    [113] Kasim N. S., Gunawan S., Ju Y. H. Isolation and identification of steroidal hydrocarbons in soybean oil deodorizer distillate [J]. Food Chemistry, 2009, 117: 15-19.
    [114] Sung M.-K., Kendall C. W. C., Rao A. V. Effect of soybean saponins and gypsophila saponin on morphology of colon carcinoma cells in culture [J]. Food and Chemical Toxicology, 1995, 33: 357-366.
    [115] Furuta H., Maeda H. Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition [J]. Food Hydrocolloids, 1999, 13: 267-274.
    [116] Hoover R., Li Y. X., Hynes G., et al. Physicochemical characterization of mung bean starch [J]. Food Hydrocolloids, 1997, 11: 401-408.
    [117] Shin R., Froderman T., Flurkey W. H. Isolation and characterization of a mung bean leaf polyphenol oxidase [J]. Phytochemistry, 1996, 45: 15-21.
    [118] Dust J. M., Gajda A. M., Flickinger E. A., et al. Extrusion conditions affect chemicalcomposition and in vitro digestion of select food ingredients [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 2989-2996.
    [119] Snyder H. E., Kwon T. W. Soybean utilization [M]. Van Nostrand Reinhold, New York, 1987, pp: 60.
    [120] Kalapathy U., Proctor A. Effect of acid extraction and alcohol precipitation conditons on the yield and purity of soy hull pectin [J]. Food Chemistry, 2001, 73: 393-396.
    [121] Gnanasambandam R., Proctor A. Preparation of soy hull pectin [J]. Food Chemistry, 1999, 65: 461-467.
    [122] Aspinall G. O., Hunt K., Morrison I. M. Polysaccharides of soybeans: II. Fractionation of hull cell-wall polysaccharides and the structure of a xylan [J]. Journal of the Chemical Society, 1966, 21: 1945-1949.
    [123] Aspinall G. O., Hunt K., Morrison I. M. Polysaccharides of soybean: V. Acidic polysaccharides from the hulls [J]. Journal of the Chemical Society, 1967, 11: 1080-1086.
    [124] Whistler R. L., Saarnio J. Galactomannan from soy bean hulls [J]. Journal of the American Chemical Society, 1957, 79: 6055- 6057.
    [125] Loest C. A., Tigemeyer E. C., Drouillard J. S., et al. Soybean hulls as a primary ingredient in forage-free diets for limit-fed growing cattle [J]. Journal of Animal Science, 2001, 79: 766-774.
    [126] Trater A. M., Tigemeyer E. C., Loest C. A., et al. Effects of supplemental alfalfa hay on the digestion of soybean hull-based diets by cattle [J]. 2001, 79: 1346-1351.
    [127] Shinnic F. L., Mathews R., Ink S. Serum cholesterol reduction by oats and other fiber sources [J]. Cereal Foods World, 1991, 36: 815-821.
    [128] Olguin M. C., Posadas M. D., Revelant G. C., et al. Evaluation of soy hulls as a potential ingredient of functional foods for the prevention of obesity [J]. Ecology of Food and Nutrition, 2010, 49: 98-109.
    [129] Sessa D. J., Wolf W. J. Bowman-Brik inhibitors in soybean seed coats [J]. Industrial Crops and Products, 2001, 14: 73-83.
    [130] Murray-Kolb L., E., Welch R., Theil E. C., et al. Women with low iron stores absorb iron from soybean [J]. American Journal of Clinical Nutrition, 2003, 77: 180-184.
    [131] Gizjen M., Huystee R. V., Buzzell R. I. Soybean seed coat peroxidase. A comparison of high-activity and low-activity genotyoes [J]. Plant Physiology, 1993, 103: 1061-1066.
    [132] Gizjen M., Kuflu K., Qutob D., et al. A class I chitinase from soybean seed coat [J]. Journal of Experimental Botany, 2001, 52: 2283-2289.
    [133] Enayati N., Parulekar S. J. Enzymatic saccharification of soybean hull-based materials [J]. Biotechnology Progress, 1995, 11: 708-711.
    [134]程霜,杜凌云,王勇,等.绿豆皮中抗氧化剂的初步研究[J].中国粮油学报,2000,15(2):40-43.
    [135]张延杰,田金河,曾庆孝,等.绿豆壳中提取黄酮工艺的研究[J].粮油食品科技,2005, 13(5):39-40.
    [136]苏冰霞,郑为完,李积华,等.绿豆皮中黄酮类物质浸提条件的优化研究[J].食品研究与开发,2007,28(4):82-86.
