稀土掺杂钒酸盐、铝酸盐纳米荧光粉的制备和发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Synthesis and Luminescent Properties Investigation of Rare-earth Lons Doped Orthovanadate and Aluminate Phosphors
  • 作者:阿木日沙那
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:杨桦
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-06-01
摘要
随着场发射( FED)和等离子体( PDP)发光显示技术的发展,对荧光粉的粒度分布大小、稳定性、发光效率、发光亮度以及导电性等提出了更高的要求,由于纳米发光材料显示了许多奇特的性能,因而它极有希望成为下一代的新型发光材料。在众多纳米发光材料中,以稀土钒酸盐为基质的发光材料具有良好的化学稳定性和热稳定性,但对其荧光性能的研究相对较少,因而对其产生了浓厚的研究兴趣。
     本文综述了纳米发光材料的研究现状,系统介绍了镧系离子的光谱理论及镧系掺杂发光纳米微粒的研究背景,概括和评述了近年来镧系掺杂发光纳米微粒的合成和表面修饰所取得的进展和面临的问题,并对其今后的研究方向进行了总结和展望。在此基础上,我们针对场发射显示器(FED)和等离子平板显示器(PDP)对发光材料的要求,以稀土钒酸盐纳米发光材料作为研究对象,采用柠檬酸溶胶-凝胶法和水热合成法,成功制备了多种具有不同光学性质的稀土钒酸盐纳米晶。应用X射线衍射(XRD)、场发射扫描电镜(SEM)、透射电镜(TEM)、光致发光谱(PL)、傅立叶变换红外光谱(FT-IR)、热分析(DTA-TG)、PL光谱、发光衰减曲线和寿命等手段研究了合成条件和掺杂离子浓度等对稀土钒酸盐纳米微粒的晶体结构、形貌和尺寸、表面化学性质、掺杂离子的固溶度和掺杂格位以及发光性能的影响和控制规律,取得了一系列重要的结论和创新性成果,为稀土钒酸盐纳米发光材料成为一种极具发展前景的新型发光材料打下了坚实的基础。
     采用简单易行的柠檬酸溶胶-凝胶法成功地制备了核-壳结构的SiO_2@YVO_4:Eu荧光体粉体。包覆后的样品不仅保持了核SiO_2的球形形貌又具有纯YVO_4:Eu的发光特性。制备的壳层致密均匀、光滑、无开裂,厚度可以控制在50-100 nm。此外,首次利用水热合成法在玻璃底片上外延生长了YVO_4:Eu的微米棒晶阵列和分等级结构样品。
With the technical development of FED and PDP, the requirement which includes the crystal size distribution, stability, luminescence efficiency, brightness and conductivity of the powder also has been improved. Since the luminescent nanomaterials have many unique functions, thus it is highly hoped that they will be a new type of luminescent material of next generation. Among the large number of luminescent nanomaterials, rare-earth vanadate host luminescent nanomaterials have a good chemical and thermal stability, but there are few investigations focused on the luminescent properties of rare-earth vanadate luminescent nanomaterials. In this thesis, we synthesized rare-earth vanadate luminescent nanomaterials through many different ways, and systematically investigated the luminescent properties to find new types of high-performance luminescent materials.
     (1) In the first chapter, we briefly describe the state of art of the research on luminescent nanomaterials; systematically introduce the spectrum theory of lanthanide ions and the research background of lanthanide-ions-doped luminescent nanomaterials; besides that, we generalize and review the improvement in the synthesis and surface modification of rare-earth-ions-doped luminescent nanomaterials in recent years, as well as the problems which confronts; moreover, the possible research directions in future are also summarized and predicted.
     (2) The synthesis method and condition of rare-earth-based luminescent nanomaterials powder have been studied in this paper. Eventually, under a determined optimum research condition, we synthesized a series of nano-scale YVO4:RE3+ (RE = Eu, Dy, Sm), Y1-xRExVO4:Eu3+ (RE = La, Gd), using citric acid as complexing agent, through the improved complexing-sol-gel method. The nanoparticles we synthesized have a uniform size, the scale of which is below 100 nm, and the smallest one can be as large as 20 nm. Under the UV irradiation, we studied the luminescent properties of the powder by the numbers. The result of the research indicates that the luminous intensity of nanoparticles increases with increasing the annealing temperature. Furthermore, as an appropriate amount of La~(3+) and Gd~(3+) doped into YVO4 host, the luminous intensity is also improved as a result of the distortions of crystal structure.
     (3) 4F9/2 - 6H13/2 transition of Dy3+ in YVO4:Dy3+ belongs to electric dipole transitions (?J = 2), which can be easily influenced by the surroundings. Besides that, YVO4 has the same crystal structure as YPO4, thus YVO4 and YPO4 can easily form solid solutions. Based on the reasons discussed above, we successfully synthesized YPxV1-xO4:Dy3+ luminescent nanoparticles by citric acid sol-gel method. The luminescent nanoparticles we got are close to sphere and have a sharp size distribution. After the relationship between the molar ratio of V/P in YPxV1-xO4:Dy3+ and the color of nanoparticles under the irradiation of UV was studied by the numbers, we found that with the decline of V/P molar ratio, the color gradually changes from yellow to blue. And in the range that X=0.775-0.85, the emission color is white. YPxV1-xO4:Dy3+, therefore, can be a new type of white-emission material. However, as a material to put into practical applications, some of its performances such as brightness still need to be improved.
     (4) Luminescent powder of SiO2@YVO4:Eu3+ core-shell structure was successfully synthesized by simple citric acid sol-gel method. Through controlling the condition of solution concentration, the mass ratio of core/shell, the annealing temperature, and the thickness of shell, we found out the most suitable coating condition. The samples we obtained not only keep the sphericity of SiO2 core but also have the radiation characteristic of pure YVO4:Eu3+. The shell we prepared is tight, uniform, smooth texture, and has no crack, the thickness of which can be controlled within 50-100 nm. Moreover, under 800 oC, YVO4:Eu3+ can crystallize well on the surface of SiO2, which greatly reduce the reaction temperature. The characterization results which are used to explain the formation mechanism of core-shell structure indicate that the hydroxyl on the surface of SiO2 and the viscosity of precursor solution play a crucial role. The emission lifetime of Eu3+ ions and PL emission intensity were both increased with increasing annealing temperature and the thickness of the shell. As the mass ratio of core/shell increases to 60%, the emission intensity of SiO2@YVO4:Eu3+ core-shell structure reaches to 91% of that of pure YVO4:Eu3+.
