纳米晶构筑介孔过渡金属氧化物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物广泛应用于制作催化剂、精细陶瓷、磁性材料、荧光材料及红外吸收材料等领域。过渡金属氧化物由于过渡金属原子存在着不同的氧化态,具有比硅铝材料优异的电磁、光电以及催化等性能,特别在固体催化、光催化、择形分离、微型电磁装置、光致变色材料、电极材料、信息储存等领域存在诱人的应用前景。金属氧化物纳米材料既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性。
     但金属氧化物纳米颗粒在制备及其应用过程中,存在以下问题:一、容易发生团聚;二、使用过程中容易长大,逐渐失去纳米颗粒的特性等。针对以上问题,本论文设想用纳米颗粒构筑成多孔材料,则既可保持纳米颗粒的优越物理和化学特性,同时又具有多孔材料所具有的大比表面、高透气性等优点。论文中选择系列过渡金属有机酸盐为前驱体,通过煅烧处理,制备了由纳米晶构筑、具有较大比表面的多孔过渡金属氧化物。采用SEM、XRD、TEM、TG-DTA、UV、IR、粒度分析等现代分析测试手段,对材料的微观结构、物相、物理性质等进行表征。用N_2吸附-脱附方法对材料多孔性表征。初步探讨了以草酸盐为前驱体制备多孔性氧化物的孔结构形成机理。
     研究发现,在常温常压水溶液中制备了不同形貌草酸铜前驱体,不同铜源、溶剂组成等是影响草酸铜形貌的主要因素。通过煅烧工艺处理,可制得单分散、高比表面的介孔氧化铜。其最高比表面达295 m~2/g。紫外吸收光谱法测得纳米晶构筑的多孔氧化铜具有催化活性。
     CuO/ZnO/Al_2O_3系催化剂在催化合成甲醇领域的广泛应用,CuO/ZnO催化剂则常常作为理解催化过程的简易模型。利用草酸盐沉淀法制备了单分散的、由纳米晶构筑、钟掺杂的氧化铜。发现煅烧温度对掺锌氧化铜的形貌影响较大。当升温速率较慢时,锌在氧化铜基质中呈分散状态;当升温速率较快时,锌在氧化铜基质中聚集,自成一相,根据掺锌量的不同,形成氧化铜颗粒表面的纳米丝或纳米带。
     氧化锌是当前研究十分活跃的无机功能材料之一。也是低压甲醇合成所用催化剂的重要组分。采用以溶剂热法合成的一维棒状草酸锌为前体,通过煅烧制备了由纳米晶构筑、具有介孔结构的一维穗状氧化锌,且荧光光谱分析表明氧化锌纳米晶粒具有不同的缺陷结构。
     锰氧化物具有独特的磁性、传输性能,在高频高磁感应材料、新型陶瓷材料、电子元件、传感器、催化剂、高能二次电池电极以及高温超导材料等高新技术领域具有潜在的应用价值。采用不同溶剂体系调控草酸锰前驱体结晶,发现与水互溶的有机-水溶剂体系对草酸锰具有显著的晶相、形貌调控作用。草酸锰结晶体形成过程中晶相的选择和形貌的形成与所用有机溶剂性质和结构有关。在乙醇-水体系中合成的正交二水草酸锰煅烧后得到了新颖的柱状多孔纳米组装体,而水体系产物则无此微观结构。说明草酸盐多孔结构的形成不仅与煅烧条件有关,与草酸盐分子中各配位离子的链接方式也有关。
     在对以草酸铜、草酸锌、草酸锰制备介孔金属氧化物研究的基础上,对过渡金属系草酸盐多孔结构的形成做了进一步探讨。认为纳米孔洞的孔体积与纳米颗粒的尺寸有关,只有纳米颗粒过小,也不利于纳米晶构筑较大孔体积多孔氧化物材料的形成。同样,我们对以其它形式的有机金属盐为前驱体(苯二甲酸盐、丁二酸盐)制备多孔材料也进行了初步探讨。
Metal oxides were widely applied to many fields such as catalysis,ceramics, magnetic material,fluorescent material and infrared absorption materials.The oxides of transitional metal process more excellent properties than silicoaluminate materials, especially in solid catalysis,photocatalysis,shape-selective separation,micro electromagnetic device,photochromic materials,electrode materials and information storage fields.Nanostructured metal oxides are not only different from bulk materials, but from a single atom,and their special structures endow them with unique properties such as surface effect,little size effect,quantum measure effect.Therefore Nanostructured metal oxides own serials of novel physical and chemical properties.
     However,the following problems for nanoparticles of metal oxides have happened during the preparation and application:nanoparticles are reliable to aggregate because of huge surface energy.The second,nanoparticles might grow into bulk particle and lost the properties of nanomaterials.We suppose that nanoparticles were used as a building block to construct porous materials,thus this kind of materials not only keep the activity of nanoparticles but also own the good performance of porous materials.In my research,organic acid transitional metallic salts were chosen as the precursor,porous metal oxides built by nanoparticles were prepared after the calcination of the precursor.SEM、XRD、TEM、TG-DTA、UV、IR were used to investigate the morphology,size,texture,and structure of the products.BET was used to characterize the porosity of the obtained oxide. Furthermore,the formation mechanism of porous metal oxides was explored.
     The results show that the morphology of copper oxalate synthesized in room temperature can be mainly tuned by different copper source and the solvent system. The monodispersed,porous copper oxide was obtained by the calcination of copper oxalate precursor.The largest specific surface area reached 295 m~2/g.Further experiments show that the obtained porous copper oxide displays the catalysis activity for H_2O_2 decomposition.
     The serial catalysis of CuO/ZnO/Al_2O_3 was widely used as catalysis for the CH_3OH synthesis.The composite of CuO/ZnO was often used as model for understanding the catalytic process of CuO/ZnO/Al_2O_3 Monodispersed,Zn-doping copper oxide was prepared by the oxalate coprecipitation.The experimental results show that the heating-up method during calcination strongly influenced the Zn distribution in the copper oxide products.Zn distribution was more even when the heating-up rate was low;however,the Zn phase tends to be separate from copper oxide.The nanobelts or nanofilaments on the surface of copper oxide particle were formed with the increasing of Zn content in the precursor.