    [137]张洪微,冯传威,陶园钊.绿豆皮膳食纤维提取的研究[J].2006,7:38-40.
    [138] Duh P. D., Yen W. J., Du P. C., et al. Antioxidant activity of mung bean hulls [J]. Journal of American Oil Chemistry Society, 1997, 74: 1059-1063.
    [139] Duh P. D., Du P. C., Yen G. C. Action of methanolic extract of mung bean hull as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food and Chemical Toxicology, 1999, 37: 1055-1061.
    [140] Yao Y., Chen F., Wang M. F., et al. Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice [J]. Journal of Agricultural and Food Chemistry, 2008, 56: 8869- 8873.
    [1]孙培龙.姬松茸多糖的分离纯化、结构鉴定及抗肿瘤活性研究[D].杭州:浙江大学, 2007.
    [2]樊黎生.黑木耳多糖AAP-IIa级分的制备及其生物活性的研究[D].武汉:华中农业大学, 2006.
    [3] Jamieson G. R., Reid E. H. The component acids of some marine algal lipids [J].Phytochemistry, 1972, 11: 1423-1432.
    [4] Sun Y. X., Wang S. S., Li T. B., et al. Purification, Structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng [J]. Bioresource Technology, 2008, 99: 900-904.
    [5] Navarini L., Gilli R., Gombac V., et al. Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and characterization [J]. Carbohydrate Polymers, 1999, 40: 71-81.
    [6] Renard C. M. G. C., Weightman R. M., Thibault J.-F. The xylose-rich pectins from pea hulls [J]. International Journal of Biological Macromolecules, 1997, 21: 155-162.
    [7] Whistler R. L., Saarnio J. Galactomannan from soy bean hulls [J]. Journal of Agricultural and Food Chemistry, 1957, 20: 6055-6057.
    [8] Stolle-Smits T., Beekhuizen J. G., Recourt K., et al. Changes in pectic and hemicelllosic polymers of green beans (Phaseolus vulgaris L.) during industrial processing [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 4790-4799.
    [9] Kinby A. R., MacDougall A. J., Morris V. J. Atomic force microscopy of tomato and sugar beet pectin molecules [J]. Carbohydrate Polymers, 2008, 71: 640-647.
    [10] Sun R. C., Hughes S. Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp [J]. Carbohydrate Polymers, 1999, 38: 273-281.
    [11] Yamaguchi F., Ota Y., Hatanaka C. Extraction and purification of pectic polysaccharides from soybean okara and enzymatic analysis of their structures [J]. Carbohydrate Polymers, 1996, 30: 265-273.
    [12] Yang X. B., Zhao Y., Lv Y. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 4684-4690.
    [13] Zhou C. S., Ma H. L. Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis) [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 2223-2228.
    [14] Aeberhardt K., Laumer J.-Y. D. S., Bouquerand P.-E., et al. Ultrasonic wave spectroscopy study of sugar oligomers and polysaccharides in aqueous solutions: the hydration lengthconcept [J]. International Journal of Biological Macromolecules, 2005, 36: 275-282.
    [15] Fishman M. L., Chau H. K., Cooke P. H., et al. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp [J]. Food Hydrocolloids, 2009, 23: 1554-1562.
    [16] Gnanasambandam R., Proctor A. Preparation of soy hull pectin [J]. Food Chemistry, 1999, 65: 461-467.
    [17] Kalapathy U., Proctor A. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin [J]. Food Chemistry, 2001, 73: 393-396.
    [18] Furuta H., Maeda H. Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition [J]. Food Hydrocolloids, 1999, 13: 267-274.
    [19] Hayami I., Motomura Y., Nishizawa T. Antioxidant activity of cell wall polysaccharides in mung bean sprout hypocotyls [J]. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaish, 2007, 54: 247-252.
    [20] Gooneratne J., Needs P. W., Ryden P., et al. Structural features of cell wall polysaccharides from the cotyledons of mung bean Vigna radiate [J]. Carbohydrate Research, 1994, 265: 61-77.
    [21]杨德.试验设计与分析[M].北京:中国农业出版社,2002.
    [22] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method for determination of sugars and related substances [J]. Analytical. Chemistry, 1956, 28, 350-356.
    [23] Reese E. T., Mandels, M.. Methods in carbohydrate chemistry [M]. Whistler R L, ed. New York: Academic Press, 1963, 139.
    [24]杨宁.仙人掌多糖的分离纯化及降血糖的研究[D].华南理工大学博士学位论文,2007.