     (5) We respectively synthesized high-quality YVO4:Eu3+ micro-rod crystal array and flower structure crystal on the underlay of amorphous glass, using Na2H2L·2H2O to complex metal ions, through hydrothermal method, and we did not use any surfactant and template. Micro-rod crystal array epitaxially grew on the glass substrate which was covered with YVO4:Eu3+ crystal-seed layer under low temperature and using sol-gel method. Meanwhile, flower structure grew on glass substrate which did not have crystal seed. Through SEM, we observed that high-quality and large area of YVO4:Eu3+ micro-rods were perpendicularly grown on the substrate. The lengths of the micro-rods are roughly the same, and they have a tight and uniform distribution and the length of every micro-rod was approximately 4μm. The cross section of micro-rod was an obvious rectangle and the size of it was in the range from 300×300 nm2 ~ 500×800 nm2. The flower structure was composed of many rectangle micro-rods which radiate to all direction. Every single rod had rectangle cross-section and definitive crystal facet. Moreover, we discussed the growth mechanism of micro-rods in the solution of this system and also pointed out its impact on the morphology. Based on the growth mechanism we studied the cause of formation, which provides a possible technical approach to form YVO4:Eu3+ micro-rods of different morphology and optimize them. The result indicates that YVO4:Eu3+ micro-rods with different morphology all belong to zircon structure, whose a-axis is the optimum orientation of these deposited YVO4:Eu crystals.
     (6) We synthesized REMAl3O7(RE = Gd, La; M = Ca, Sr) luminescent nanomaterials through citric acid sol-gel method, and used XRD, AFM, SEM, TEM and PL to characterize the nanoparticles. The characterization result indicates that single-crystal luminescent nanoparticles are engendered under 800 oC annealing. The nanoparticles have sphericity morphology, the mean size is less than 100 nm, and with the rise of annealing temperature the crystal becomes more perfect and the size of nanoparticles also increases. Compared with solid-state reaction at high temperature, the annealing temperature declines by 600 oC . Under the irradiation of UV, the example radiates intensive red and green light, which respectively accord to the 5D0– 7F2 transition of Eu3+ and the 5D4–7F5 transition of Tb3+. Besides that, the emission intensity also increases with the increasing annealing temperature and the amount of Eu3+ ions (or Tb3+) doped in the host.
引文
[1](a)张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.(b)杨晴,唐凯斌,钱逸泰,中国科学技术大学博士学位论文,2002.(c)J. R. Barker, S.Roy, S. Babiker, A. Asenov, Preceedings of international conference on Quantum Devices and Circuits,Singapore,1997. (d) R.G Woodham, H. Ahmed, Extended abstracts of the 3nd International Workshop on Quantum Functional Devices ,Tokyo,R&D Association for FED.1997. (e) 王训,李亚栋,清华大学博士学位论文,2004
    [2] F. Fievet, etal, Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process,J. Mater. Chem.1993, 9, 627
    [3] (a) M. Fievet, J. P . Lagier, etal, Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process,MRS Bull, 1989, 14, 29. (b) C. D. Sanguesa, etal, Solid State. Ionics 1993, 25:63. (c) C. D. Sanguesa, etal, J. Solid. State. Chem. 1992, 100,272.
    [4] (a) M. Dvolaitky, etal, Influence of diffusion on excitation energy transfer in solutions by gigahertz harmonic content, J. Dispersion Sci.Technol. 1983, 4, 29. (b) K. Kandorl, etal, J. Colloid Inference 1998, 122, 78.
    [5] J. Q. Hu, Q. Y. Lu, K. B. Tang, S. H. Yu, Y. T. Qian, G. E. Zhou, X. M. Liu, Synthesis and characterization of SiC nanowires through a reduction-carburization route, J. Am. Chem. Soc. 2000, 83, 268.
    [6] B. H. Hong. S. C. Bae, C. W. Lee, S. Jeong, K. S. Kim, Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution PhaseScience 2001, 294, 348.
    [7] (a) 钱逸泰等,氢氩混合气还原复合氧化物制备合金微粉,金属学报 1991, 27: B446.(b)刘允平,张曼雄,钱逸泰,王昌燧辐射研究与辐射工艺学报 1997,15:193
    [8] (a) Y. Xie, Y. T. Qian, etal, A novel solventothermal synthetic route to nanocrystalline CdE (E= S, Se, Te) and morphological, Science 1996, 272, 1926. (b) Y. Xie. H. L. Su, X. F. Qian, X. M. Liu, Y. T. Qian, J. Solid State Chem. 2000, 149, 88 (c) J. X. Huang, Y. Xie, etal, Adv. Mater. 2000, 12, 808
    [9] (a) Q. Yang, K. B. Tang, C. R. Wang, D. Y. Zhang, Y. T. Qian, Growth of dendritic cobalt nanocrystals at room temperature, J. Solid State Chem.2002,164, 104. (b) Q. Yang, K. B. Tang, C. R. Wang, C. R. Wang, C. J. Zhang, Y. T. Qian, J. Mater. Res. 2002, 17, 1143.
    [10] (a) A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 1996, 271, 933. (b) M. G. Bawendi, M. L. Steigerwal, L. E. Brus, Annu. Rev. Phys. Chem. 1990, 41,477.
    [11] (a) J. Hu, T. W. Odom, C. M. Lieber, CHEMISTRY AND PHYSICS IN ONE DIMENSION: SYNTHESIS AND PROPERTIES OF NANOWIRES AND NANOTUBES ,Acc. Chem. Res. 1999, 32, 435. (b) B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia, J. Am. Chem. Soc. 2001, 123, 11500. (c) J. Song, B. Messer, Y. Wu, H. P. Yang, J. Am. Chem. Soc.2001, 123, 9714. (d) A. L. Rogach, M. T. Harrison, S. V. Kershaw, A. Kornowski, M. G. Burt, A. Eychmuller, H. Weller, PhysicaL. Status. Solid. B. 2001, 224, 153. (e) M. S. Gudiksen, J. F. Wang, C. M. Lieber, J. Phys. Chem. B2001. 105, 4062.
