多金属氧酸盐辅助下水溶液的氧化锌纳米材料的合成、表征及光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌是一种重要的Ⅱ-Ⅳ族宽带隙半导体材料。氧化锌在光学、光电、传导、传感、以及生物等不同领域有许多潜在的应用。纳米氧化锌是近年来开发的一种新型无机功能材料。当前,制备氧化锌纳米材料的方法主要分为物理和化学的方法。其中,基于水溶液的化学合成方法由于温和的反应温度,简单的操作和高产率受到了广泛的青睐。
     本文中,采用水溶液的化学合成方法,通过控制反应的化学环境,成功的合成出了多种形貌的氧化锌纳米材料。工作主要分为以下几个方面:
     (1)通过将多金属氧酸盐引入到反应体系中,利用水溶液的电化学方法,使用价格低廉的锌片,成功的合成出了氧化锌的纳米中空球。探讨了中空球的生长成核过程,并进一步对其光催化性质进行了研究,发现中空球对染料显示了良好的光催化性质。进一步,利用多金属氧酸盐辅助的水热合成的方法,成功的制备出了氧化锌纳米棒,纳米片和纳米捆。同时对以上纳米结构的光致发光性质进行了研究。
     (2)利用醇热的合成方法,通过加入表面活性剂合成出了氧化锌纳米棒,纳米粒子和星状纳米晶。探讨了表面活性剂对产物形貌的影响。进一步,利用溶剂热的合成方法,通过须状氧化锌纳米前驱体进一步合成出了分散性良好的氧化锌纳米粒子。通过水热的合成方法,不借助任何模板,合成出了氧化锌纳米管。并研究了反应时间对管质量的影响。
     (3)从合成中得到启示,以锌粉末和碘粉末为原料,合成出了分散性较好的氧化锌纳米粒子。并研究了碘在整个化学反应过程中的重要作用。利用层接层技术,通过硝酸锌溶液和氨水的交替沉积,在聚合物膜里合成出了氧化锌纳米粒子,并通过控制反应条件,得到氧化锌链状纳米粒子。
ZnO is one of the most important wide -band-gap II-IV semiconductors. Its considerable applications in optical, optoelectonic, conductor, gas sensor and biology have initiated intensive research. ZnO nanomaterials are a kind of inorganic functional materials with special properties compared with buld ZnO. Physical and chemical methods are two main methods for the fabrication of ZnO nanomaterials. Thereinto, solution chemical methods have proven to be appealing because of their mild reaction temperature, simply manipulation and large scale-up production.
     In this dissertation, various morphologies of ZnO nanomaterials have been fabricated through solution chemical method by controlling the reaction conditions. The main contents are listed below:
     (1) Uniform ZnO hollow nanospheres were fabricated controllably by using cheap zinc foils a simply one-step, polyxometalate-assisted, electrochemical mthod. Reasonable mechanisms were also discussed to explain the results in detail. The photocatalytic investigation indicated that the as-prepared ZnO hollow nanospheres had good photocatalytic activity. Furthermore, with the help of polyxometalate, single crystalline ZnO with the morphologies, including nanorods, nanosheets and nanobundles were successfully obtained by hydrothermal method. At the same time, the optical properties of the ZnO nanostructures have also been discussed.
     (2) An alcohol thermal process was developed of the controllable syntheses of ZnO nanorods, nanoparticles and starlike nanocrystals at a low temperature. The effect of the surfactant to the morphologies of the ZnO nanostructures has also been discussed. Furthermore, growth of uniform ZnO nanoparticles from a nanowhisker precursor was realized with a simple solvothermal route. An attractive template-free hydrothermal method was developed to synthesize ZnO nanotubes. The effect of the reaction time to the morphology of the ZnO nanotubes has also been discussed.
     (3) A novel reaction was developed for the synthesis of ZnO nanoparticles with nearly uniform spherical morphology by directly oxidizing zinc powders with iodine in ethanol. The effect of iodine during the reaction has also been researched. Furthermore, facile synthesis of ZnO nanoparticles in polyelectrolyte multilayer films was presented using the in situ layer-by-layer nucleation and growth method. The morphologies of the particles were controlled from the nanoparticles to the one dimensional nanocrystals through changing the precipitation reaction cycles.
引文
[1]王中林等,纳米材料表征[M].北京:化学工业出版社,2005.
    [2]Fievet F,Vincent F F,Lagier J P,et al.Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process[J].J Mater Chem,1993,3(6):627-633.
    [3](a)陶向明,劳燕锋,叶全林等,楔形A1薄膜的物理特性[J].物理学报,2001,50(10):1991-1995.(b)Fievet F,Lagier J P,Figlarz M,Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process[J].Mater Res Bull,1989,24(1):29-34.
    [4](a)Rao C N R,Nath M,Inorganic nanotubes[J].Dalton rrans,2003,1(1):1-24.(b)Dloczik L,Engelhardt R,Ernst K,et al.Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns[J].Appl Phys Lett,2001,78():3687-3689.
    [5]Hu J Q,Lu Q Y,Tang K B,et al.Low temperature synthesis of nanocrystalline titanium nitride via a benzene thermal route[J].J Am Ceram Soc,2000,83(2):430-432.
    [6]Hong B H,Bae S C,Lee C W,et al.Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase[J].Science,2001,294(5541):348-351.
    [7]Mirkin C,raton T,Semiconductors meet biology[J].Nature,2000,405(6787):626-627.
    [8]Ahmadi T S,Wang Z L,Green T C,et al.Shape controlled synthesis of colloidal platinum [J].Nanoparticles Science,1996,272:1924-1926.
    [9]Qian X,Yin J,Feng S,et al.Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles[J].J Mater Chem,2001,11(10):2504-2506.
    [10]Vollath V,Sickafus K E,Synthesis of ceramics oxides powders by microwave plasma pyrolysis[J].J Mater Sci,1993,28:5943-5948.
    [11]Sun Y,Xia Y,Shape-controlled synthesis of gold and silver nanoparticles[J].Science,2002,298(5601):2176-2179.
    [12]Klinger N,Strauss E L,Komarek K L,Reactions between silica and graphite[J].J Am Ceram Soc,1966,49(7):369-375.
    [13]Caruso R A,Antonietti M,Giersig M,et al.Structural control of TiO_2 networks using polymer gel templates[J].Chem Mater,2001,13(3):1114-1123.
    [14]Talapin D V,Rogach A L,Kornowski A,et al.Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphineOxide-trioctylphospine mixture[J].Nano Lett,2001,1(4):207-211.
    [15]Li Y D,Liao H,Ding Y,et al.Novel solvothermal synthesis of CdE(E=S,Se,Te)semiconductor nanorod[J].Inorg Chem,1999,38(7):1382-1387.
    [16]Meijerink A A A,Doped semiconductor nanoparticles-a new class of luminescent materials [J].Lumin,2000,315:87-89.
    [17]Leite E R,Weber I T,Longo E,et al.A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor application[J].Adv Mater,2000,12(13):965-968.
    [18]余保龙,顾玉宗,毛艳丽等,具有表面修饰的SnO_2纳米微品的光学性质研究[J].光学学报,2000,20:1575-1579.
    [19]李景国,高镰,张青红,纳米氮化钦粉体的制备及其影响因素闭,无机材料学报,2003.18:765-771.
    [20]Kikuchi N,Hosono H,Kawazoe H,et al.Transparent,conducting,amorphous oxides:effect of chemical composition on electrical and optical properties of cadmium germanates [J].J Am Ceram Soc,1997,80:22-27.
    [21]张克从,近代晶体学基础[M].科学出版社,1998.
    [22]Ma H L,Zhang D H,Win S Z,et al.Electrical and optical properties of F-doped textured SnO_2 films deposited by APCVD[J].Solar energy and solar cells,1996,40(4):371-380.
    [23]Tanjew N,Markus H,Wet-chemical synthesis of doped nanoparticles:optical properties of oxygen-deficient and antimony-doped colloidal SnO_2[J].J Phys Chem B,2000,104(35):8430-8437.
    [24]纳米材料和纳米结构,张立德,牟季美著,科学出版社,2001.
    [25]纳米材料分析,黄惠忠等编著,化学工业出版社,2003.
    [26]Leon R,Petroff P M,Leonard D,et al.Spatially resolved visible luminescence of self-assembled semiconductor quantum dots[J].Science,1995,267(5206):1966-1968.
    [27]Colvin V L,Alivisatos A P,Light emitting diodes made from cadmium sclenide nanocrystals and a semiconducting polymer[J].Nature,1994,370(6488):354-357.
    [28]杨宇.多金属氧酸盐-二氧化钛杂化孔材料的制备、表征与光催化性能研究[D]:[博士学位论文].长春:东北师范大学,2005,1-2.