     ZnO,as one of the important inorganic materials,was intensively researched currently.At the same time,ZnO was also the indispensable component of catalysis for the CH_3OH synthesis.One-dimensional,porous zinc oxide was prepared by the thermal decomposition of zinc oxalate sub-micro rods,which was synthesized by solvothermal method.The specific surface area and total pore volume are 126 m~2·g~(-1) and 0.13 cm~3·g~(-1),respectively.The PL spectra related with defects in ZnO nanoparticles were explored for porous zinc oxide samples.
     The manganese oxides have unique magnetic,transport performance,and possess optional application in the fields such as catalysis,ceramics,electronic device and so on.The manganese oxalate precursor was synthesized in different solvent system.The results show that organic-water solvent can be tuned the phase and morphology of manganese oxalate dihydrate.The phase and morphology formation depended on the organic solvent.Most importantly,porous manganese oxide built by nanoparticles was formed through calcination of the orthogonal manganese oxalate dihydrate precursor obtained from ethanol-water mixed solvent,while the porous manganese oxide can not be obtained though calcination of the monoclinic manganese oxalate dihydrate precursor obtained from aqueous system.That is to say,the porosity formation was related with the molecular structure of the precursor.
     Based on the research for porous oxide obtained from copper oxalate,zinc oxide, manganese oxalate,systematic study for the formation mechanism of porous, transitional metal oxide from corresponding oxalate was explored.It was supposed that the formation of porous structure was related with the size of nanoparticles,and the size of nanoparticles,which was too small,was not good for formation of the larger pore volume in materials.At the same time,utilizing other organic acid transitional metallic salt to obtained porous materials was also discussed primarily.
引文
[1]张礼和.化学学科进展.北京:化学工业出版社,2005,49-63.
    [2]Huo Q,Margolese D,Stucky G D.Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials.Chem.Mater.,1996,8(5):1147-1160.
    [3]Cui Y,Liebě C M.Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks.Science,2001,291(5505):851-853.
    [4]Yang H F,Zhao D Y.Synthesis of replica mesostructures by the nanocasting strategy J.Mater.Chem.,2005,15(12):1217-1231.
    [5]Smatt J H,Weidenthaler C,Rosenholm J B,Linden M.Hierarchically Porous Metal Oxide Monoliths Prepared by the Nanocasting Route.Chem.Mater.,2006,18(6):1443-1450.
    [6]Chen H R,Dong X P,Shi J L,Zhao J J,Hua Z L,Gao J H,Ruan M L,Yan D,Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance.J.Mater.Chem.,2007,17(9):855-860.
    [7]Zhu K K,Yue B,Zhou W Z,He H Y,Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15.Chem.Commun.,2003,(1):98-99.
    [8]Yue B,Tang H L,Kong Z P,Zhu K K,Dickinson C,Zhou W Z,He H Y.Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide.Chem.Phys.Lett.,2005,407(1-3):83-86.
    [9]Kaleta W,Nowinska K.Immobilisation of heteropoly anions in Si-MCM-41channels by means of chemical bonding to aminosilane groups.Chem.Commun.,2001.(6):535-536.
    [10]Jiao K,Zhang B,Yue B.Ren Y,Liu S X,Yan S R,Dickinson C,Zhou W Z,He H Y. Growth of porous single-crystal Cr_2O_3 in a 3-D mesopore system. Chem. Commun., 2005,(45): 5618-5620.
    [11] Tian B Z, Liu X Y, Yang H F, Xie S H, Yu C Z, Tu B, Zhao D Y. General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica. Adv. Mater., 2003, 15(16):1370-1374.
    [12] Tian B Z, Liu X Y, Solovyov L A, Liu Z, Yang H F, Zhang Z D, Xie S H, Zhang F Q, Tu B, Yu C Z, Terasaki O, Zhao D Y. Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures. J. Am. Chem. Soc., 2004,126(3): 865-875.
    [13] Dickinson C, Zhou W Z, Hodgkins R P, Shi Y F, Zhao D Y, He H Y, Formation Mechanism of Porous Single-Crystal Cr_2O_3 and Co_3O_4 Templated by Mesoporous Silica. Chem. Mater. 2006, 18(13): 3088-3095.
    [14] Shin H J, Ryoo R, Kruk M, Jaroniec M. Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem. Commun. 2001,(4): 349-350.
    [15] Ryoo R, Joo S, Kruk M, Jaroniec M. Ordered Mesoporous CarbonsAdv. Mater. 2001, 13(9): 677-681.
    [16] Katou T, Lee B, Lu D L, Kondo J N, Hara M, Domen K. Crystallization of an Ordered Mesoporous Nb-Ta Oxide. Angew. Chem., Int. Ed., 2003, 42(21):2382-2385.
    