    [12] Y. Xie, P. Yan, J. Lu, Y. T. Qian, S. Y. Zhang, Synthesis and characterization of MSe (M= Zn, Cd) nanorods by a new solvothermal method,Chem. Commun.1999, 1969
    [13] C. Mirkin, T. Taton, Material chemistry: Semiconductors meet biology ,Nature 2000, 405, 626.
    [14] T. Ahmadi, Z. L. Wang, etal, Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles, Science 1996, 272, 1924
    [15] X..Qian, etal, Large-Scale Synthesis of Aligned Carbon Nanotubes,J. Mater. Chem. 2001, 11, 2504.
    [16] D. Vollath, K. E. Sickafus, Synthesis of nanosized ceramic nitride powders by microwave-supported plasma reactions, Nanostru. Mater.1993, 2, 451.
    [17] N. Klinger, etal, Thermodynamics of Si-CO System,J. AM. Ceram. Soc. 1966, 49, 369.
    [18] J. Hu, etal, CHEMISTRY AND PHYSICS IN ONE DIMENSION: SYNTHESIS AND PROPERTIES OF NANOWIRES AND NANOTUBES, J. Solid State Chem.1999, 148, 325
    [19] J. Hu, etal, Observation of an Exotic Baryon with S = +1 in Photoproduction from the Proton, Chem. Lett. 2005, 5, 74
    [20] 张克从,近代晶体学基础,科学出版社, 1998。
    [21] Eychmuller A. Structure and Photophysics of Semiconductor Nanocrystals, J. Phys Chem, 104, 6514, 2000.
    [22] R. Rossetti, S. Nakahara, and L. E. Brus,Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, J. Chem. Phys. 79, 1086, 1983.
    [23] R. Kubo, A. Kawabata, S. Kobayshi, Annu. Electronic Properties of Small Particles, Rev. Mater. Sci. 14, 49, 1984.
    [24] W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys. 58, 533, 1986.
    [25] J. Lu, and M. Tinkhan, Ⅱ 类超导体相变特征热力学探析,物理,27, 137, 1998。
    [26] D. L. Feldhein, C.D. Keating, Nano-patterns of polylstyrene-block-butyl acylcde) block copolymer brushes on the surfaces, Chem. Soc. Rev. 27, 1, 1998.
    [27] Bhargava R N, GallagherD, Hong X, et al. Op tical p roperties of manganes doped nanocrystals of ZnS [ J ]. Phys. Rev.Lett. , 1994, 72 (3): 4162419.
    [28] Bhargava R N, GallagherD, Welker T. Doped nanocrystals of semiconductors—a new class of luminescentmaterials [J]. J. Lumin. , 1994, 60-61 (3): 2752280.
    [29] Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials: p reparation, p roperties, and performance [J]. Chem. Mater , 2001, 13 (9): 276522782.
    [30] Trindade T, OpBrien P, PickettN L. Nanocrystalline semiconductors: synthesis, p roperties, and perspectives [J]. Chem. Mater , 2001, 13 (11) : 38432-3858.
    [31] Wang Z G. Progress on the study of semiconductor nanomaterials and nanosized devices [J]. Sem icond. Technol. (半导体技术), 2001, 26 (4): 17221 (in Chinese).
    [32] Song H W, Chen B J, Zhang J, et al. Ultraviolet light-induced spectral change in cubic nanocrystalline Y2O3 ∶E u3+ [J]. Chem. Phys. Lett , 2003, 372 (324): 3682372.
    [33] Peng H S, Song H W, Chen B J , et al. Temperature dependence of luminescence spectra and dynamics of Y2O3 ∶E u3 + nanocrystals [J]. Acta Phys. S inica (物理学报), 2002, 51 (12): 287522880 ( in Chinese).
    [34] Wei Z G, Sun L D, L iao C S, et al. Size dependence of luminescent p roperties for hexagonal YBO3 ∶E u nanocrystals in the vacuum ultraviolet region, [J]. J. Appl. Phys. , 2003, 93 (12): 978329788.
    [35] Fang Y P, Xu AW, Song R Q, et al. Systematic synthesis and characterization of single2crystal lanthanide orthophosphate nanowires, [J]. J. Am. Chem. Soc, 2003, 125 (51) : 16025-16034.
    [36] Yan Z G, Zhang YW, You L P, et al. General synthesis and characterization ofmonocrystalline 1D2nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate [J]. J. Cryst. Grow th, 2004, 262 (124) : 408-414.
    [37] Zhang YW, Yan Z G, You L P, et al. General synthesis and characterization of monocrystalline lanthanide orthophos phate nanowires, [J]. Eur. J. Inorg. Chem, 2003, (22): 4099-4104.
    [38] Meyssamy H, Riwotzki K. Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4 ∶ Ce, Tb [ J ]. Adv. Mater, 1999, 11 (10): 840-844.
    [39] PangM L, L in J, Fu J, et al. Prparation, patterning and luminescent p roperties of nanocrystalline Gd2O3 :A (A = Eu3 + ,Dy3 + , Sm3 + , Er3 + ) phosphor films via pechini sol-gel soft lithography, [J]. Opt. Mater, 2003, 23: 5472558.
    [40] Lazarouk S K, MudryA V, Borisenko V E. Room2temperature formation of erbium related luminescent centers in anodic alumina [J]. Appl. Phys. Lett, 1998, 73 (16): 2272-2274.
    [41] ChenW, Sammynaiken R, Huang Y N. Photoluminescence and photostimulated luminescence of Tb3 + and Eu3 + in zeo-lite-Y [J]. J. Appl. Phys, 2000, 88 (3):1424-1430.
    [42] YinW, ZhangM S, Kang B S. Prepartion and characterization of the nanostructured materials MCM 241and the luminescence functional sup ramolecule with Eu (phen) 4 as guest [J]. Chin. J. Lumin. (发光学报), 2001, 22 (3): 232-236 (in Chinese).
    [43] 谢平波,段昌圭,等,纳米晶 Y2SiO5:Eu的浓度猝灭研究,发光学报,1998,19 (1) 19-23
    [44] SOO Y L, MING z H, HuANG s W, Local structures around Mn Luminescent centers in Mn-doped nanocrystals of ZnS, J. Physical. Review B, 1994, 50 (11), 7602-7607
    [45] Qian Li, Lian Gao, Yan Dongsheng, Effects of grain size on W avelength of Y2O3:Eu emission spectra, J. Nanostructured. Materials, 1997, 8(7), 825-831.