    [29]Wang X,Zhuang J,Peng Q,et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437(4055):121-124.
    [30]Lu Q,Gao F,Komarneni S,A green chemical approach to the synthesis of tellurium nanowires[J].Langmuir,2005,21(13):6002-6005.
    [31]Queisser H J,Haller E E,Defects in semiconductors:some fatal,some vital[J].Science,1998,281(5379):945-950.
    [32]Jiang M,Wang E,Kang Z,In silu controllable synthesis of polyoxometalates nanoparticles in polyelectrolyte multilayers[J].J Mater Chem,2003,13(4):647-649.
    [33]Chen Y,Kim M,Lian G,et al.Side reactions in controlling the quality,yield,and stability of high quality colloidal nanocrystals[J].J Am Chem Soc,2005,127(38):13331-13337.
    [34]Hosono E,Fujihara S,Honma I,et al.Superhydrophobic perpendicular nanopin film by the bottom-up process[J].J Am Chem Soc,2005,127(39):13458-13459.
    [35]Xiong Q,Chen G,Acord J D,et al.Optical properties of rectangular cross-sectional ZnS nanowires[J].Nano Lett,2004,4(9):1663-1668.
    [36]Liu Z,Zhang D,Han S,et al.Single crystalline magnetite nanotubes[J].J Am Chem Soc,2005,127(1):6-7.
    [37]Sun L,Liu C,Liao C,et al.ZnS nanoparticles doped with Cu(I)by controlling coordination and predipitation in aqueous solution[J].J Mater Chem 1999,9(8):1655-165.
    [38]Si S,Li C,Wang X,et al.Magnetic monodisperse Fe_3O_4,nanoparticles[J].Cryst Growth Des,2005,5(2):391-393.
    [39]Ozgur,U,Alivov Y I,Liu C,et al.A comprehensive review of ZnO materials and devices,J.Appl.Phys.2005,98(4):041301-041304.
    [40]Hu J Q,Li Q,Meng X M,et al.Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes[J].Chem Mater,2003,15(3):305-308.
    [41]Jin C,Yuan X,Ge W,et al.Synthesis of ZnO nanorods by solid state reaction at room temperature[J].Uanotechno]ogy,2003,14(6):667-669.
    [42]石晓波,李春根,汪德先,制备纳米氧化锌的新方法[J].合成化学,2002,10(2):183-185.
    [43]Joeng J S,Lee J Y,Cho J H,et al.Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method[J].Chem Mater,2005,17(10):2752-2756.
    [44]Wang Z L,Self-assembled nanoarchitechtures of polar nanobelts/nanowires[J].J Mater Chem,2005,15(10):1021-1024.
    [45]Gao P X,Wang Z L,High-yield synthesis of single-crystal nanosprings of ZnO[J].Small,2005,1(10):945-949.
    [46]Ding Y,Wang Z L,Electron energy-loss spectroscopy study of ZnO nanobelts[J].J Electron Micros,2005,54(3):287-291.
    [47]Zhou J,Ding Y,Deng S Z,et al.Three-dimensional tungsten oxide nanowire networks[J].Adv Mater,2005,17(16):2107-2110.
    [48]Wang Z L,Zinc oxide nanostructures:growth,properties and applications[J].J phys:Condens Mater,2004,16:R829-R858.
    [49]Gao P X,Ding Y,Mai W,et al.Conversion of zinc oxide nanobelts into superlattice-structureed nanohelices[J].Science,2005,309(5741):1700-1704.
    [50]Pan Z W,Dai Z R,Wang Z L,Nanobelt of semiconducting oxides[J].Science,2001,291(5510):1947-1949.
    [51]Wang X D,Ding Y,Summers C,et al.Large-scale synthesis of six-nanometer-wide ZnO nanobelts[J].J Phys Chem B,2004,108(26):8773-8777.
    [52]Kong X Y,Ding Y,Yang R S,et al.Single-crystal nanorings formed by epitaxial self-cooling of polar nanobelts[J].Science,2004,303(5662):1348-1351.
    [53]Gao P X,Wang Z L,High-yield synthesis of single-crystal nanosprings of ZnO[J].Small,2005,1(5):940-945.
    [54]Zou B S,Volkov V V,Wang Z L,Optical properties of amorphous ZnO,CdO,and PbO nanoclusters in solution[J].Chem Mater,1999,11(11):3037-3043.
    [55]Kong X Y,Ding Y,Wang Z L,Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J].J Phys Chem B,2004,108(2):570-574.
    [56]Gao P X,Yong D,Wang Z L,Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst[J].Nano Lett,2003,3(9):1315-1320.
    [57]Kong X Y,Wang Z L,Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts[J].Nano Lett,2003,3(12):1625-1631.
    [58]Kong X,Wang Z L,Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals[J].App Phys Lett,2004,84(18):975-977.
    [59]Wang X D,Summers C,Wang Z L,Mesoporous single-crystal ZnO nanowires epitaxially sheathed with ZnSiO_4[J].Adv Mater,2004,16(14):1215-1218.
    [60]Gao P X,Lao C S,Ding Y,et al.Metal/semiconductor core/shell nanodisks and nanotubes[J].Adv Funct Mater,2006,16(1):53-62.
    [61]Gao P X,Wnag Z L,Self-assembled nanowire-nanoribbon junction arrays of ZnO[J].J Phys Chem B,2002,106(49):12653-12658.
    [62]Huang M H,Mao S,Feick H,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
    [63]Johnson M A L,Fujita S,Rowland Jr W H,et al.MBE growth and properties of ZnO on sapphire and SiC substrates[J].J Electron Mater,1996,25(5):855-858.
    [64]Vigu Vennegues P,Vezian S,Laugt M,et al.Defect characterization in ZnO layers grown by plasma-enhanced molecular-beam epitaxy on(0001)sapphire substrates[J].Appl Phys Lett,2001,79(2):194-196.
    [65]施尔艮,夏K泰,王步国等,水热法的应用与发展[J].无机材料学报,1996,11:193-206.
    [66]Chen N,Zhang W,Yu W,et al.Synthesis of nanocrystalline NiS with different morphologies[J].Mater Lett,2002,55(4):230-233.
    [67]Qian H S,Yu S H,Gong J Y,et al.Growth of ZnO crystals with branched spindles and primatic whiskers from Zn_3(OH)_2V_2O_7.H_2O nanosheets by a hydrothermal route[J].Cryst Growth Des,2005,5(3):935-939.
    [68]Liang J,Liu J,Xie Q,et al.Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles[J].J Phys Chem B,2005,109(19):9463-9467.
    [69]Pal U,Santiago P,Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process[J].J Phys Chem B,2005,109(32):15317-15321.
    [70]Zhao Y,Kwon Y U,Templateless hydrothermal synthesis of aligned ZnO naorods[J].Chem Lett,2004,33(12):1578-1579.
    [71]Qiu Z,Wong K S,Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation[J].Appl Phys Lett,2004,84(15):2739-2741.
    [72]Choy J H,Jang E S,Won J H,Hydrothermal route to ZnO nanocoral reefs and nanofibers[J].Appl Phys Lett,2004,84(2):287-289.
    [73]Jiang C L,Zhang W Q,Zou G F,et al.Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO[J].J Phys Chem B,2005,109(4):1361-1363.
    [74]Zheng W,Guo F,Qian Y,Growth of bulk ZnO single crystals via a novel hydrothermal oxidative pressure-relief route[J].Adv Funct Mater,2005,15(2):331-335.
    [75]Zheng W W,Guo F,Qian Y T Growth of bulk ZnO single crystals via a novel hydrothermal oxidative pressure- relief route[J].Adv Func Mater,2005,15(2):331-335.
    [76]Tang Q,Zhou W,Shen J,et al.A template-free aqueous route to ZnO nanorod arrays with high optical property[J].Chem Commun,2004,(6):712-713.
    [77]Zeng H C,Liu B,Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures[J].Langmuir,2004,20(10):4196-4204.
    [78]Liu B,Zeng H C,Fabrication of ZnO "dandelions" via a modified kirkendall process[J].J Am Chem Soc,2004,126(51):16744-16746.
    [79]Liu B,Zeng H,C,Hydrothermal synthesis of ZnO nanorods in diameter regime of 50 nm[J].J Am Chem Soc,2003,125(16):4430-4431.
    [80] Liu B, Zeng H C, Hollow ZnO Microspheres with Complex Nanobuilding Units[J]. Chem Mater, 2007, 19 (24): 5824-5826.
    