    [25]何传波.巴戟天多糖分离纯化及其结构和免疫活性研究[D].广州:华南理工大学,2006
    [26] Karr-Lilienthal L. K., Kadzere C.T., Grieshop C. M., et al. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review [J]. Livestock Production Science, 2005, 97: 1-12.
    [27] Dust J. M., Gajda A. M., Flickinger E. A., et al. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 2989-2996.
    [28]李积华,郑为完,杨静,等.绿豆膳食纤维的分析[J].食品研究与开发, 2006, 27(7): 176-178.
    [29]张庆轩,杨普江,杨国华.大豆种皮果胶的制备及果胶性质分析[J].食品研究与开发, 2005,26(5):40-43.
    [30]孙元琳,汤坚.果胶类多糖的研究进展[J].食品与机械,2004, 20(6): 60-63.
    [31] Hromadkova Z., Ebringerova A. Ultrasonic extraction of plant materials- Investigation of hemicelluloses release from buckwheat hull [J]. Ultrasonics Sonochemistry, 2003, 10:127-133.
    [32] Sun X., Sun F., Zhao H., et al. Isolation and characterization of cellulose from sugarcane bagasse [J]. Polymer Degradation and Stability, 2004, 84: 331-339.
    [33] Fu C. L., Tian H. J., Li Q. H., et al. Ultrasound-assisted extraction of xyloglucan from apple pomace [J]. Ultrasonics Sonochemistry, 2006, 13: 511-516.
    [34] Sun J., Sun R. C., Sun X., et al. Fractional and physic-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse [J]. Carbohydrate Research, 2004, 339: 291-300.
    [35] Xu G., Zhang H., Hu J. Leaching method of flavone from bamboo leaves [J]. Chinese Journal of Analytical Chemistry, 2000, 28: 857-859.
    [36] Ji J. B., Lu X. H., Cai M. Q., et al. Improvement of leaching process of Geniposide with ultrasound [J]. Ultrasonics Sonochemistry, 2006, 13: 455-462.
    [37] Vilkhu K., Mawson R., Simons L., et al. Applications and opportunities for ultrasound assisted extraction in the food industry - A review [J]. Innovative Food Science & Emerging Technologies, 2008, 93: 421-426.
    [38] Shotipruk A., Kaufman B., Wang Y. Feasibility study of repeated harvesting of menthol from biologically viable Mentha xpiperata using ultrasonic extraction [J]. Biotechnology Progress, 2001, 17: 924-928.
    [39] Romdhane M., Gourdan C. Investigation in solid-liquid extraction: Influence of ultrasound [J]. Chemical Engineering Journal, 2002, 87: 11-19.
    [40] Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs [J]. Ultrasonics Sonochemistry, 2001, 8: 303-313.
    [41] Box G. E. P., Behnken D.W. Some new three level designs for the study of quantitative variables [J]. Technometrics, 1960, 2: 455-475.
    [1] Lu R., Wang L., Zhang H., et al. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris [J]. Fitoterapia, 2004, 75: 662-666.
    [2]马丽,覃小林,刘雄民,等.不同的脱蛋白方法用于螺旋藻多糖提取工艺的研究[J].食品科学,2004,25(6):116-119.
    [3]何传波,陈玲,李琳,等.巴戟天多糖脱蛋白方法的研究[J].食品科技,2005,6:25-27.
    [4]张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987.
    [5]张海德.现代食品分离技术[M].北京:中国农业大学出版社,2007, pp: 197-202.
    [6]袁静明.凝胶层析法及其应用[M].北京:科学出版社, 1975, pp: 6-7.
    [7] Bradford M. M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Chemistry, 1976, 72, 248-254.
    [8] Staub A. M. Removeal of protein-Sevag method. Methods in Carbohydrate Chemistry, 1965, 5, 5-6.
    [9]王建华.枸杞多糖的结构与保健功能评价[D].武汉:华中农业大学,2001.
    [10] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method for determination of sugars and related substances [J]. Analytical. Chemistry, 1956, 28, 350-356.
    [11] Holzman G., MacAllister R. V., Niemann C. The colorimetric determination of hexoses with carbazole [J]. The journal of Biological Chemistry, 1947, 171: 27-35.
    [12] Jun H. I., Lee C. H., Song G. S., et al. Characterization of the pectin polysaccharides from pumpkin peel [J]. LWT-Food Science and Technology, 2006, 39: 554-561.
    [13] Yang B., Jiang Y. M., Zhao M. M., et al. Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp [J]. Polymer Degradation and Stability, 2008, 106: 685-690.