    [17] Roggenbuck J, Koch G, Tiemann M. Synthesis of Mesoporous Magnesium Oxide by CMK-3 Carbon Structure Replication. Chem. Mater. 2006, 18(17):4151-4156.
    
    [18] Li H F. Zhu S M, Xi H A, Wang R D, Nickel oxide nanocrystallites within the wall of ordered mesoporous carbon CMK-3: Synthesis and characterization. Microporous Mesoporous Mater. 2006, 89(1-3): 196-203.
    [19] Wang YM,WuZ Y, Shi L Y, Zhu J H. Rapid Functionalization of Mesoporous Materials: Directly Dispersing Metal Oxides into As-Prepared SBA-15 Occluded with Template. Adv. Mater., 2005,17(3): 323-327.
    [20] Jiang Q, Wu Z Y, Wang Y M, Cao Y, Zhou C F, Zhu J H. Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem., 2006,(16): 1536-1542.
    [21] Laha S C, Ryoo R, Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun.,2003, (17): 2138-2139.
    [22]Zhu K K, He H Y, Xie S H, Xuan Z, Zhou W Z, Jin S L, Yue B. Crystalline WO_3 nanowires synthesized by templating method. Chem. Phys. Lett., 2003,377(3/4): 317-321.
    [23] Wang Y, Yang C M, Schmidt W, Spliethoff B, Bill E, Schuth F. Weakly Ferromagnetic Ordered Mesoporous Co_3O_4 Synthesized by Nanocasting from Vinyl-Functionalized Cubic Ia_3d Mesoporous Silica Adv. Mater., 2005, 17(1):53-56.
    [24] Dong A, Ren N, Tang Y, Wang Y, Zhang Y, Hua W, Gao Z. General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates. J. Am. Chem. Soc,2003, 125(17): 4976-4977.
    [25] Roggenbuck J, Tiemann M. Ordered Mesoporous Magnesium Oxide with High Thermal Stability Synthesized by Exotemplating Using CMK-3 Carbon. J. Am.Chem. Soc, 2005, 127(4): 1096-1097.
    [26] Liu Z T, Fan T X, Zhang W, Zhang D. The synthesis of hierarchical porous iron oxide with wood templates. Microporous and Mesoporous Materials 2005, 85(1-3): 82-88.
    [27] Yang D, Qi L M, Ma J M. Solid-State Molecular Rectifier Based on Self-Organized Metalloproteins. Adv. Mater., 2002,14(21): 1453-1457
    [28] 邱瑾,杨儒,江南,李敏.高等学校化学学报, 2005,26(6): 1010-1013.
    [29] Toberer E S, Joshi A, Seshadri R. Template-Free Routes to Macroporous Monoliths of Nickel and Iron Oxides: Toward Porous Metals and Conformally Coated Pore Walls. Chem. Mater. ,2005, 17(8): 2142-2147.
    [30] Monalisa P, Rajamathi M, Seshadri R. A Template-Free, Combustion-Chemical Route to Macroporous Nickel Monoliths Displaying a Hierarchy of Pore Sizes.Chem. Mater., 2002, 14(11): 4762-4767.
    [31] Michael R, Srinivasa T, Peter E D M, Ram S. Macroporous materials from crystalline single-source precursors through decomposition followed by selective leaching. J. Mater. Chem., 2001, 11(10): 2489-2492.
    [32] Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447-448.
    [33] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396(6707): 152-155
    [34] Velev O D, Tessier P M, Lenhoff A M, Kaler E W. Materials - A class of porous metallic nanostructures. Nature, 1999,401(6753): 548-548.
    