    [81] L. Vayssieres; K. Keis; S. E. Lindquist; A. Hagfeldt; Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. J. Phys. Chem. B 2001, 105 (17): 3350-3352.
    
    [82] L. Vayssieres; K. Keis; S. E. Lindquist; A. Hagfeldt; Three dimensional Array of hihgly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13 (12): 4395-4398.
    
    [83] 吴莉莉.纳米氧化锌的制备及其光学性能研究[D]:[博士学位论文].济南,山东大学,2005, 28—29。
    
    [84]Cheng J P, Zhang X B, Tao X Y, et al. Fine-Tuning the Synthesis of ZnO Nanostructures by an Alcohol Thermal Process[J]. J Phys Chem B 2006, 110(21): 10348-10353.
    
    [85] Kunjara S, Tonto P, Mekasuwandumrong 0, et al. Solvothermal synthesis of ZnO with various aspect ratios using organic solvents [J]. Cryst Growth Des, 2006, 6(11) : 2446-2450.
    
    [86] Jing H Y, Li X L, Lu Y L, et al. Electrochemical self-assembly of highly oriented ZnO-surfactant hydrid multi layers[J]. J Phys Chem B, 2005, 109(7): 2881-2884.
    
    [87] Choi K S, Lichtenegger H C, Stucky G D, Eletrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces [J]. J Am Chem Soc, 2002, 124(42): 12402-12403.
    
    [88] Pauporte T, Yoshida T, Cortes R, et al. Eletrochemical growth of epitaxial eosin/ZnO hybrid films[J]. J Phys Chem B, 2003, 107(37): 10077-10082.
    
    [89] Xu L, Guo Y, Liao Q, et al. Morphological control of ZnO nanostructures by electrodeposition[J]. J Phys Chem B, 2005, 109 (28):13519-13522.
    
    [90] Illy B, Shollock B A, MacManus-Driscoll J L et al. Electrochemical growth of ZnO nanoplates[J]. Nanotechnology, 2005, 16 (2): 320-324.
    
    [91] Yoo S I, Sohn B H, Zin W C, et al. Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles[J]. Chem Commun, 2004(24): 2850-2851.
    
    [92] Lee Y, Lee J, Bae C J, et al. Larg-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions [J]. Adv Funct Mater, 2005, 15(3): 503-509.
    
    [93] Zhang J, Sun L, Pan H, et al. ZnO nanowires fabricated by a convenient route[J]. New J Chem, 2002, 26(1): 33-34.
    
    [94] Zhang J, Sun L, Jiang X, et al. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system[J]. Crystal Growth Des, 2004, 4(2) : 309-314.
    
    [95] Wong E M, Bonevich J E, Searson P C, Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions[J]. J Phys Chem B, 1998, 102(40): 7770-7775.
    
    [96] Li P, Wei Y, Liu H, et al. A simple low-temperature growth of ZnO nanwhiskers directly from aqueous solution containing Zn(0H)/_4~(2-)S.-I., ions[J]. Chem Commun, 2004(24): 2856-2857.
    
    [97] Cozzoli P D, Kornowski A, Weller H, Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction [J]. J Phys Chem B, 2005, 109(7): 2638-2644.
    [98] Spanhel L, Anderson M A, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids[J].J Am Chem Soc, 1991, 113(8): 2826-2833.
    
    [99] Tokumoto M S, Pulcinelli S H, Santilli C V, et al. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route[J]. J Phys Chem B, 2003, 107(2): 568-574.
    
    [100] Zhang J, Xu S, Kumacheva E, Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles[J]. J Am Chem Soc, 2004, 126(25): 7908-7914.
    
    [101] Xiong H M, Liu D P, Xia Y Y, et al. Polyether-Grafted ZnO nanoparticles with tunable and stable photoluminescence at room temperature[J].Chem Mater, 2005, 17(12): 3062-3064.
    
    [102] Cheng H M, Hsu H C, Tseng Y K, et al. Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer[J]. J Phys Chem B, 2005, 109(18): 8749-8754.
    
    [103] Chen S, Liu Y, Shao C, et al. Structural and optical properties of uniform ZnO nanosheets[J].Adv Mater, 2005, 17(5): 586-590.
    
    [104] Fujihara S, Ogawa Y, Kasai A, Tunable visible photoluminescence from ZnO thin films through Mg-Doping and annealing[J]. Chem Mater, 2004, 16(15): 2965-2968.
    
    [105] Bae S Y, Na C W, Kang J H, et al. Comparative structure and optical properties of GaS.-I.,, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation[J]. J Phys Chem B, 2005, 109(7): 2526-2531.
    
    [106] Ishida M, Sakohara S, Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate [J]. J Phys Chem B, 1998, 102(50): 10169-10175.
    
    [107] Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals[J]. Appl. Phys. Lett. 2002, 81(4): 622-624.
    
    [108] Subramanian V, Wolf E E, Kamat P V, Green emission to probe photoinduced charging events in Zn0S.-I.,Au nanoparticles. Charge distribution and Fermi-level equlilibration[J].J Phys Chem B, 2003, 107(30): 7479-7485.
    
    [109] Hsu N E, Hung W, Chen Y F, Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods[J]. J Appl Phys, 2004, 96(8): 4671-4673.
    
    [110] Li D, Leung Y H, Djurisic A B, et al. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods[J]. Appl Phys Lett, 2004, 85(9): 1601-1603.
    
    [111] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J Appl Phys, 1996, 79(10): 7983-7990.
    
    [112] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J Appl Phys 2005, 98(20): 041301-041323.
    
    [113] Fu Z X, Lin B X, Liao G H, et al. The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates[J]. J Cryst Growth, 1998, 193(3): 316-321.
    
    [114] Jiang C L, Zhang W Q, Zou G F, et al. Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO[J]. J Phys Chem B, 2005, 109(4): 1361-1363.
    
    [115] Blech I A, Meieran E S, Electromigration in Thin Al Films[J]. J Appl Phys, 2001, 40 (3-5): 485-491.
    [116]Dietl T,Ohno H,Matsukura F,Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J].Science,2000,287(5455):i019-i022.
    [117]张士晶,ZnO基稀磁半导体的制备和性能研究,吉林大学硕士论文[M].2005:1-10.
    [118]Yuhas B D,Zitoun D O,Pauzauskie P J,et al.Transitional metal doped zinc oxide nanowires[J].Angew Chem Int Ed,2005,44(3):420-423.
    [119]Zhu Y W,Zhang H Z,Sun X C,et al.Efficient field emission from ZnO nanoneedle arrays[J].Appl Phys Lett,2003,83(1):144-146.
    [120]Li Y B,Bando Y,Golberg D,ZnO nanoneedles with tip surface perturbations:Excellent field emitters.Appl Phys Lett,2004,84(18):3603-3605.
    [121]Li Q H,Wan Q,Chen Y J,et al.Stable field emission from tetrapod-like ZnO nanostructures[J].Appl Phys Lett,2004,85(4):636-638.
    [122]Shen X P,Yuan A H,Hu Y M,et al.Fabrication,characterization and field emission properties of large-scale uniform ZnO nanotubes arrays[J].nanotechnology,2005,16(10):2039-2043.
    [123]Wang Z L,Song J,Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312(5771):242-246.
    [124]Wang X,Song J,Liu J,et al.Direct-current nanogenerator driven by ultrasonic waves[J].Science,2007,316(5821):102-105.
    [125]Qin Y,Wang X,Wang Z L,Microfibre- nanowire hybrid structure for energy scavenging[J].Nature,2008,451(7180):809-813.
    [126]张留成,蔡克峰,纳米氧化锌材料的最新研究和应用进展[J].材料导报,2006,5(20):13-15.
    [127]Pan Z W,Dai S,Rouleau C M,et al.Germanium-catalyzed growth of zinc oxide nanowires:a semiconductor catalyst for nanowire synthesis[J].Angew Chem Int Ed,2005,44(2):2?4-2?8.
    [128]Cheng B,Xiao Y,Wu G,et al.Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as Activator/Dopant[J].Adv Funct Mater,2004,14(9):913-919.
    [129]Pope M T,MUller A.Polyoxometalate Chemistry from Topology via Self-Assembly to Applications[M].Netherlands:Kluwer Academic Publishers,2001.P1-6.
    [130]Pope M T.Heteropoly and Isopoly Oxometalates[M].Berlin:Springer-Verlag,1983.1-10.
    [131]MUller A,Peters F,Pope M T.Polyoxometalates:Very Large Clusters-Nanoscale Magnets [J],Chem Rev,1998,98(1):239-271.
    [132]王恩波,胡长文,许林著,多酸化学导论[M].北京:化学工业出版社,1998,1.
    [133]Berzelius J,Synthesis of Ammonium 12-molybdophosphate[J].Pogg Ann,1826,6:369-380.
    [134]Keggin J F,The Structure Formula of 12-phosphotungstic Acid[J].Proc R Soc,1934,144A:75-100.
    [135]Cassagneau T,Mallouk T E,Fendler J H.Layer-by-layer assembly of thin film zener diodes from conductingpolymers and CdSe nanoparticles[J].J Am Chem Soc,1998,120(31):7848-7859.
    [136]Bu W,Li H,Li Wen,et al.Surfactant-encapsulated europium-substituted heteropolyoxotungstates:structural characterizations and photophysical properties[J].]Phys Chem B,2004,108(34):12776-12782.
    [137] Zhang X, Zhang C, Guo H, et al. Optical spectra of a novel polyoxometalate occluded within modified MCM-41[J]. J Phys Chem B, 2005, 109(41): 19156-19160.
    
    [138] Gao L, Song Y, Wang E, et al. Layer-by-layer assembly of polyoxometalates into micrpcapsules[J]. J Phys Chem B, 2005, 109(35): 16587-16592.
    
    [139] Liu T, Diemann E, Li H, et al. Self-assembly in aqueous solutionof wheel-shaped M0_(154) oxide clusters into vesicles[J]. Nature, 2003, 426 (6962):59S.-I.,62.
    
    [140] Ito T, Inumaru K, Misono M. Structure of Porous Aggregates of the Ammonium Salt of Dodecatungstophosphoric Acid, (NH_4)_3PW_(12)O_(40): Unidirectionally Oriented Self-Assembly of Nanocrystallites [J]. J Phys Chem B, 1997, 101(48): 9958-9963.
    