    [14] Qian J. Y., Chen W., Zhang W. M., et al. Adulteration identification of some fungal polysaccharide with SEM, XRD, IR and optical rotation: A primary approach [J]. Carbohydrate Polymers, 2009, 78: 620-625.
    [15] Carnachan S. M., Harris P. J. Polysaccharide compositions of primary cell walls of the palms Phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology and Biochemistry, 2000, 38: 699-708.
    [16] Miller J. A., Neuzil E. F. Modern experimental organic chemistry [M]. Massachusetts and Toronto: D. C. Heath and Company, 1982, pp: 569-571.
    [17] Li F., Yuan Q. P., Rashid F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge [J]. Carbohydrate Polymers, 2009, 78: 80-88.
    [18] Hata S., Mayanagi H. Acid diffusion through extracellular polysaccharides produced by various mutants of Streptococcus mutans [J]. Archives of Oral Biology, 2003, 48: 431-438.
    [19] Aguirre M. J., Isaacs M., Matsuhiro B., et al. Characterization of a neutral polysaccharides with antioxidant capacity from red wine [J]. Carbohydrate Research, 2009, 344: 1095-1101.
    [20] Zhang H L, Li J, Li G, et al. Structural characterization and anti-fatigue activity of polysaccharides from the roots of Morinda officinalis [J]. International Journal of Biological Macromolecules, 2009, 44: 257-261.
    [21] Dong Q., Yao J., Fang J. N. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots [J]. Carbohydrate Polymers, 2003, 54: 13-19.
    [22]张亨.吸附脱色研究进展[J].现代化工,1998,7:13-15.
    [23]张晓静,刘会东.植物多糖提取分离及药理作用的研究进展[J].时针国医国药,2003, 14(8):495-497.
    [24]付学鹏,杨晓杰.植物多糖脱色技术[J].食品研究与开发,2007,28(11):166-169.
    [25]王元凤,金征宇.茶多糖脱色的研究[J].食品与发酵工业,2004,30(12):60-65.
    [26] Zou C., Du Y. M., Li Y., et al. Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro [J]. Carbohydrate Polymers, 2008, 73: 322-331.
    [27] Zhao M. M., Yang N., Yang B., et al. Structural characterization of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities [J]. Food Chemistry, 2007, 105: 1480-1486.
    [1] Seifried H. E., Anderson D. E., Fisher E. I., et al. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry, 2007, 18: 567-579.
    [2] Knight J. A. Diseases related to oxygen-derived free radicals [J]. Annals Clinical and Laboratory, 1995, 25: 111-121.
    [3] Witztum J. L. The oxidation hypothesis of atherosclerosis [J]. Lancet, 1994, 344: 793-795.
    [4] Dandona P., Thusu K., Cook S. Oxidative damage to DNA in diabetes mellitus [J]. Lancet, 1996, 347: 444-445.
    [5] Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing [J]. Nature, 2000, 408: 239-247.
    [6] Holbrook N. J., Ikeyama S. Age-related decline in cellular response to oxidation stress:links to growth factor signaling pathways with common defects [J]. Biochemistry Pharmacology, 2002, 64: 999-1005.
    [7] Dalton T. P., Shertzer H. G., Puga A. Regulation of gene expression by reactive oxygen [J]. Annual Review of Pharmacology and Toxicology, 1999, 39: 67-101.
    [8] Lunec J., Holloway K. A., Cooke M. S., et al. Urinary 8-OXO-2’-deoxyguanosine: redox regulation of DNA repair in vivo? [J]. Free Radical Biology & Medicine, 2002, 33(7): 875-885.
    [9] Scheibmeir H. D., Christensen K., Whitaker S. H., et al. A review of free radicals and antioxidants for critical care nurses [J]. Intensive and Critical Care Nursing, 2005, 21: 24-28.
    [10] McCord J. M. Weindruch R. Oxidative stress, caloric restriction, and aging [J]. Science, 1996, 273: 59-63.
    [11] Imaida K., Fukushima S., Shicai T., et al. Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene on 2-stage urinary bladder carcinogenesis and inhibition ofγ-glutamyl transpeptidase -positive foci development in the liver of rats [J]. Carcinogenesis, 1983, 4: 885-889.
    [12] Skerget M., Kotnik P., Hadolin M., et al. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activitys [J]. Food Chemistry, 2005, 89: 191-198.
    [13] Dini I., Tenore C. G., Dini A. Saponins in Ipomoea batatas tubers: Isolation, characterization, quantification and antioxidant properties [J]. Food Chemistry, 2009, 113: 411-419.