    [35] Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater., 2003, (2):386-390.
    
    [36] Zhang B J, Davis S A, Mann S. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films Chem. Mater.,2002.14(3): 1369-1375.
    [37] Desai S D, Cussler E L. Microporous Vanadium Pentaoxide. 2. Making Solids from Colloidal Microemulsions. Langmuir, 1998, 14(2): 277-282.
    [38] Davis S A, Burkett S L, Mendelson N H, Mann S, Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997,385(6615): 420-423.
    [39] Xu B J, Xiao T C, Yan Z F, Sun X, Sloan J, Gonzalez-Cortes S L, Alshahrani F,Green M L H. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system. Microporous and Mesoporous Materials, 2006, 91(1-3), 293-295.
    [40] Liu Q, Wang A Q, Wang X D, Zhang T. Mesoporous γ-alumina synthesized by hydro-carboxylic acid as structure-directing agent. Microporous and Mesoporous Materials, 2006, 92(1-3), 10-21.
    [41] Zilkova N, Zukal A, Cejka J. Synthesis of organized mesoporous alumina templated with ionic liquids. Microporous and Mesoporous Materials, 2006,95(1-3): 176-179.
    [42] Liu Q, Zhang W M, Cui Z M, Zhang B, Wan L J, Song W G. Aqueous route for mesoporous metal oxides using inorganic metal source and their applications .Microporous and Mesoporous Materials, 2007, 100(1-3): 233-240.
    [43] Corma A, Atienzar P, Garcia H, Chane C J Y. Hierarchically mesostructured doped CeO_2 with potential for solar-cell use. Nature Mater., 2004, 3(6):394-397.
    [44] Ba J, Polleux J, Antonietti M, Niederberger M. Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures. Adv. Mater., 2005, 17(20): 2509-2512.
    [45] Ren T Z, Yuan Z Y, Su B L. Micro wave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite AlOOH and γ-Al_2O_3 .Langmuir, 2004,20(4): 1531-1534.
    [46] Yu J G, Zhou M H, Cheng B, Yu H G, Zhao X J. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity J. Mo. Catal. A, 2005, 227 (1-2):75-80.
    [47] 江小雪,赵乃勤,功能材料,2005, 36(4): 487-489,494.
    [48] Xiao Y H, Li L, Li Y, Fang M, Zhang L D. Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology, 2005,16(6): 671-674.
    [49] Niu H X, Yang Q, Tang K B, Xie Y, A simple solution calcination route to porous MgO nanoplates. Microporous and Mesoporous Materials, 2006,96(1-3): 428-433.
    [50] Yue W B, Zhou W Z. Synthesis of Porous Single Crystals of Metal Oxides via a Solid-Liquid Route. Chem. Mater., 2007, CM070124B
    [51] Tilley T D. Molecular design and synthesis of heterogeneous and single-site, supported catalysts. J. Molecular Catalysis A: Chemical, 2002, 182-183:17-24.
    [52] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, H e X L, Gao X G, Xia S H. Hierarchically Structured Cobalt Oxide (Co_3O_4): The Morphology Control and Its Potential in Sensors. J. Phys. Chem. B, 2006, 110(32): 15858-15863.
    [53] Valentini A, Carreno N L V, Probst L F D, Leite E R, Longo E. Synthesis of Ni nanoparticles in microporous and mesoporous Al and Mg oxides. Microporous and Mesoporous Materials. 2004, 68(1-3): 151-157.
    