    [141] Ito T, Inumaru K, Misono M. Epitaxially Self-Assembled Aggregates of Polyoxotungstate Nanocrystallites, (NH_4)_3PW_(12)O_(40): Synthesis by Homogeneous Precipitation Using Decomposition of Urea [J]. Chem Mater, 2001, 13(3): 824-831.
    
    [142] Kang Z, Wang E, Jiang M, et al. Convenient controllable synthesis of inorganic 1D nancrystals and 3D high-ordered microtubes[J]. Eur J Inorg Chem, 2003(2): 370-376.
    
    [143] Mandal S, Das A, Srivastava R, et al. Keggin ion mediated synthesis of hydrophobized Pd nanoparticles for multifunctional catalysis[J]. Langmuir, 2005, 21(6): 2408-2413.
    
    [144] Villanneau R, Carabineiro H, Carrier X, et al. Synthesis and characterization of Zr(IV) polyoxotungstates as molecular analogues of zirconia-supported tungsten catalysts[J]. J Phys Chem B, 2004, 108(33): 12465-12471.
    
    [145] Mandal S, Rautaray D, Sastry M, Ag -keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies [J]. J Mater Chem, 2003, 13(12): 3002-3005.
    
    [146] Mandal S, Rautaray D, Sanyal A, et al. Synthesis and assembly of CdS nanoparticles in Keggin ion colloidal particles as templates [J]. J Phys Chem B, 2004, 108(22) : 7126-7131.
    
    [147] Li H, Sun H, Qi, et al. Onion-like hybrid assemblies based on surfactant encapsulated polyoxometalates [J]. Angew Chem Int Eng Ed, 2007, 46(8): 1300 -1303.
    
    [148] Bu W, Li H, Sun H, et al. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces, J Am Chem Soc, 2005, 127(22):8016-8017.
    
    [149] Green M, Harries J, Wakefield G, et al. The synthesis of silica nanospheres doped with polyoxometalates[J]. J Am Chem Soc, 2005, 127(37): 12812-12813.
    
    [150] Mandal S, Selvakannan P R, Pasricha R, et al. Keggin ions as UV-switchable reducing agents in the synthesis of Au coreS.-I.,Ag shell nanoparticles [J]. J Am Chem Soc, 2003, 125(28):8440-8441.
    
    [151] Kang Z, Wang E, Mao B, et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process[J]. J Am Chem Soc, 2005, 127(18): 6534-6535.
    
    [152] Kang Z, Tsang C H A, Zhang Z, et al. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires[J]. J Am Chem Soc, 2007, 129(17): 5326-5327.
    [1] Yang M, Ma J, Zhang C, et al. General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures [J]. Angew Chem Int Ed, 2005, 44(41): 6727-6730.
    
    [2] Jiang Z Y, Xie Z X, Zhang X H, et al. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with Ethanol droplets as soft templates[J]. Adv Mater, 2004, 16 (11): 904-907.
    
    [3] Qian H, Lin G, Zhang Y, et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation [J]. Nanotechnology, 2007, 18(35): 355602-355603.
    
    [4] Zhong Z Z, Yin, Y D, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and Sn02 by templating against crystalline arrays of polystyrene beads [J]. Adv Mater, 2000, 12(3): 206-209.
    
    [5] Caruso F, Caruso R A, Mohwald H, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282(5391): 1111-1114.
    
    [6] Ding Y, Hu Y, Zhang L, et al. Synthesis and magnetic properties of biocompatible hybrid hollow spheres [J]. Biomacromolecules, 2006, 7(6): 1766-1772.
    
    [7] Yu H, Yu J, Liu S, et al. Template-free hydrothermal synthesis of Cu0/Cu_20 composite hollow microspheres [J]. Chem. Mater. 2007, 19(17): 4327-4334.
    
    [8] Li Z, Xie Y, Xiong Y, et al. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant [J]. New J Chem, 2003, 27 (10) : 1518-1521.
    
    [9] Demir M M, Munoz-Espi R, Lieberwirth I, et al. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate [J]. J Mater Chem, 2006, 16(28): 2940-2947.
    
    [10] Palms D, Priest C, Sedev R, et al. Directed crystallisation of zinc oxide on patterned surfaces [J]. J Colloid Interface Sci, 2006, 303(2): 333-336.
    
    [11] Cho S, Ma J, Kim Y, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Appl Phys Lett, 1999, 75 (18): 2761-2763.
    
    [12] Durun P, Capel F, Tartaj J, et al. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors [J]. Adv Mater, 2002, 14 (2): 137-141.
    
    [13] Pacholski C, Kornowski A, Weller H, Self-assembly of ZnO: from nanodots to nanorods [J]. Angew Chem Int Ed, 2002, 41 (7): 1188-1191.
    
    [14] Johnson J C, Yan H, Schaller R D, et al. Single nanowire lasers [J]. J Phys Chem B, 2001, 105 (46): 11387-11390.
    
    [15] Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (9): 1947-1949.
    
    [16] Lao J Y, Wen J G, Ren Z F, Hierarchical ZnO nanostructures [J]. Nano Lett, 2002, 2 (11): 1287-1291.
    [17] Gao P X, Ding Y, Mai W, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J]. Science, 2005, 309 (9):1700-1704.
    
    [18] Wu J J, Liu S C, Wu C T, et al. Heterostructures of ZnO - Zn coaxial nanocables and ZnO nanotubes [J].Appl Phys Lett, 2002, 81 (7): 1312-1315.
    
    [19] Tang J, Cui X, Liu Y, et al. Morphology-controlled synthesis of monodisperse ZnO tTroughs at the air-water interface under mild conditions [J]. J Phys Chem B, 2005, 109(47) : 22244-22249.
    
    [20] (a) Mo M, Yu J C, Zhang L, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres [J]. Adv Mater, 2005, 17(6): 756-760.
    
    (b) Wang W W, Zhu Y J, Yang L X, Zn0S.-I.,Sn02 hollow spheres and hierarchical nanosheets:hydrothermal preparation, formation mechanism, and Photocatalytic properties [J]. Adv Funct Mater, 2007, 17(1): 59-67.
    
    [21] Cong H P, Yu S H, Hybrid Zn0S.-I.,dye hollow spheres with new optical properties by a self-assembly process based on evans blue dye and cetyltrimethylammonium bromide [J]. Adv Funct Mater, 2007, 17(11): 1814-1820.
    
    [22] Leung Y H, Tam K H, Djurisic A B, et al. ZnO nanoshells: Synthesis, structure, and optical properties [J]. J Cryst Growth, 2005, 283(1-2): 134-140.
    
    [23] Pope M T, Muller A, Polyoxometalate Chemistry, Kluwer, Dordrecht, The Netherlands, 2001.
    
    [24] Kozhevnikov I V, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem Rev, 1998, 98 (1): 171-198.
    
    [25] Khenkin A M, Weiner L, Neumann R, Selective ortho hydroxylation of nitrobenzene with molecular oxygen catalyzed by the H5PV2Mol0040 polyoxometalate J Am Chem Soc, 2005, 127 (28) : 9988-9989.
    
    [26] Peng Z H Rational synthesis of covalently bonded organic-inorganic hybrids [J]. Angew Chem Int Ed, 2004, 43 (8): 930-935.
    
    [27] Garrigue P, Delville M, Labrugere C, et al. Top-down approach for the preparation of colloidal carbon nanoparticles [J]. Chem Mater, 2004, 16(16): 2984-2986.
    
    [28] Mandal S, Selvakannan P R, Pasricha R, et al. Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles [J]. J Am Chem Soc 2003, 125(25) : 8440-8441.
    
    [29] Mandal S, Mandale A B, Sastry M, Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles [J]. J Mater Chem, 2004, 14(19): 2868-2871.
    
    [30] Kim J, Lee L, Niece B K, et al. Formation of ordered multilayers from polyoxometalates and silver on electrode surfaces [J]. J Phys Chem B, 2004, 108 (23): 7927-7933.
    
    [31] Kulesza P J, Chojak M, Karnicka K, et al. Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles [J]. Chem Mater, 2004, 16 (21): 4128-4134.
    
    [32] Bu W, Li H, Sun H, et al. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces [J]. J Am Chem Soc, 2005, 127(22): 8016-8017.
    
    [33] Kang Z, Wang E, Mao, et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process [J]. J Am Chem Soc, 2005, 127 (18): 6534-6535.
    
    [34] Kang Z, Tsang C A, Zhang Z, et al. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires [J]. J Am Chem Soc, 2007, 129(17): 5326-5327.
    
    [35] Mao B, Kang Z, Wang E, et al. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process [J]. J Solid State Chem, 2007, 180(2): 489-495.
    
    [36] (a) Yang Y, Guo Y, Hua C, et al. Lacunary KegginS.-I.,type polyoxometalates-based macroporous composite films: preparation and Photocatalytic activity [J]. Appl Catal A, 2003, 252(2): 305-314.
    