    [14] Okamura H., Mimura A., Yakou Y., et al. Antioxidant activity of tannins and flavonoids in Eucalyptus rostrata [J]. Phytochemistry, 1993, 33: 557-561.
    [15] Wang Z. J., Luo D. H. Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino [J]. Carbohydrate Polymers, 2007, 68: 54-58.
    [16] Costa L. S., Fidelis G. P., Cordeiro S. L., et al. Biological activities of sulfated polysaccharides from tropical seaweeds [J]. Biomedicine & Pharmacotherapy, 2009, doi: 10.1016/j.biopha.2009.03.005.
    [17]张强,牟雪娇,周正义,等.豆渣多糖的提取及抗氧化活性研究[J].中国粮油学报,2007, 22(5): 49-52.
    [18] Duh P. D., Yen W. J., Du P. C., et al. Antioxidant activity of mung bean hulls [J]. Journal of American Oil Chemistry Society, 1997, 74: 1059-1063.
    [19] Duh P. D., Du P. C., & Yen G. C. Action of methanolic extract of mung bean hull as inhibitors of lipid peroxidation and non-lipid oxidative damage [J]. Food and Chemical Toxicology, 1999, 37: 1055-1061.
    [20] Oyaizu M. Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine [J]. Journal of Nutrition, 1986, 44: 307-315.
    [21] Tseng Y. H., Yang J. H., Mau J. L. Antioxidant properties of polysaccharides from Ganoderma tsugae [J]. Food Chemistry, 2008, 107: 732-738.
    [22] Xu W. T., Zhang F. F., Luo Y. B., et al. Antioxidant activity of a water-soluble polysachcharide purified from Pterdium aquilinum [J]. Carbohydrate Research, 2009, 344: 217-222.
    [23] Halliwell B., Gutteridge J. M. C., & Aruoma, O. I. The deoxyribose method: a simple‘test tube’assay for determination of rate constants for reaction of hydroxyl radicals [J]. Analytical Chemistry, 1987, 165: 215-219.
    [24] Blois M. S. Antioxidant determination by the use of a stable radical [J]. Nature, 1985, 181: 1199-1200.
    [25] Marklund S., Marklund G. Involvement of superoxide anion radicals in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase [J]. European Journal of Biochemistry, 1974, 47: 469-471.
    [26] Kallithraka S., Bakker J., and Clifford M. N. Correlations between saliva protein composition and some T-I arameters of astringency [J]. Food Quality and Preference, 2001, 12: 145–52.
    [27] Amarowicz R., Pegg R. B., Rahimi-Moghaddam P., et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies [J]. Food Chemistry, 2004, 84: 551-562.
    [28] Qiao D. L., Ke C. L., Hu B., et al. Antioxidant activities of polysaccharides fromHyriopsis cumingii [J]. Carbohydrate Polymers, 2009, 78: 199-204.
    [29] Kleinveld H. A., Haklemmers H. L. M., Stalenhoef A. F. H., et al. Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation-application of a short procedure for isolating low-density-lipoprotein [J]. Clinical Chemistry, 1992, 38: 2066-2072.
    [30] Huang D. J., Ou B. X., Prior R. L. The chemistry behind antioxidant capacity assays [J]. Journal of Agricultural and Food Chemistry, 2005, 53: 1841-1856.
    [31] Bloknina O., Virolainen E. & Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review [J]. Annals Botany, 2003, 91: 179–194.
    [32] Hort M. A., DalBo S., Costa Brighente I. M., et al. Antioxidant and hepatoprotective effects of Cyathea phalerata Mart. (Cyatheaceae) [J]. Basic Clinical Pharmacology & Toxicology, 2008, 103: 17-24.
    [33] Frankel E. N., Meyer A. S. The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants [J]. Journal of the Science of Food and Agriculture, 2000, 80: 1925-1941.
    [34]周海华,马海乐.云芝多糖的体外抗氧化活性研究[J].食品研究与开发,2008,29(3):44- 48.
    [35] MacDonald J., Galley H. F., & Webster, N. R. Oxidative stress and gene expression in sepsis [J]. British Journal of Anaesthesia, 2003, 90: 221–232.
    [36] Rollet-Labelle E., Grange M. J., Elbim C., et al. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis [J]. Free Radical Biology and Medicine, 1998, 24: 563-572.
    [37] Stohs S. J., & Baguchi D. Oxidative mechanism in the toxicity of metal ions [J]. Free Radical Biology and Medicine, 1995, 18: 321–336.
    [38] Sun Z. W., Zhang L. X., Zhang B., et al. Structural characterisation and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens [J]. Food Chemistry, 2010, 118: 675-680.