    [46] KONRAN A, T FRIES, A GAHN, Chemical vaporsynthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu, Journal of Applied Physics, 1999, 86(6), 3129-3133
    [47] M. Hasse, K. Riwotzki, H. Meyssamy, A. komowki. Synthesis and properties of colloid lanthanide-doped nanocrystal, J. Alloy. Comp. 2003, 303-304: 191-197.
    [48] H. W. Zhang, X. Y. Fu, S. Y. Niu, G. Q. Sun, and Qin Xin, Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method, J. Solid State Chem. 2004, 177: 2649-2654.
    [49] Guangzhi Li, Zhenling Wang, Min Yua, Zewei Quan, Jun Lin, Fabrication and optical properties of core–shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process, Journal of Solid State Chemistry 179 (2006) 2698–2706.
    [50] V. Buissette, A. Huignard, T. Gacoin, J.-P. Boilota, Luminescence properties of YVO4: Ln ( Ln = Gd, Yb, and Yb-Er) nanoparticles, Surface Science 2003, 532-535: 444-449.
    [51] G. H. Pan, H. W. Song, X. Bai, Z. G. Liu, H. Q. Yu, Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO4:Eu3+/YBO3:Eu3+ Composite, Chem. Mater. 2006, 18, 4526-4532
    [52] C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, C. H. Yan. Structural transformation induced improved luminescence properties for LaVO4:Eu nanocrystal, Appl. Phys. Lett. 2004, 84: 5305-5307.
    [53] W. L Fan, X. Y. Song, Y. X. Bu, S. X. Sun, X. Zhao, Selected-Control Hydrothermal Synthesis and Formation Mechanism of Monazite- and Zircon-Type LaVO4 Nanocrystals, J. Phys. Chem. B 2006, 110, 23247-23254
    [1] 肖林久,孙彦彬,邱关明等,纳米稀土发光材料的研究进展,稀土, 23 (4) (2002) 46
    [2] Albert. K. Levine and Frank. C. Palilla, Appl. Phys. Lett, 1964, 6, 5.
    [3] I. Kandarakis, D. Cavouras, E. Kanellopoulos, C. D. Nomicos and G. S. Panayiotakis, An experimental method to determine the effective luminescence efficiency of scintillator-photodetector combinations used in X-ray medica imaging systems, Radiation Measurements, 1998, 29, (5), 481.
    [4] panayiotakis G, Cavouras D, Kandarakis I, Nomics C, A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4:Eu) screens for medical imaging applications, Appl. Phys. A, 1996, 62, 483.
    [5] K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln= Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129.
    [6] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J-P. Boilot, Synthesis and characterizations of YVO4: Eu colloids, Chem. Mater. 14 (2002) 2265.
    [7] S.E. kambaram, K.C. Patil, Photoluminescence of YVO4:Tm phosphor prepared by a polymerizable complex method, J. Alloys Compd. 217 (1995) 104.
    [8] S. Erdei, R. Schlecht, D. Ravichandran, Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation, Displays 19 (1999) 173–178.
    [9] A. Newport, J. silver, A. Vecht, The Synthesis of Fine Particle Yttrium Vanadate Phosphors from Spherical Powder Precursors Using, J. Electrochem. Sci, 147 (2000) 3944.
    [10] L.D. Sun, Y.X. Zhang, J. Zhang, C.H. Yan, C.S. Liao, Y.Q. Lu, Eu ion as fluorescent probe for detecting the surface effect in nanocrystals, Solid State Commun. 124 (2002) 35–38.
    [11] M. A. Aia, Structure and luminescence of the phosphate-vanadates of yttrium, Gadolinium, Lutetium and Lanthanum.J. Electrochem. Soc: SOLID STATE SCIENCE. 114(4) (1967)368.
    [12] G. Dezanneau, A. Sin, H. Roussel, H. Vincent , M. Audier, Synthesis and characterisation of La1-xMnO3 nanopowders prepared by acrylamide polymerisation, Solid State Commun., 121(2002) 133–137.
    [13] S.R.Jain, K.C.Adiga, V.R.P.Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame 40(1981)71-79.
    [14] D. Boyer, G. Bertrand-Chadeyron, R. Mahiou, C. Caperaa, J. C. Cousseins, Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3, J. Mater. Chem., 9 (1998) 211-214.
    [15] Y.C. Han, S. P. Li, X. Y. Wang, X. M. Chen, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [16] N. Van Landshoot, E. M. Kelder, J. Schoonman, Citric acid-assisted synthesis and characterization of doped LiCoVO4, Solid State Ionics. 2004, 166:307-316.
    [17] J. R. Liu, M. Wang, X. Lin, D. C. Yin, W. D. Huang. Citric acid complex method of preparing inverse spinel LiNiVO4 cathode material for lithium batteries, J. Power Sources, 2002, 108: 113-116.
    [18] T. Igrashi, M. Ihara, T. Kusunoki, K. Ohno, Relationship between opticalproperties and crystallinity of nanometer Y2O3:Eu phosphor, Appl. Phys. Lett. 2000, 76:1549-1551. [19 ] Dexter D L. Theory of Concentration Quenching in Inorgamic Phosphors [J]. J. Chem. Phys, 1954, 22 (6): 1063.
    [20] Blasse G and Grabmaier E C, [M] Luminescent Materials, Berlin:Springer, 1994, p17-18.
    [21] Blasse G anf Dirksen G J. The luminescence of several activators in SrLa2BeO5, a partially disordered compound, [J] Journal of the Electrochemical Society, 1989, 136:1550-1557。
    [22] Krupa J C and Quefelec M, UV and VUV Optical Excitations in Wide Band Gap Materials Doped with Rare Earth Ions:4f-5d Transitions, [J] Journal of Alloys and Compounds, 1997, 205:287-292.
    [23] Wang L S, Liu X M, Quan Z W, Kong D Y, Yang J and Lin J, Luminescence properties of Y0.9-XGdXEu0.1Al3(BO3)4 (0≤X≤0.9) phosphors prepared by spray pyrolysis process, [J] Journal of Luminescence, 2007, 122-123: 36-39.