    (b) Mayer C R, Neveu S, Cabuil V, A Nanoscale hybrid system based on gold nanoparticles and heteropolyanions [J]. Angew Chem Int Ed, 2002, 41(3): 501-503.
    
    [37] Gao G, Xu L, Wang W, et al. Electrochromic multilayer films of tunable color by combination of copper or iron complex and monolacunary dawsonS.-I.,type polyoxometalate [J]. J Phys Chem B, 2005, 109(18): 8948-8953.
    
    [38] Izaki M, Omi T, Transparent zinc oxide films prepared by electrochemical reaction [J]. Appl Phys Lett, 1999, 68(17): 2439-2440.
    
    [39] Wong M, Berenov A, Qi X, et al. Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil [J]. Nanotechnology, 2003, 14(9): 968-973.
    
    [40] Illy B, Shollock B A, Driscoll J L M, et al. Electrochemical growth of ZnO nanoplates [J]. Nanotechnology, 2005, 16(2): 320-324.
    
    [41] Pauporte T, Lincot D, Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride [J]. Appl Phys Lett, 1999, 75(24): 3817-3819.
    
    [42] Liu R, VertegelAA, Bohannan E W, Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold et al. [J]. Chem Mater, 2001, 13(2): 508-512.
    
    [43] Vayssieres L, Keis K, Hagfeldt A, et al. Three-dimensional array of highly oriented crystalline ZnO microtubes [J]. Chem Mater, 2001, 13(12): 4395-4398.
    
    [44] Marchal R C, Mayer C R, Michel A, et al. Facile synthesis of silver nano/micro-ribbons or saws assisted by polyoxomolybdate as mediator agent and vanadium(IV) as reducing agent [J]. Chem Commun, 2007(36): 3750-3752.
    
    [45] Pope M T, Muller A, Polyoxometalate chemistry: an old with new dimensions in several displines [J]. Angew Chem Int Ed, 1991, 30(1): 34-48.
    
    [46] Wang C, Mao B, Wang E, et al. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route [J]. Solid State Commun, 2007, 141(11): 620-623.
    
    [47] Tang Q, Zhou W, Shen J, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem Commun, 2004, (6):712—713.
    
    [48] Liu B, Yu S H, Zhang F, et al. Ring-like nanosheets standing on spindle-like rods: unusual ZnO superstructures synthesized from a flakelike precursor Zn5(0H)8C12 . H20 [J]. J Phys Chem B, 2004,108 (14): 4338-4341.
    
    [49] Tong Y, Liu Y, Shao C, et al. Growth and optical properties of faceted hexagonal ZnO nanotubes [J]. J Phys Chem B, 2006, 110(30): 14714-14718.
    
    [50] (a) Liu Y, Chu Y, Li L, et al. Controlled fabrication of highly oriented ZnO microrod/microtube arrays on a zinc substrate and their photoluminescence properties [J]. Chem Eur J, 2007, 136(23): 6667-6673.
    (b) Zheng Y, Chen C, Zhan Y, et al. Luminescence and Photocatalytic activity of ZnO nanocrystals: correlation between structure and property [J]. Inorg Chem, 2007, 46(16): 6675-6682.
    
    [51] Ye C, Bando Y, Shen G, et al. Thickness-dependent Photocatalytic performance of ZnO nanoplatelets [J]. J Phys Chem B, 2006, 110(31): 15146-15151.
    
    [52] Yatmaz H C, Akyo A, Bayramoglu M, Kinetics of the Photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions [J]. Ind Eng Chem Res, 2004, 43(19): 6035-6039.
    
    [53] Bohle D S, Spina C J, The relationship of oxygen binding and peroxide sites and the fluorescent properties of zinc oxide semiconductor nanocrystals [J]. J Am Chem Soc, 2007, 129(41): 12380-12381.
    
    [54] Kang Z, Tsang C A. Wong N B, et al. Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions [J]. J Am Chem Soc, 2007, 129(40): 12090-12091.
    
    [55] Nirmal M, Brus L, Luminescence photophysics in semiconductor nanocrystals [J]. Acc Chem Res, 1999, 32 (5): 407-414.
    
    [56] Hu J, Odom T, Lieber C M, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes [J]. Acc Chem Res, 1999, 32 (5): 435-445.
    
    [57] Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (9): 1947-1949.
    
    [58] Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature, 2003, 421 (16): 241-245.
    
    [59] Morales A M, Lieber C M, A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279 (5348): 208-211.
    
    [60] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass [J]. Science, 1998, 282 (5391): 1105-1107.
    
    [61] El-Sayed M A, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals [J]. Acc Chem Res, 2004, 37 (5): 326-333.
    
    [62] Queisser H J, Haller E E, Defects in semiconductors: some fatal, some vital [J]. Science, 1998, 281 (5379): 945-950.
    
    [63] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292 (8):1897-1899.
    
    [64] Yang P, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater, 2002, 12 (5): 323-331.
    
    [65] Weller H, Self-assembly of ZnO: from nanodots to nanorods [J]. Angew Chem Int Ed Engl, 2002, 41 (7): 1188-1192.
    
    [66] Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails [J]. Nano Lett, 2003, 3 (2): 235-238.
    
    [67] Monge M, Kahn M L, Maisonnat A, Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape et al. [J]. Angew Chem Int Ed, 2003, 42 (43): 5321-5324.
    
    [68] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv Mater, 2001, 13 (2): 113-116.
    
    [69] Choi J H, Tabata H, Kawai T, Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition [J]. J Cryst Growth, 2001, 226 (4): 493-500.
    
    [70] Choopun S, Tabata H, Kawai T, Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere [J]. J Cryst Growth, 2005, 274 (1-2): 167-172.
    
    [71] Li Y, Meng G W, Zhang L D, et al. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl Phys Lett, 2000, 76 (15): 2011-2013.
    
    [72] Heo Y W, Varadarajan V, Kaufman M, Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy et al. [J]. Appl Phys Lett, 2002, 81 (16): 3046-3048.
    
    [73] Tang Q, Zhou W, Shen J, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem Commun, 2004, (6):—713.
    
    [74] Pan N, Wang X, Zhang K, et al. An approach to control the tip shapes and properties of ZnO nanorods [J]. Nanotechnology, 2005, (8):1069-1072
    
    [75] Xiong S, Fei L, Wang Z, et al. Preparation of semiconductor/polymer coaxial nanocables by a facile solution process [J]. Eur J Inorg Chem, 2006, (1):207-212.
    
    [76] Hou H, Peng Q, Zhang S, et al. A user-friendly chemical approach towards paramagnetic cobalt phosphide hollow structures: preparation, characterization, and formation mechanism of Co2P hollow spheres and tubes [J]. Eur J Inorg Chem, 2005, (13): 2625-2630.
    
    [77] Zhang H, Yang D, Ji Y, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J]. J Phys Chem B, 2004,108 (13):3955-3958.
    
    [78] Zhang J, Sun L, Yin J, et al. Control of ZnO morphology via a simple solution route [J]. Chem Mater, 2002, 14 (10): 4172-4177.
    
    [79] Li Z, Xie Y, Xiong Y, et al. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant [J]. New J Chem, 2003, 27 (10) : 1518-1521.
    
    [80] Li Z, Xiong Y, Xie Y, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route [J]. Inorg Chem, 2003, 42 (24): 8105-8109.
    
    [81] Cheng B, Samulski E T, Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios [J]. Chem Commun, 2004, (8): 986-987.
    
    [82] Wang Z, Qian X, Yin J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J]. Langmuir, 2004, 20 (8): 3441-3448.
    
    [83] Yin M, Gu Y, Kuskovsky I L, et al. Zinc Oxide quantum rods [J]. J Am Chem Soc, 2004, 126 (20): 6206-6207.
    
    [84] Zhang D, Sun L, Yin J, et al. Attachment-driven morphology evolvement of rectangular ZnO nanowires [J]. J Phys Chem B, 2005, 109 (18): 8786-8790.
    
    [85] Tian Z R, Voigt J A, Liu J, et al. Biomimetic arrays of oriented helical ZnO nanorods and columns [J]. J Am Chem Soc, 2002, 124(44): 12954-12955.
    
    [86] Guo L, Ji Y, Xu H, et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J]. J. Am Chem Soc, 2002,124 (50): 14864-14865.
    
    [87] Kozhevnikov I V, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem Rev, 1998, 98 (1): 171-198.
    
    [88] Muller A, Peters F, T. Pope M, et al. Polyoxometalates: very large clusters-nanoscale magnets [J]. Chem Rev, 1998, 98 (1): 239-271.
    
    [89] Yamase T, Photo- and electrochromism of polyoxometalates and related materials [J]. Chem Rev, 1998, 98 (1): 307-326.
    
    [90] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in medicine [J]. Chem Rev, 1998, 98 (1): 327-358.
    
    [91] Sanyal A, Mandal S, Sastry M, Synthesis and sssembly of gold nanoparticles in quasi-linear lysine-Keggin-ion colloidal particles [J]. Adv Funct Mater, 2005, 15 (2): 273-281.
    
    [92] Mandal S, Rautaray D, Sanyal A, et al. Synthesis and assembly of CdS nanoparticles in Keggin ion colloidal particles as templates [J]. J Phys Chem B, 2004, 108 (22) : 7126-7131.
    