    [39] Simic M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutation Research, 1998, 202: 377-386.
    [40] Halliwell B., Murcia M. A., Chirico S., et al. Free radicals and antioxidants in food and invivo: what they do and how they work[J]. Critical Reviews in Food Science and Nutrition, 1995, 35:7.
    [41] Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms [J]. Food Chemical Toxicology, 1999, 37: 949-962.
    [42] Benzie I. F. F. Evolution of dietary antioxidants [J]. Comparative Biochemistry and Physiology-Part A, 2003, 136: 113-126.
    [43] Xue C., Fang Y., Lin H., et al. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica [J]. Journal of Applied Phycology, 2001, 13: 67-70.
    [1] Russell D. W., Setchell K. D. R. Bile acid biosynthesis [J]. Biochemistry, 1992, 31: 4737-4749.
    [2] Agellon L. B., Torchia E. C. Intracellular transport of bile acids [J]. Biochimica et Biophysica Acta, 2000, 1486: 198-209.
    [3] Wachtel N., Emerman S., Javitt N. B. Metabolism of cholest-5-ene-3β, 26-diol in the rat and hamster [J]. Journal of Biological Chemistry, 1968, 243: 5207-5212.
    [4] Hofmann A. F. The enterohepatic circulation of bile acids in man [J]. Clinics in Gastroenterology, 1977, 6:3–24.
    [5] Bernstein H., Bernstein C., Payne C. M., Bile acids as carcinogens in human gastrointestinal cancers [J]. Mutation Research, 2005, 589: 47-65.
    [6] Costarelli V., Key T. J., Appleby P. N., et al. A prospective study of serum bile acid concentrations and colorectal cancer risk in post-menopausal women on the island of Guernsey [J]. British Journal of Cancer, 2002, 86: 1741-1744.
    [7] Potter S. M. Soy protein and cardiovascular disease: The impact of bioactive components in soy [J]. Nutrition Reviews, 1998, 56: 231-235.
    [8] Anderson J. W., & Siesel, A. E. Hypocholesterolemic effects of oat products. In I. Furda & C. J. Brine (Eds.). New developments in dietary fiber: Physiological, physiochemical, and analytical aspects [M]. New York: Plenum Press, 1990: 17-36.
    [9] Hu Y. B., Wang Z., Xu S. Y. Corn bran dietary fiber modified by xylanase improves themRNA expression of genes involved in lipids metabolism in rats [J]. Food Chemistry, 2008, 109: 499-505.
    [10] Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease [J]. Physiology & Behavior, 2008, 94:285-92.
    [11] Austin M. A., King M. C., Vranizan K. M., et al. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk [J]. Circulation, 1990, 82: 495-506.
    [12] Goldstein J. L., Hazzard W. R., Schrott H. G., et al. Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction [J]. The Journal of Clinical Investigation, 1973, 52:1533-43.
    [13] Gerhardt A. L., Gallo N. B. Full-fat bran and oat bran similarly reduce hypercholesterolemia in humans [J]. The Journal of Nutrition, 1998, 128: 865-869.
    [14] Brown L., Rosner B., Willett W. W., et al. Cholesterol-lowering effects of dietary fiber: a meta-analysis [J]. American Journal of Clinical Nutrition, 1999, 69: 30-42.
    [15] Thakur B. R., Singh R. K., Handa A. K. 1997. Chemistry and uses of pectin-a review [J]. Critical Reviews in Food Science and Nutrition, 1997, 37: 47-73.
    [16] Yamatoya K., Kuwano K., Suzuki J. 1997. Effects of hydrolyzed guar gum on cholesterol and glucose in humans [J]. Food Hydrocolloids, 1997, 11: 239-242.
    [17] Chen G., Luo Y. C , Ji B. P., et al. 2008. Effect of polysaccharide from Auricularia auricular on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet [J]. Journal of Food Science, 2008, 73: H103-108.
    [18] Kahlon T. S., Chapman M. H., Smith G. E. In vitro binding of bile acids by okra, beets, asparagus, eggplant, turnips, green beans, carrots, and cauliflower [J]. Food Chemistry, 2007, 103: 676-680.
    [19]朱彩平,张声华.枸杞多糖对高脂血症小鼠血脂及脂质过氧化的影响[J].营养学报, 2005,27(1):79-80.
    [20] Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge [J]. Clinical Chemistry, 1972, 18: 499-502.
    [21] Kahlon T. S., Shao Q. In vitro binding of bile acids by soy bean, black eye bean, garbanzo,and lima bean [J]. Food Chemistry, 2004, 86: 435-440.