    [1] S. Strite, in: H.J. Queisser (Ed.), Characterization of Group III-nitride semiconductors by high-resolution electron microscopy, Advanced Solid State Physics, Springer, 1994.
    [2] J. Ballato, J.S. Lewis, P.H. Holloway, Display applications of rare-earth-doped materials, MRS Bull. 24 (1999) 51.
    [3] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer, Berlin, 1994.
    [4] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129.
    [5] B. Yan, X.Q. Su, In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1?xO4:Eu3+ micron crystalline phosphors, Mater. Sci. Eng. B 116 (2005) 196.
    [6] P. Gerner, K.K. amer, H.U.G. udel, J. Lumin. 102–103 (2003) 112.
    [7] S. Erdei, F.W. Ainger, D. Ravichandran, W.B. White, L.E. Cross, Preparation of Eu3+: YVO4 red and Ce3+, Tb3+: LaPO4 green phosphors by hydrolyzed colloid reaction (HCR) technique Mater. Lett. 30 (1997) 389.
    [8] R. Jagannathan, The Conditiona CAPM and the Cross-Section of Expected Returns J. Lumin. 68 (1996) 211.
    [9] M. Yu, J. Lin, Y.H. Zhou, M.L. Pang, X.M. Han, S.B. Wang, Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography, Thin Solid Films 444 (2003) 245.
    [10] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J.P. Boilot, Synthesis and Characterizations of YVO4:Eu Colloids, Chem. Mater. 14 (2002) 2264.
    [11] A. Huignard, V. Buissette, A.C. Franville, T. Gacoin, J.P. Boilot, Emission Processes in YVO4:Eu Nanoparticles, J. Phys. Chem. B 107 (2003) 6754.
    [12] M. Haase, K. Riwotzki, H. Meyssamy, A. Kornowski, Synthesis and properties of colloidal lanthanide-doped nanocrystals, J. Alloys Cmpds. 303–304 (2000) 191.
    [13] Fragoso Wallace D , Mello Doneg áCelso de , Longo Ricardo L, Luminescence and energy transfer in La2O3?Nb2O5B?O3:M3+ (M = Bi, Eu, Dy) glasses, [J ], J, Lumin, 2003, 105 (2 - 4): 47.
    [14] Cavalli E, Speghini A, Bettinelli M, et al, Luminescence of trivalent rareearth ions in the yttrium aluminium borate non-linear laser crystal, [J ], J, Lumin, 2003, 102 - 103 : 216.
    [15] 周永慧, 林君, 赵增芹, 等,用3 种方法合成 Y3Al5O12:RE3+ (RE = Eu, Dy) 发光粉的对比研究, [J], 中国稀土学报
    [16] 张俊英, 张林, 陈清明, 等, 长余辉发光铍金属 SrAl2O4:Dy, Eu 的制备与发光性能研究, [J], 中国稀土学报, 2003 , 21 (2) : 151.
    [17] Matsuzawa T, Aoki Y, Takeuchi N, et al, A new long phosphorescent phosphor with high brightness , SrAl2O4∶Eu2+, Dy3+, [J], J, Electrochem, Soc, 1996, 143 (8) : 2670.
    [18] 魏坤, 贺伦燕, 石燕,纳米晶稀土复合氧化物 Dy (1 - x)SrxCoO(3 - y) Ⅰ,荧光特性及其机理研究,[J],化学学报, 1998 , 16 (6) : 589.
    [19] Xiuzhen Xiao, Bing Yan, Chemical co-precipitation of hybrid precursors to synthesize Eu3+/Dy3+activated YNbxP1-xO4 and YNbxV1-xO4 microcrystalline phosphors, J, Non-Cryst Solids, 352 (2006) 3047–3051
    [20] Q. Su, Z.W. Pei, L. S. Chi, H. J. Zhang, Z. Y. Zhang and F. Zou, The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission, J. Alloy. Comp. 192 (1993)25-27.
    [21] E. Cavalli, M. Bettinell, A. Belletti, A. Speghini, Chemical co-precipitation composition of hybrid precursors to synthesize Y0.5?xDyxLi1.5VO4 microcrystalline phosphors, J. Alloys Cmpds. 341 (2002) 107.
    [22] S.J. Yang, L.J. Yuan, J.T. Sun, Synthesis and luminescent properties of Eu3+-doped LaPO4 Rare Met. 22 (2003) 95.
    [23] W.O. Milligan, D.F. Mullica, G.W. Beall, L.A. Boatner, Structural investigations of YPO4, ScPO4 and LuPO4, Inorg. Chim. Acta 60 (1982) 39.
    [24] B.C. Chakoumakos, M.M. Abraham, L.A. Boatner, Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) J. Solid State Chem. 109 (1994) 197.
    [25] C.H. Lu, R. Jagannathan, Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting, Appl. Phys. Lett. 80 (2002) 3608.
    [26] L. Yanhonga, b, H. Guangyan. Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+, J. Solid State Chem. 178 (2005) 645.
    [27] J.M. Nedelec, D. Avignant, R. Mahiou, Soft Chemistry Routes to YPO4-Based Phosphors: Dependence of Textural and Optical Properties onSynthesis Pathways, Chem. Mater. 14 (2002) 651.
    [28] Q. Su, Z. Pei, L. Chi, H. Zhang, The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission, J. Alloys Cmpds. 192 (1993) 25.
    [29] H. Wang, M. Yu, C.K. Lin, J. Lin, Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica, J. Colloid Interf. Sci. 300 (2006) 176.
    [30] Y.H. Zhou, J. Lin, Luminescence properties of RP1?xVxO4: A (R = Y, Gd, La; A = Sm3+, Er3+ x = 0, 0.5, 1) thin films prepared by Pechini sol–gel process, J. Alloys Cmpds. 408–412 (2006) 856.
    [1] Berndt, I.; Pedersen, J. S.; Richtering, W. Temperature-Sensitive Core-Shell Microgel Particles with Dense Shell, Angew. Chem, Int. Ed. 2006, 45, 1737-1741.
    [2] Kompe, K; Borchert, H.; Storz, J; Lobo, A; Adam, S; Moller, T; Haase, M. Angew. Chem, Green-Emitting CePO4:Tb/LaPO4 Core-Shell Nanoparticles with 70 % Photoluminescence Quantum Yield,Int. Ed. 2003, 42, 5513-5516.