    [93] Garrigue P, Delville M, Labrugere C, et al. Top-down approach for the preparation of colloidal carbon nanoparticles [J]. Chem Mater, 2004, 16(16): 2984-2986.
    
    [94] Kim J, Lee L, Niece B K, et al. Formation of ordered multilayers from polyoxometalates and silver on electrode surfaces [J]. J Phys Chem B, 2004, 108 (23): 7927-7933.
    
    [95] Kulesza P J, Chojak M, Karnicka K, et al. Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles [J]. Chem Mater, 2004, 16 (21): 4128-4134.
    
    [96] Kulesza P J, Chojak M, Miecznikowski K, et al. Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline [J]. Electrochem Commun, 2002, 4 (6): 510-515.
    
    [97] Bineta K, Israel M M, Louis N, et al. [J]. Tuning the formal potentials of new VIV-substituted Dawson-type polyoxometalates for facile synthesis of metal nanoparticles Electrochemistry Communications, 2004, 6 (3): 978-983.
    
    [98] Kang Z, Wang E, Mao, et al. Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process [J]. J Am Chem Soc, 2005, 127 (18): 6534-6535.
    
    [99] Liu B, Yu S H, Zhang F, et al. Ring-like nanosheets standing on spindle-like rods: unusual ZnO superstructures synthesized from a flakelike precursor Zn5(0H)8C12 . H20 [J]. J Phys Chem B, 2004, 108 (14): 4338-4341.
    
    [100] Vayssieres L, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Adv Mater, 2003, 15 (5): 464-466.
    
    [101] Liu B, Zeng H, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures [J]. Langmuir, 2004, 20 (10):4196-4202.
    
    [102] Liang J, Liu J, Xie Q, et al. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles [J]. J Phys Chem B, 2005, 109 (19): 9463-9467.
    [103] Jiang M, Wang E, Kang Z, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers [J]. J Mater Chem, 2003, 13 (4): 647-649.
    [1] Turgeman R, Tirosh S, Gedanken A, Growing ZnO crystals on magnetite nanoparticles[J]. Chem Eur J, 2004,10 (7): 1845-1850.
    
    [2] Durun P, Capel F, Tartaj J, et al. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors [J]. Adv Mater, 2002, 14 (2): 137-141.
    
    [3] Viswanatha R, Sapra S, Satpati B, et al. Understanding the quantum size effects in ZnO nanocrystals [J]. J. Mater Chem, 2004, 14 (4): 661-668.
    
    [4] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292 (8):1897-1899.
    
    [5] Yang P, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater, 2002, 12 (5): 323-331.
    
    [6] Lao J Y, Huang J Y, Wang D Z, et al. Hierarchical oxide nanostructures [J]. J. Mater. Chem., 2004, 14 (4) 770-773.
    
    [7] Lao J Y, Wen J G, Ren Z F, Hierarchical ZnO nanostructures [J]. Nano Lett, 2002,2 (11) : 1287-1291.
    
    [8] Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails [J]. Nano Lett, 2003, 3 (2): 235-238.
    
    [9] Gao P X, Wang Z L, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS Process [J]. J Phys Chem B, 2004,108 (23): 7534-7537.
    
    [10] Qian D, Jiang J Z, Hansen P L, Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003: 1078-1079.
    
    [11] Park J H, Choi H J, Choi Y J, et al. Ultrawide ZnO nanosheets [J]. J Mater Chem, 2004, 14(1): 35-36.
    
    [12] Vayssieres L, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Adv Mater, 2003, 15 (5): 464-466.
    
    [13] Zhang H, Yang D, Ji Y, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J]. J Phys Chem B, 2004, 108 (13):3955-3958.
    
    [14] Liu B, Yu S H, Zhang F, et al. Ring-like nanosheets standing on spindle-like rods: unusual ZnO superstructures synthesized from a flakelike precursor Zn_5(0H)_8Cl_2 . H_20 [J]. J Phys Chem B, 2004, 108 (14) : 4338-4341.
    
    [15] Wang Z, Qian X, Yin J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J]. Langmuir, 2004, 20 (8): 3441-3448.
    
    [16] Wang L, Muhammed M, Synthesis of zinc oxide nanoparticles with controlled morphology [J]. J Mater Chem, 1999, 9 (11): 2871-2878.
    
    [17] Tian Z R, Voigt J A, Liu J, et al. Biomimetic arrays of oriented helical ZnO nanorods and columns [J]. J Am Chem Soc, 2002, 124(44): 12954-12955.
    
    [18] Li Z, Xie Y, Xiong Y, et al. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant [J]. New J Chem, 2003, 27 (10) : 1518-1521.
    
    [19] Tang Q, Zhou W, Shen J, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem Commun, 2004, (6):712-713.
    
    [20] Zhang J, Sun L, Yin J, et al. Control of ZnO morphology via a simple solution route [J]. Chem Mater, 2002, 14 (10): 4172-4177.
    
    [21] Zhang J, Sun L, Pan H, et al. ZnO nanowires fabricated by a convenient route [J]. New J Chem, 2002, 26 (1): 33-34.
    
    [22] Guo L, Ji Y, Xu H, et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure [J]. J. Am Chem Soc, 2002,124 (50): 14864-14865.
    
    [23] Cheng B, Samulski E T, Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios [J]. Chem Commun, 2004, (8): 986-987.
    
    [24] Kubo R, Electronic Properties of Metallic Fine Particles. I. [J]. J Phys Soc Jpn, 1962, 17 (6): 975-986.
    
    [25] Kawabata A, Kubo R, Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption [J]. J Phys Soc Jpn, 1966, 21 (9): 1765-1772.
    
    [26] Alice E, White R C, Dynes, et al. Corrections to the one-dimensional density of states: Observation of a Coulomb gap? [J]. Rev Mod Phys, 1986, 56 (4): 532-535.
    
    [27] Sun Y, XiaY, Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298 (13): 2176-2179.
    
    [28] Wang Y, Jiang X, Xia Y, A solution-phase, precursor route to polycrystalline Sn02 nanowires that can be used for gas sensing under ambient conditions [J]. J Am Chem Soc, 2003, 125 (52): 16176-16177.
    
    [29] Sun Y, Xia Y, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process [J]. Adv Mater, 2002, 14, (11): 833-837.
    
    [30] Burnett G R, Atkin R, Hicks S, Eastoe J, Surfactant-free "emulsions" generated by freeze-thaw [J]. Langmuir, 2004, 20 (14): 5673-5678.
    
    [31] Weller H, Self-assembly of ZnO: from nanodots to nanorods [J].Angew Chem Int Ed Engl, 2002, 41 (7): 1188-1192.
    
    [32] Cushing B L, Kolesnichenko V L, Connor C. J 0, Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chem Rev, 2004, 104 (9): 3893-3946.
    
    [33] C. Kim, K, Sung, T. Chung, et al. Monodispersed ZnO nanoparticles from a single molecular precursor [J]. Chem Commun, 2003, 2068-2069.
    
    [34] Pacholski C, Kornowski A, Weller H, Site-specific photodeposition of silver on ZnO nanorods [J]. Angew Chem Int Ed, 2004, 43 (10): 4774-4777.
    
    [35] Gao X D, Li X M, Yu W D, Rapid preparation, characterization, and photoluminescence of ZnO films by a novel chemical method [J]. Mater Res Bull, 2005, 40 (7): 1104-1111.
    
    [36] Cheng B, Xiao Y, Wu G, et al. Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant [J]. Adv Funct Mater, 2004, 14 (9): 913-919.
    
    [37] Lin C, Liu K, Chen S, Growth and characterization of Zn - ZnO core-shell polygon prismatic nanocrystals on Si [J]. J Cryst Growth, 2004, 269 (3-4): 425-431.
    
    [38] Tao D, Qian W, Huang Y. et al. A novel low-temperature method to grow single-crystal ZnO nanorods [J]. J Cryst Growth, 2004, 271 (3-4): 353-357.
    
    [39] Durun P, Capel F, Tartaj J, et al. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors [J]. Adv Mater, 2002, 14 (2): 137-141.
    
    [40] Viswanatha R, Sapra S, Satpati B, et al. Understanding the quantum size effects in ZnO nanocrystals [J]. J Mater Chem, 2004, 14 (4): 661-668.
    
    [41] Du H, Yuan F, Huang S, et al. A new reaction to ZnO nanoparticles [J]. Chem Lett, 2004, 33 (6): 770-771.
    
    [42] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292 (8): 1897-1899.
    
    [43] Yang P, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater, 2002, 12 (5): 323-331.
    
    [44] Wong E, Bonevich J, Searson P, Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]. J Phys Chem B, 1998, 102 (40): 7770-7775.
    
    [45] Hu Z, Oskam G, Searson P, Influence of solvent on the growth of ZnO nanoparticles [J]. J Colloid Interface Sci, 2003, 263 (2): 454-460.
    
    [46] Lu H, Chu S, Tan S, The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles [J]. J Cryst Growth, 2004, 269 (2-4): 385-391.
    