    [22] Kahlon T. S., Smith G. M. In vitro binding of bile acids by blueberries, plums, prunes, strawberries, cherries, cranberries and apples [J]. Food Chemistry, 2007, 100: 1182-1187.
    [23] Kahlon T. S., Smith G. M. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines [J]. Food Chemistry, 2007, 101: 1046-1051.
    [24] Kahlon T. S., & Chow F. I. In vitro binding of bile acids by rice bran, oat bran, wheat bran and corn bran [J]. Cereal Chemistry, 2000, 77: 518-521.
    [25] Kahlon T. S., Chiu M. M., Chapman M. H. Steam cooking significantly improves in vitro bile acid binding of beets, eggplant, asparagus, carrots, green beans, and cauliflower [J]. Nutrition Research, 2007, 27:750-755.
    [26]华聘聘,刘忠萍.可溶性大豆纤维部分生理功能的研究[J].中国油脂,2004,29(5):34-36.
    [27] Yang R., Le G., Li A., et al. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rat fad a high-fat diet [J]. Nutrition, 2006, 22: 1185-1191.
    [28] Rodriguez-Porcel M., Lerman A., Best P. J. Hypercholesterolemia impairs myocardial perfusion and permeability: Role of oxidabite stress and endogenous scavenging activity [J]. Journal of the Aerican College of Cardiology, 2001, 37: 608-615
    [29] Vassale C., Lubrano V., Abbate A., et al. Determination of metric plus nitrate and malondialdehyde in human plasma: Analysitcal performance and the effect of smoking and exercise [J]. Clin Chem Lab Med, 2002, 40: 802-809.
    [30] http://baike.baidu.com/view/354306.html, 2010-03-03.
    [31]胡叶碧.改性玉米皮膳食纤维的酶法制备及其降血脂机理研究[D].江南大学博士学位论文,2008.
    [1]阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008,3:200-203.
    [2]杨焱.桑黄多糖的分离纯化、结构鉴定和生物活性的研究[D].江南大学博士学位论文,2007.
    [3]王淼,丁宵霖.葡聚糖生物活性与结构的关系[J].无锡轻工大学学报,1997,16(2):90-94.
    [4] Tine M. A. S., Lima de D. U., Buckeridge M. S. Galactose branching modulates the action of cellulase on seed storage xyloglucans [J]. Carbohydrate Polymers, 2003, 52: 135-141.
    [5] Golovchenko V. V., Ovodova R. G., Shashkov A.S., et al. Structural studies of the pectin polysaccharide from duckweed Lemna minor L [J]. Phytochemistry, 2002, 60: 89-97.
    [6] Chen H. X., Qu Z. S., Fu L. L., et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea [J]. Journal of Food Science, 2009, 74: C469-474.
    [7] Blunenkrantz N., Asbob-Hansen G. New method for quantitative determination of uronicadids [J]. Analytical Biochemistry, 1973, 54: 484-489.
    [8] Borchardt L. G., Piper C. V. A gas chromatographic method for carbohydrates as alditol-acetates [J]. Tappi, 1970, 53: 257-260.
    [9] Yang X. B., Zhao Y., Lv Y. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 4684-4690.
    [10]张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987, pp: 43-45.
    [11]孙元琳,申瑞玲,汤坚,等.当归多糖的水解特征及其水解产物分析[J].分析化学, 2008, 36(3): 348-352.
    [12] Aspinall G. O., Ferrier R. J. A spectrophotometric method for the determination of periodate consumed during the oxidation of carbohydrates [J]. Chemical Industry (London), 1957, 7: 1216-1221.
    [13] Mondal S. K., Ray B., Ghosal P. K., et al. Structural features of a water soluble gum polysaccharide from Murraya paniculata fruits [J]. International Journal of Biological Macromolecules, 2001, 29: 169-174.
    [14] Taylor R. L., and Conrad H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups [J]. Biochemistry, 1972, 11: 1383-1388.
    [15] Goff A. L., Renard C. M. G. C., Bonnin E., Thibault J.-F. Extraction, purification and chemical characterization of xylogalacturonans from pea hulls [J]. Carbohydrate Polymers, 2001, 45: 325-334.
    [16]孙元琳,申瑞玲,汤坚,顾小红.当归多糖ASP3的甲基化分析[J].高等学校化学学报, 2008, 29(7): 1367-1370.
    [17] Ciucanu I. and Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research, 1984, 131: 209-217.