    [3] Lee, I. S; Lee, N; Park, J; Kim, B. H.; Yi, Y. W; Kim, T.; Kim, T. K; Lee, I. H; Paik, S. R; Hyeon, T, Ni/NiO Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged,J. Am. Chem. Soc. 2006, 128,10658-10659.
    [4] Zimmer, J. P; Kim, S. W.; Ohnishi, S.; Tanaka, E.; Frangioni, J.V.; Bawendi, M. G, Size Series of Small Indium Arsenide-Zinc Selenide Core-ShellNanocrystals and Their Application to In Vivo Imaging, J. Am. Chem. Soc. 2006, 128, 2526-2527.
    [5] Chen, Y. J.; Zhu, C. L; Wang, T. H, Extremely stable field emission from AlZnO nanowire arrays, Nanotechnology 2006, 17, 3012-3017.
    [6] Wang, D. S.; He, J. B.; Rosenzweig, N.; Rosenzweig, Z, Preparation of luminescent CdTe quantum dots doped core-shell nanoparticles and their application in cell recognition, Nano Lett. 2004, 4, 409-413.
    [7] Jang, J; Nam, Y; Yoon, H, Fabrication of Polypyrrole- Poly(N-vinylcarbazole) Core-Shell Nanoparticles with Excellent Electrical and Optical Properties, Adv. Mater. 2005, 17, 1382-1386.
    [8] Teng, F; Tian, Z. J; Xiong, G. X; Xu, Z. S. Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity, Catal. Today 2004,93-95, 651-657.
    [9] Lawrie, G. A; Battersby, B. J; Trau, M, Synthesis of Optically Complex Core-Shell Colloidal Suspensions: Pathways to Multiplexed Biological Screening AdV. Funct. Mater. 2003, 13, 887-896.
    [10] H. L. Xia, F.Q. Tang, Surface Synthesis of Zinc Oxide Nanoparticles on Silica Spheres: Preparation and Characterization, J. Phys. Chem. B 107 (2003) 9175.
    [11] P. Schuetzand, F. Caruso, Self-assembly of copper borate–SiO2 rods, Chem. Mater. 14 (2002) 4509.
    [12] S. R. Hall, S.A. Davis, S. Mann, Co-Condensation of Organosilica Hybrid Shells on Nanoparticle Templates: A Direct Synthetic Route, Langmuir 16 (2000) 1454.
    [13] I. Sondi, T.H. Fedynyshyn, R. Sinta, E. Matijevic, Encapsulation of Nanosized Silica by in Situ Polymerization of tert-Butyl Acrylate Monome, Langmuir 16 (2000) 9031.
    [14] H. Wang, C.K. Lin, X.M. Liu, J. Lin, Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica, Appl. Phys. Lett. 187 (2005) 181907.
    [15] G.X. Liu, G.Y. Hong, Blue Electroluminescence from InN@SiO2 Nanomaterials, J. Colloid Interf. Sci. 278 (2004) 133.
    [16] M. Yu, J. Lin, J. Fang, Sol–gel fabrication, patterning and photoluminescent properties of LaPO4: Ce3+, Tb3+ , Chem. Mater. 17 (2005) 1783.
    [17] D.Y. Kong, M. Yu, C.K. Lin, X.M. Liu, J. Lin, J. Fang, Sol-gel Synthesisand Characterization of ZnSiO: Mn@ SiO Spherical Core-Shell Particles, J. Electrochem. Soc. 152 (9) (2005)
    [18] Iler, R.K. U. S. Patent, The chemistry of silica, No. 2,885,366, 1959. 250
    [19] M. Ohmori, E. Matijevic, Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite, J. Colloid Interface Sci. 150 (1992) 594. 251
    [20] P.V. Krassimir, A. van Blaaderen, Synthesis and characterization of photoswitchable fluorescent silica nanoparticles, Langmuir 17 (2001) 4779. 252
    [21] J. N. Ryan, M. Elimelech, J.L. Baeseman, R.D. Magelky, Silica-coated titania and zirconia colloids for subsurface transport field experiments, Environ. Sci. 253 Technol. 34 (2000) 2000.
    [22] C. Brecher, H. Samelson, A. Lempicik, R. Riley, T. Peters, Polarized Spectra and Crystal-Field Parameters of Eu in YVO4, Phys. Rev. 155 (1967) 178.
    [23] A.K. Levine, F.C. Palilla, Smith Al. A new, highly efficient red-emitting cathodoluminescent phosphor-(YVO4:Eu) for color, Appl. Phys. Lett. 5 (1964) 118.
    [24] K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln= Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129.
    [25] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J-P. Boilot, Synthesis and characterizations of YVO4: Eu colloids, Chem. Mater. 14 (2002) 2265.
    [26] S. Erdei, R. Schlecht, D. Ravichandran, Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation, Displays 19 (1999) 173–178.
    [27] A. Newport, J. silver, A. Vecht, The Synthesis of Fine Particle Yttrium Vanadate Phosphors from Spherical Powder Precursors Using , J. Electrochem. Sci. 147 (2000) 3944.
    [28] K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles YVO4 : Ln (Ln= Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129.
    [29] A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, D. Barber, Engineering phosphors for field emission displays, J. Vac. Sci. Technol. B 17 (1999) 750.
    [30] M. Yu, J. Lin, and J. Fang. Microstructures and mechanical properties ofAl-Mg and Al-Zn-Mg based alloys containing minor, 17 (2005) 1783-1791
    [31] Cuikun Lin, Deyan Kong, Xiaoming Liu, Huan Wang, Min Yu, and Jun Lin, Sol-Gel Preparation of Zn2SiO4: Mn Phosphor Layers on Silica Spheres and Their Luminescent Inorg. Chem 46 (2007) 2674-2681
    [32] St?ber, W; Fink, A; Bohn, E. Controlled Growth of Monosized Silica Spheres in the Micron Size Range, J. Colloid Interface Sci. 1968, 26,
    [33] Huignard, A.; Gacoin, T; Boilot, Synthesis and luminescence properties of colloidal YVO4: Eu phosphors, J.-P. Chem. Mater. 2000, 12, 1090.
    [34] Riwotzki, K.; Haase, M, Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes J. Phys. Chem. B 2001, 105, 12709.