    [47] Turgeman R, Tirosh S, Gedanken A, Growing ZnO crystals on magnetite nanoparticles [J]. Chem Eur J, 2004, 10 (7): 1845-1850.
    
    [48] Tokumoto M, Pulcinelli S, Santilli C, et al. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route [J]. J Phys Chem B, 2003, 107 (2): 568-574.
    
    [49] Hung C, Whang W, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films [J]. J Mater Chem, 2005, 15 (2): 267-274.
    
    [50] Viswanathan R, Lilly G, Gale W, et al. Formation of zinc oxide-titanium dioxide composite nanoparticles in supercritical water [J]. Ind Eng Chem Res, 2003, 42 (22): 5535-5540.
    
    [51] Usui H, Shimizu Y, Sasaki T, et al. Photoluminescence of ZnO nanoparticles pPrepared by laser ablation in different surfactant solutions [J]. J Phys Chem B, 2005, 109 (1): 120-124.
    
    [52] Rodriguez G G, Santiago J P, Rendon V L, et al. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts [J]. J Phys Chem B, 2003, 107 (46) : 12597-12604.
    
    [53] Meulenkamp E, Synthesis and growth of ZnO nanoparticles [J]. J Phys Chem B, 1998, 102 (29): 5566-5572.
    
    [54] Yang Y, Li X, Chen J, et al. ZnO nanoparticles prepared by thermal decomposition of β-cyclodextrin coated zinc acetate [J]. Chem Phys Lett, 2003, 373 (1-2): 22-27.
    
    [55] Wua R, Xie C, Formation of tetrapod ZnO nanowhiskers and its optical properties [J]. Mater Res Bull, 2004, 39 (4-5): 637-645.
    [56] Baxter J, Aydil E, Epitaxial growth of ZnO nanowires on a- and c-plane sapphire [J]. J Cryst Growth, 2005, 274 (3-4): 407-411.
    
    [57] Gao P X, Wang Z L, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS Process [J]. J Phys Chem B, 2004, 108 (23): 7534-7537.
    
    [58] Spanhel L, Anderson M, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. J Am Chem Soc, 1991, 113 (8): 2826-2833.
    
    [59] Wang L, Muhammed M, Synthesis of zinc oxide nanoparticles with controlled morphology [J]. J. Mater Chem, 1999, 9 (11): 2871-2878.
    
    [60] Bahnemann D W, Kormann C, Hoffmann M R, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study [J]. J Phys Chem, 1987, 91 (14): 3789-3798.
    
    [61] Guo L, Yang S, Yang C, et al. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles [J]. Chem Mater, 2000, 12 (8): 2268-2274.
    
    [62] Uekawa N, Yamashita R, Wub Y, et al. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)_4~(2-) ions [J]. Phys Chem Chem Phys, 2004, 6 (2): 442-446.
    
    [63] Rosemary M J, Pradeep T, Solvothermal synthesis of silver nanoparticles from thiolates [J]. J Colloid Interface Sci, 2003, 268 (1): 81-84.
    
    [64] Sun C, Li H, Zhang H, et al. Controlled synthesis of CeO_2 nanorods by a solvothermal method [J]. Nanotechnology, 2005, 16 (9): 1454-1463.
    
    [65] Li J, Lu Y, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection [J]. Nano Lett, 2003, 3 (7): 929-933.
    
    [66] Mitchell D T, Lee S B, et al. Smart nanotubes for bioseparations and biocatalysis [J]. J Am Chem Soc, 2002, 124 (40): 11864-11865.
    
    [67] Kam N W S, Jessop T C, Wender P A, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells [J]. J Am Chem Soc, 2004, 126 (22): 6850-6851.
    
    [68] Kang Z, Wang E, Gao L, et al. One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite [J]. J Am Chem Soc, 2003, 125 (45): 13652-13653.
    
    [69] Liu Z, Zhang D, Han S, et al. Single crystalline magnetite nanotubes [J]. J Am Chem Soc, 2005, 127 (1): 6-7.
    
    [70] Rao C N R, Nath M, Inorganic nanotubes [J].Dalton Trans, 2003, (1): 1-24.
    
    [71] Dai L, Patil A, Gong X, et al. Aligned nanotubes [J]. Chem Phys Chem, 2003, 4 (11): 1150-1169.
    
    [72] Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their Optical properties [J].Adv Funct Mater, 2002, 12 (5): 323-331.
    
    [73] Haueter P, Moeller S, Palumbo R et al. The production of zinc by thermal dissociation of zinc oxide—solar chemical reactor design [J]. Sol Energy, 1999, 67 (1-3): 161-167.
    
    [74] Look D C, Recent advances in ZnO materials and devices [J]. Mater Sci Eng, 2001, 80 (): 383-387.
    
    [75] Cho S, Ma J, Kim Y, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Appl Phys Lett, 1999, 75 (18): 2761-2763.
    
    [76] Duran P, Capel F, Tartaj J, et al. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors [J]. Adv Mater, 2002, 14 (2): 137-141.
    
    [77] Pacholski C, Kornowski A, Weller H, Self-assembly of ZnO: from nanodots to nanorods [J]. Angew Chem Int Ed, 2002, 41 (7): 1188-1191.
    
    [78] Johnson J C, Yan H, Schaller R D, et al. Single nanowire lasers [J]. J Phys Chem B, 2001, 105 (46): 11387-11390.
    
    [79] Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (9): 1947-1949.
    
    [80] Gao P Z, Wang Z L, High-yield synthesis of single-crystal nanosprings of ZnO [J]. Small, 2005, 1 (10): 945-949.
    
    [81] Wang Z L, Kong X Y, Zuo J M, Induced growth of asymmetric nanocantilever arrays on polar surfaces [J]. Phys Rev Lett, 2003, 91 (18): 185502-185505.
    
    [82] Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails [J]. Nano Lett, 2003, 3 (2): 235-238.
    
    [83] Lao J, Wen J G., Ren Z F, Hierarchical ZnO nanostructures [J]. Nano Lett, 2002, 2 (11): 1287-1291.
    
    [84] Gao P X, Ding Y, Mai W, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J].Science, 2005, 309 (9):1700-1704.
    
    [85] Wu J J, Liu S C, Wu C T, et al. Heterostructures of ZnO - Zn coaxial nanocables and ZnO nanotubes [J].Appl Phys Lett, 2002, 81 (7): 1312-1315.
    
    [86] Lao J Y, Huang J Y, Wang D Z, et al. Hierarchical oxide nanostructures [J]. J Mater Chem, 2004, 14 (4): 770-773.
    
    [87] Shen X P, Yuan A H, Hu Y M, et al. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays [J]. Nanotechnology, 2005, 16 (10): 2039-2043.
    
    [88] Jeong J S, Lee J Y, Cho J H, et al. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method [J]. Chem Mater, 2005, 17 (): 2752-2756.
    
    [89] Kong X H, Sun X M, Li X L, et al. Catalytic growth of ZnO nanotubes [J]. Mater Chem Phys, 2003, 82 (3): 997-1001.
    
    [90] Li Q, Kumar C V, Li Y, et al. Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J]. Chem Mater, 2005, 17 (5): 1001-1006.
    
    [91]Yu H, Zhang Z, Han M, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays [J]. J Am Chem Soc, 2005, 127 (8): 2378-2379.
    
    [92] Hu J Q, Li Q, Meng X M, et al. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J]. Chem Mater, 2003, 15 (1): 305-308.
    
    [93] Zhang X H, Xie S Y, Jiang Z Y, et al. Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system [J]. J Phys Chem B, 2003, 107 (37): 10114-10118.
    [94] Tang Q, Zhou W, Shen J, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem Commun, 2004, (6):712-713.
    
    [95] Sun Y, Fuge G M, Fox N A, et al. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film [J].Adv Mater, 2005,17(20): 2477-2481.
    
    [96] Wang J, Gao L, Hydrothermal synthesis and photoluminescence properties of ZnO nanowires [J]. Solid State Commun, 2004, 132 (3-4): 269-271.
    
    [97] Wen F, Li W, Moon J, et al. Hydrothermal synthesis of ZnO: Zn with green emission at low temperature with reduction process [J].Solid State Commun, 2005,135 (1-2): 34-37.
    
    [98] Zhang J, Sun L, Liao C, et al. A simple route towards tubular ZnO [J]. Chem Commun, 2002, (3): 262-263.
    
    [99] Xiong Y, Mayers B T, Xia Y, Some recent developments in the chemical synthesis of inorganic nanotubes [J]. Chem Commun, 2005, (40): 5013-5022.
    
    [100]Hu J Q, Li Q, Wong N B, et al. Synthesis of uniform hexagonal prismatic ZnO whiskers [J]. Chem Mater, 2002, 14 (3): 1216-1219.
    
    [101] Wagner R S, Ellis W C, Vapor-Liquid-Ssolid mechanism of single crystal growth [J]. Appl Phys Lett 1964, 4 (5): 89-90.
    
    [102] Stach E A, Pauzauskie P J, Kuykendall T, et al. Watching GaN nanowires grow [J]. Nano Lett, 2003, 3 (6): 867-869.
    [1] Pacholski C, Kornowski A, Weller H, Site-specific photodeposition of silver on ZnO nanorods [J]. Angew Chem Int Ed, 2004, 43 (10): 4774-4777.
    