    [18] Needs P. W. and Selvendran R. R. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide [J]. Carbohydrate Research, 1993, 245: 1-10.
    [19] Willats W. G. T., McCartney L., Mackie W., et al. Pectin: Cell biology and prospects for functional analysis [J]. Plant Molecular Biology, 2001, 47: 9-27.
    [20]孙元琳.当归多糖的制备、结构分析和抗辐射效应研究[D].江南大学博士学位论文, 2006, pp: 42.
    [21] Nakamura A., Yoshida R., Maeda H., et al. Study of the role of the carbohydrate and protein moieties of soy soluble polysaccharides in their emulsifying properties [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 5506-5512.
    [22] Gooneratne J., Majsak-Newman G., Robertson J. A., et al. Investigation of factors that affect the solubility of dietary fiber, as nonstarch polysaccharides, in seed tissues of mung bean (Vigna radiata) and black gram (Vigna mungo). [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 605-611.
    [23] Gnanasambandan R., Proctor A. Determination of pectin degree of esterfication by diffuse reflectance Fourier transform infrared spectroscopy [J]. Food Chemistry, 2000, 68: 327-332.
    [24] Yang B., Wang J. S., Zhao M. M., et al. Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities [J]. Carbohydrate Research, 2006, 341: 634-638.
    [25] Sun R. C., Hughes S. Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp [J]. Carbohydrate Research, 1999, 38: 273-281.
    [26] Coimbra M. A, Goncalves F., Barros A. S., et al. Fourier transform infrared spectroscopy and chemometric analysis of white wine polysaccharide extracts [J]. Journal of Agricultural and Food Chemistry, 2002, 50:3405-11.
    [27] Kacurakova M., Capek P., Sasinkova V., et al. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers, 2000, 43, 195-203.
    [28] Mathlouthi M., & Koenig J. (1986). Vibrational spectra of carbohydrate [J]. Advances in Carbohydrate Chemistry and Biochemistry, 1986, 44: 7-89.
    [29] Cui Steve W. Food carbohydrate: Chemistry, physical properties, and applications [M]. Taylor & Francis Group, 2005, pp: 74-83.
    [30] Whistler R L, Saarnio J. Galactomannan from soy bean hulls [J]. Journal of American Chemistry Society, 1957, 79: 6055-6057.
    [31] Dyer J. R. Use of periodate oxidation in biochemical analysis [J]. Methods of Biochemical Analysis, 1956, 3: 111-152.
    [32] Hamilton J. K., Smith F. Reduction of the products of periodate oxidation of charbohydrates. III. The constitution of Amylopectin [J]. Journal of the American Chemical Society, 1956, 78: 5910-5912.
    [33] Purdie T., Irvin J. C. Purdie methylation [J]. Journal of the Chemical Society, 1903, 83: 1021.
    [34] Haworth W. N. Haworth methylation [J]. Journal of the Chemical Society, 1915, 107: 13.
    [35] Hakomori S. A rapid permethylation of glycolipids and polysaccharides catalyzed by methylsulfinyl carbanion in dimethylsulfoxide [J]. Journal of Biochemistry, 1964, 55: 205-208.
    [36] Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides [J]. Methods in Enzymology, 1990, 193: 647-660.
    [37] Isogai A., Ishizu A., Nakano J. A new facile methylation method for cell-wall polysaccharides [J]. Carbohydrate Research, 1985, 138: 99-108.
    [38] Harris P. J., Henry R. J., Blakeney A. B., et al. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides [J]. Carbohydrate Research, 1984, 127: 59-73.
    [39] York W. S., Kiefer L. L., Albersheim P., et al. Oxidation of oligoglycosyl alditols during methylation catalyzed by sodium hydroxide and iodomethane in methyl sulfoxide [J]. Carbohydrate Research, 1990, 208: 175-182.
    [40] Ridley B. L., O’Neill M. A., Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.
    [41]毛希安.核磁共振基础简论[M].北京:科学出版社,1996.
    [42] Pretsch E等.有机化合物的结构解析[M].上海:华东理工大学出版社,2002.
    [43] Ovodova R. G., Golovchenko V. V., Popov S. V., et al. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks [J]. Food Chemistry, 2009, 114: 610-615.
    [44] Dourado F., Cardoso S. M., Sliva A. M. S., et al. NMR structural elucidation of the arabinan from Prunus dulcis immunobiological active pectic polysaccharides [J].Carbohydrate Polymers, 2006, 66: 27-33.
    [45] Vriesmann L. C., Petkowicz C. L. de O. Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction [J]. Carbohydrate Polymers, 2009, 77: 72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700