    [35] R.W.G. Wyckoff, Crystal Structure, vol. 3, Interscience, New York, 1964.
    [36] K.S.THOMAS, S.SINOH, and G.H. DIEKE, The crystal structure of pseudomalachite, Cu5(PO4)2(OH)438 (1963) 2180-2189.
    [37] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany, 1994, p. 41.
    [38] Kang, W. Y.; Park, J. S.; Kim, D. K.; Suh, K. S, MgB2 Superconducting Thin Films with a Transition Temperature of 39 Kelvin, Bull. Korean Chem. Soc. 2001, 22, 921.
    [39] Riwotzki, K.; Haase, M. Liquid-Phase Synthesis of Doped Nanoparticles: Colloids of Luminescing LaPO4: Eu and CePO4:Tb, J. Phys. Chem. B 2001, 105, 12709.
    [40] Fujii, T.; Kodaira, K.; Kawauchi, O.; Tanaka, N.; Yamashita, H.; Anpo, Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si–Al glasses prepared, M. J. Phys. Chem. B 1997, 101, 10631.
    [41] Shen, W. Y; Pang, M. L; Lin, J; Fang, J. Y, Host-Sensitized Luminescence of Dy3+ in Nanocrystalline beta-Ga2O3 Prepared, J. Electrochem. Soc. 2005, 152, H25.
    [1] Yang, H. G.; Zeng, H. C. Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4: A (A= Eu3+, Dy3+, Sm3+, Er Angew. Chem. Int. Ed. 2004, 43, 5930.
    [2] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, One-dimensionalnanostructures:Synthesis, characterization, and applications, Adv. Mater. 2003, 15: 353-38
    [3] Vayssieres L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater., 2003,15: 464-466
    [4] Wang X D, Summers C J and Wang Z L, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor Arrays, Nano. Lett., 2004, 4: 423-426.
    [5] Zhang B P, Binh N T, Segawa Y, Wakatsuki K, Usami N, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl. Phys. Lett., 2005,83: 1635-1637.
    [6] Lorenz M, Kaidashev E M, Rahm A, Nobis Th, Lenzner J, Wagner G, Spemann D, Hochmuth H,Grundmann M, MgxZn1–xO(0 x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition, Appl. Phys. Lett., 2005, 86: 143113-143115.
    [7] Lyu. S.C,Zhang. Y, Lee. C.J, CALIX 4 ARENE PODANDS AND BARRELANDS INCORPORATING 2, 2'-BIPYRIDINE MOIETIES AND THEIR LANTHANIDE, Chem. Mater, 2003, 15, 3294
    [8] Wu J J, Wen H I, Tseng C H and Liu S C, Well-Aligned ZnO Nanorods viaHydrogen Treatment of ZnO Films, Adv. Funct. Mater., 2004,14: 806-810.
    [9] Pang. Y.T, Meng.G.W, Zhang.L.D, Coating Carbon Nanotubes with Rare Earth Oxide Multiwalled Nanotubes Adv Funct Mater, 2002, 12, 719
    [10] Pang. Y.T, Meng.G.W, Zhang.L.D, Coating Carbon Nanotubes with Rare Earth Oxide Multiwalled Nanotubes Nanotechnology, 2003, 114, 20
    [11] Wang. Y. C, Leu. I. C, Hon.M.H, J.Cryst Growth, 2002, 237, 564
    [12] Lakshmi. B.B, Dorhour. P. K, Martin. C. R, Chem Mater, 1997, 9, 857
    [13] Li. Y, Xu.D.S, Guo.G.L, Chem Mater 1999, 11,3433
    [14] Peng.X.S, Meng. G.W, Zhang.L.D, Mater Res Bull, 2002, 37, 1369
    [15] Xu.D, Shi.X, Guo. G.L, J. Phys Chem B, 2000, 104, 5061
    [16] Peng.X.S, Zhang. J, Zhang. L.D, Chem Phys Lett, 2001, 343, 470
    [17] Prieto. A.L, Sander. M.S, Martin-Gonzalez M.S, J.Am. Chem. Soc, 2001, 123, 7160
    [18] Sander. M.S, Prieto. A.L, Gronsky R, Adv. Mater, 2002, 14, 665
    [19] Huignard, A.; Gacoin, T; Boilot, Synthesis and luminescence properties of colloidal YVO4: Eu phosphors, J.-P. Chem. Mater. 2000, 12, 1090.
    [20] Riwotzki, K.; Haase, M, Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes J. Phys. Chem. B 2001, 105, 12709.
    [21] Wang Y, Herron N. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites [J].J. Phys. Chem., 1988, 92:4988-4994
    [22] Bhargava R N, Gallagher D, Wdkler T. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites,[J].J. Lumin.,1994, 60&61: 275~280
    [23]LikawaF, Bernussi A A. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites[J], J. Appl. Phys., 1994, 75 (6): 3071~3074
    [24] Mo C M. Zhang L D, et al. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites[J], J. Appl. Phys., 1993, 73 (10): 5185~5188
    [25] Baneriee S. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites, [J].Bull. Mater. Sci., 1994, 17(5): 533~550
    [26]Yu, M; Lin, J; Fang, Controlled synthesis of 3D nanostructured Cd4Cl3(OH)5 templates and their transformation, J. Chem. Mater. 2005, 17, 1783.
    [27]Wanmaker, W. L.; Brill, A.; ter Vrugt, J. W; Bross, Electrochemical preparation of CdSe nanowire arrays, J. Philips. Res.Rep. 1966, 21, 270.
    [28]Riwotzki, K.; Haase, M. Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3, J. Phys. Chem. B 1998, 102, 10129.
    [29] Riwotzki, K.; Haase, M. Electrodeposition of ordered Bi2Te3 nanowire arrays.J. Phys. Chem. B 2001, 105, 12709.
    [30]Huignard, A; Gacoin, T; Boilot, Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays, J. P. Chem. Mater. 2000, 12, 1090.
    [31]Huignard, A.; Buissette, V; Franville,
    [32]Sabbatini. N; Guardigli, M; Manet, I. In Advance in Photochemistry, Vol. 23; Neckers, D. C., Volman, D. H., von Bunau, G., Eds; Wiley: New York, 1997.