    [2] Wang Z L, Song J, Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312 (14): 242-246.
    
    [3] Turgeman R, Tirosh S, Gedanken A, Growing ZnO crystals on magnetite nanoparticles [J]. Chem Eur J, 2004,10 (7): 1845-1850.
    
    [4] Rodriguez G G, Santiago J P, Rendon V L, et al. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts [J]. J Phys Chem B, 2003, 107 (46): 12597-12604.
    
    [5] Meulenkamp E, Synthesis and growth of ZnO nanoparticles [J]. J Phys Chem B, 1998, 102 (29): 5566-5572.
    
    [6] Spanhel L, Anderson M, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J]. J Am Chem Soc, 1991, 113 (8): 2826-2833.
    
    [7] Wong E, Bonevich J, Searson P, Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]. J Phys Chem B, 1998, 102 (40): 7770-7775.
    
    [8] Tang Q, Zhou W, Shen J, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem Commun, 2004, (6):712-713.
    
    [9] Wang C, Shen E, Wang E, et al. Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature [J]. Mater Lett, 2005, 59 (23): 2867-2871.
    
    [10] Tian Z R, Voigt J A, Liu J, et al. Biomimetic arrays of oriented helical ZnO nanorods and columns [J]. J Am Chem Soc, 2002, 124(44): 12954-12955.
    
    [11] Wang C, Wang E, Shen E, et al. Growth of ZnO nanoparticles from nanowhisker precursor with a simple solvothermal route [J]. Mater Res Bull, 2006, 41 (12): 2298-2302.
    
    [12] Du H, Yuan F, Huang S, et al. A new reaction to ZnO nanoparticles [J]. Chem Lett, 2004, 33 (6): 770-771.
    
    [13] Hosono E, Fujihara S, Kimura T, Low-temperature deposition of nanocrystalline ZnO phosphor films from neutral ethanolic zinc acetate solutions in the absence of base [J]. Electrochem. Solid State Lett., 2004, 7 (4): C49-C51.
    
    [14] Cao X, Wang X, Song T, [M]. Inorganic Chemistry, Higher Education Press, China, 526.
    [15] Cheng B, Xiao Y, Wu G, et al. Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant [J]. Adv Funct Mater, 2004, 14 (9): 913-919.
    [16] Tao D, Qian W, Huang Y, et al. A novel low-temperature method to grow single-crystal ZnO nanorods [J]. J Cryst Growth, 2004, 271 (3-4): 353-357.
    [17] Durun P, Capel F, Tartaj J, et al. A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained dopedS.-I.,Zn0 varistors [J]. Adv Mater, 2002, 14 (2): 137-141.
    
    [18] Viswanatha R, Sapra S, Satpati B, et al. Understanding the quantum size effects in ZnO nanocrystals [J]. J. Mater Chem, 2004, 14 (4): 661-668.
    
    [19] Du H, Yuan F, Huang S, et al. A new reaction to ZnO nanoparticles [J]. Chem Lett, 2004, 33 (6): 770-771.
    
    [20] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292 (8):1897-1899.
    
    [21] Yang P, Yan H Q, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Adv Funct Mater, 2002, 12 (5): 323-331.
    
    [22] Bauermann L, Campo A, Bill J, et al. Heterogeneous Nucleation of ZnO Using Gelatin as the Organic Matrix [J]. Chem Mater, 2006, 18 (8): 2016-2020.
    
    [23] Mane R S, Lee W J, Pathan H M, et al. Nanocrystalline Ti0_2/Zn0 thin films: fabrication and application to dye-sensitized solar cells [J]. J Phys Chem B, 2005, 109 (48): 24254-24259.
    
    [24] Hung C, Whang W, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly (hydroxyethyl methacrylate) nanohybrid films [J]. J Mater Chem, 2005, 15 (2): 267-274.
    
    [25] Pacholski C, Kornowski A, Weller H, Site-specific photodeposition of silver on ZnO nanorods [J]. Angew Chem Int Ed, 2004, 43 (10): 4774-4777.
    
    [26] Mustafa S, Shahida P, NaeemA, et al. Sorption Studies of Divalent Metal Ions on ZnO [Jl.Langmuir, 2002, 18 (6):2254-2259.
    
    [27] Vidu R, Kua J R, Stroeve P, Growth of ultrathin films of cadmium telluride and tellurium as studied by electrochemical atomic force microscopy [J]. J Colloid Interf Sci, 2006, 300 (1): 404-412.
    
    [28] Lvov Y, Munge B, Giraldo 0, Films of Manganese Oxide Nanoparticles with Polycations or Myoglobin from Alternate-Layer Adsorption et al. [J]. Langmuir, 2000, 16 (23): 8850-8857.
    
    [29] Jiang M, Wang E, Kang Z, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers [J]. J Mater Chem, 2003, 13 (): 647-649.
    
    [30] Teng X, Fan H, Pan S, Abnormal photoluminescence of ZnO thin film on IT0 glass et al. [J]. Mater Lett, 2007, 61 (1): 201-204.
    
    [31] Zeng Y J, Ye Z Z, Xu W Z, et al. Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films [J]. Mater Lett, 2007, 61 (): 41-44.
    
    [32] Decher G, Fuzzy nanoassemblies: toward layered polymeric multicomposites [J]. Science, 1997, 277 (29): 1232-1237.
    
    [33] Locklin J, Shinbo K, Onishi K, et al. Ambipolar organic thin film transistor-like behavior of cationic and anionic phthalocyanines fabricated using Layer-by-Layer deposition from aqueous solution [J]. Chem Mater, 2003, 15 (7): 1404-1412.
    
    [34] Mamedov A A, Belov A, Giersig M, et al. Nanorainbows: graded semiconductor films from quantum dots [J]. J Am Chem Soc, 2001, 123 (31): 7738-7739.
    
    [35] Baba A, Locklin J, Xu R, et al. Nanopatterning and nanocharge writing in Layer-by-Layer quinquethiophene/phthalocyanine ultrathin films [J]. J Phys Chem B, 2006, 110 (1): 42-45.
    
    [36] Hicks J F, SeokS Y, Murray R W, Layer-by-Layer growth of polymer/nanoparticle films containing monolayer-protected gold clusters [J]. Langmuir, 2002, 18 (6): 2288-2294.
    
    [37] Wang T C, Rubner M F, Cohen R E, Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size [J]. Langmuir, 2002, 18 (8): 3370-3375.
    
    [38] Dai J, Merlin L, Bruening, Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films [J]. Nano Lett, 2002, 2 (5): 497-501.
    
    [39] Dante S, Hou Z, Risbud S, et al. Nucleation of iron oxy-hydroxide nanoparticles by Layer-by-Layer polyionic assemblies [J]. Langmuir, 1999, 15 (6): 2176-2182.
    
    [40] Dutta A K, Jarero G, Zhang L, et al. In-situ nucleation and growth of -FeOOH nanocrystallites in polymeric supramolecular assemblies [J].Chem Mater, 2000, 12 (1): 176-181.
    
    [41] Wu A, Yoo D, Lee J K, et al. Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex: 3. high efficiency devices via a Layer-by-Layer molecular-lLevel blending approach [J]. J Am Chem Soc, 1999, 121 (20): 4883-4891.
    
    [42] Herman W N, Wynne K J, Thermally stable nonlinear optical films by alternating polyelectrolyte deposition on hydrophobic substrates [J]. J Am Chem Soc, 1998, 120 (43): 11202-11203.
    
    [43] Graul T W, Schlenoff J B, Capillaries Modified by Polyelectrolyte Multilayers for Electrophoretic Separations [J]. Anal Chem, 1999, 71 (18): 4007-4013.
    
    [44] Durstock M F, Rubner M F, Dielectric Properties of Polyelectrolyte Multilayers [J]. Langmuir, 2001, 17 (25): 7865-7872.
    
    [45] Joly S, Kane R, Radzilowski L, et al. Multilayer nanoreactors for metallic and semiconducting particles [J].Langmuir, 2000, 16 (3): 1354-1359.
    
    [46] Lan Y, Wang E, Song Y, et al. Nucleation and growth of polyoxometalate nanoparticles in polyelectrolyte multilayer films [J]. New J Chem, 2005, 29 (10): 1249-1253.
    
    [47] Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO [J]. Prog Mater Sci, 2005, 50 (3): 293-340.
    
    [48] Uekawa N, Yamashita R, Wub Y, et al. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(0H)_4~(2-) ions [J]. Phys Chem Chem Phys, 2004, 6 (2): 442-446.
    
    [49] Lan Y, Wang E, Song Y Y, et al. An effective layer-by-layer adsorption and polymerization method to the fabrication of polyoxometalate-polypyrrole nanoparticle ultrathin films [J]. Polymer, 2006, 47 (4): 1480-1485.
    
    [50] Liu T Y, Liao H C, Lin C C, et al. Biofunctional ZnO nanorod arrays grown on flexible substrates [J]. Langmuir, 2006, 22 (13): 5804-5809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700