    
    [1] J.-C. Souriau, Y.D. Jiang, J. Penczek, H.G. Paris, C.J. Summers, 1. Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag,Cl phosphors for field emission display applications, Mater. Sci. Eng. B 76 (2000) 165.
    [2] P. Nemec, P. Maly, 2. Temperature study of trap-related photoluminescence decay in CdSxSe1–x nanocrystals in glass, J. Appl. Phys. 87 (2000) 3342.
    [3] A.A. Bol, A. Meijerink, Doped semiconductor nanoparticles – a new class of luminescent materials?, J. Lumin. 87 (2000) 315.
    [4] 1. Pracka, W. Giersz, M. Swirkowicz, Pajaczkowska, S. Kaczmarek, Z. Mierczyk, K. Kopczynski, The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties Mater. Sci. Eng. B 26 (1994) 201.
    [5] B. Simondi-Teisseire, B. Viana, A.M. Lejus, D. Vivien, Optimization by energy transfer of the 2.7 μm emission in the Er:SrLaGa3O7 melilite crystal, J. Lumin.72–74 (1997) 971.
    [6] M.A. Scott, T.P.J. Han, H.G. Gallagher, B. Henderson, Near-infrared laser crystals based on 3d2 ions Spectroscopic studies of 3d2 ions in oxide, meliliteand apatite crystals, J. Lumin.72–74 (1997) 260.
    [7] W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, W.A. Pisarski, M. Berkowski, J. Fink-Finowicki, Growth and spectroscopy of chromium doped SrXGa3O7 (X = La, Gd) crystals, Spectrochim. Acta Part A 54 (1998) 2071.
    [8] S.-I. Kubota, M. Izumi, H. Yamane, M. Shimada, 8. Upconversion-induced ultraviolet emission in Ho3+ doped SrLaGa3O7 and SrLaGaO4 crystals, J. Alloys Compd. 283 (1999) 95.
    [9] M. Malinowski, I. Pracka, P. Myziak, R. Piramidowicz, W. Wolinski, 9. Spectroscopy of Dy3+-doped SrLaGa3O7 crystals, J. Lumin. 72–74 (1997) 224.
    [10] N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, K. Hirao, Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals, Appl. Phys. Lett. 75 (1999) 1715.
    [11] N. Kodama, Y. Tanii, M. Yamaga, Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7, J. Lumin. 87–89 (2000) 1076.
    [12] N. Kodama, N. Sasaki, M. Yamaga, Y. Masui, 12. Long-lasting phosphorescence of Eu2+ in melilite, J. Lumin. 94–95 (2001) 19.
    [13] A.M. Lozac’h, M. Guittad, J. Flahaut, Ternary System La2Se3-Ga2Se3-GeSe2 Phase Diagram--Study of Glasses, Mater. Res. Bull. 8 (1973) 75.
    [14] A. Garcia, C. Fouassier, P. Douguer, Luminescence of SrGdGa3O7:RE3+ (RE = Eu, Tb) phosphors and energy transfer from Gd3+ to RE3+, J. Electrochem. Soc. 129 (1982).
    [15] L. Zhou, W.C.H. Choy, J. Shi, Synthesis, vacuum ultraviolet and near ultraviolet-excited luminescent properties of GdCaAl3O7:RE3+ (RE=Eu, Tb), J. Solid State Chem. 178 (2005) 3004.-3009.
    [16] M. Malinowski, I. Pracka, B. Surma, T. kasiewicz, W. Woli_nski, R. Wolski, Spectroscopic and laser properties of SrLaGa3O7:Pr3+ crystals, Opt. Mater. 6 (1996) 305.
    [17] W. Ryba-Romanowski, S. Golab, W.A. Pisarski, G. Dominiak-Dzik, A. Gloubokow, Optical Study of SrLaGaO4 and SrLaGa3O7 Doped with Nd3+ and Yb3+, Acta Phys. Pol, A 90 (1996) 399.
    [18] A. Aoki, S. Ohno, Y. Muramatsu, Electrical and Galvanometric Properties of FeCr sub(2)S sub(4) Films, J. Non-Cryst. Solids 147 and 148 (1992) 720.
    [19] X. Zhang, J.H. Zhang, L.F. Liang, Q. Su, Mate Res Bull 40 (2005) 281–288
    [20] R. Schmechel,a) M. Kennedy, and H. von Seggern, Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials, J. Appl. Phys. 89 (2001) 1679.
    [21] L.G. DESHAZER and G.H.DIEKE Energy Levels of Tb3+ in LaCl3 and Other Chlorides 38 (1963) 2190-2199
    [22] D. Ravichandran, R. Roy, A.G. Chakhovskoi, C.E. Hunt, W.B. White, S. Erdei, Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications, J. Lumin. 71 (1997) 291.
    [23] K.S.THOMAS, S.SINOH, and G.H. DIEKE, High-Field Antiferromagnetic Resonance in Cr2O338 (1963) 2180-2189.
    [24] LIN J, SU Q, Luminescence and energy transfer of rare-earth-metal ions in Mg2Y8 (SiO4) 6O2, J . Mater . Chem, 1995 , 5 :1151 - 1154.
    [25] A.M. Berdowski, M.J.J. Lammers, G. Blasse, A study on the luminescent properties of new green-emitting SrIn2O4:Tb phosphor, J. Chem. Phys. 83 (1985) 476– 479.
    [26] L.G. van Uitert, L.F. Johson, Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet, J. Chem. Phys. 44 (1996) 3514– 3517.
    [27] Ou.Yang Fangping , Tang Bo. Study on energy tansfer of Y2O2S∶Tb nanocrystals [J] . Rare Metal Materials and Engineering , 2003, 32 (7) : 522~525 (in Chinese)
    [28] Fujii, T.; Kodaira, K.; Kawauchi, O.; Tanaka, N.; Yamashita, H.; Anpo, M, Photochromic Behavior in the Fluorescence Spectra of 9-Anthrol Encapsulated in Si-Al Glasses Prepared by the Sol-Gel Method, J. Phys. Chem. B 1997, 101, 10631.
    [29] Shen, W.Y.; Pang, M. L.; Lin, J.; Fang, J. Y, Host-Sensitized Luminescence of Dy3+ in Nanocrystalline b-Ga2O3 Prepared by a Pechini-Type Sol-Gel Process, J. Electrochem. Soc.2005, 152, H25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700