    [54] Danh N T, Teresa J B, Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures. Microporous and Mesoporous Materials, 2006,92(1-3): 47-55.
    [55] Othman M R, Sahadan I S, On the characteristics and hydrogen adsorption properties of a Pd/γ-Al_2O_3 prepared by sol-gel method. Microporous and Mesoporous Materials. 2006,91(1-3): 145-150.
    [56] Lai R Y, Kong X, Jenekhe S A, Bard A J. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New Phenylquinoline-Biphenothiazine Donor-Acceptor Molecule. J Am.Chem. Soc,2003,125(41): 12631-12639.
    
    [57] Kim J, Chen B, Reineke T M, Li H, Eddaoudi M, Moler D B, Keeffe M O, Yaghi O M. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. J. Am. Chem. Soc. 2001, 123(34): 8239-8247.
    
    [58] Chen B, Fronczek F R, Maverick A W. Porous Cu-Cd Mixed-Metal-Organic Frameworks Constructed from Cu(Pyac)2 Bis [3-(4-pyridyl)pentane-2,4-dionato] copper(Ⅱ).Inorganic Chemistry,2004,43(26): 8209-8211.
    
    [59] Chen B, Ockwig N W, Millward A R., Contreras D S. Yaghi Omar M. High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angew. Chem. Int. Ed. 2005, 44(30): 4745-4749
    
    [60] Chen B, Eddaoudi M, Reineke T M, Kampf J W, O'Keeffe M, Yaghi O M, Cu_2(ATC)6H_2O: Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC:1,3,5,7-Adamantane Tetracarboxylate). J. Am. Chem. Soc. 2000, 122(46):11559-11560.
    
    [61] Chen B, Lee S, Venkataraman D, DiSalvo F J, Lobkovsky E, Nakayama M. Packing Principles of Thioether Derivatives of Triarylamine Silver Salts. Crystal Growth & Design, 2002,2(2): 101-105.
    
    [62] Antoneni D M, Ying J Y, Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angew. Chem. Int. Ed., 1996, 35(4): 426-430.
    
    [63] Antoneni D M, Nakahira A, Ying J Y. Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves. Inorg. Chem.,1996, 35(11): 3126-3136.
    [64] Wong M S, Ying Y J, Amphiphilic Templating of Mesostructured Zirconium Oxide. Chem. Mater., 1998, 10(8): 2067-2077.
    [65] Yue Y H, Gao Z, Synthesis of mesoporous TiO_2 with a crystalline framework Chem, Commun., 2000, (18): 1755-1756.
    [66] Lyu Y Y, Yi S H, Shon J K, Chang S, Pu L S, Lee S Y, Yie J E, Char K, Stucky G D, Kim J M. Highly Stable Mesoporous Metal Oxides Using Nano-Propping Hybrid Gemini Surfactants J. Am. Chem. Soc, 2004, 126(8): 2310-2311.
    [67] Jiao F, Bruce P G. Two- and Three-Dimensional Mesoporous Iron Oxides with Microporous Walls. Angew. Chem. Int. Ed., 2004, 43(14): 5958-5961.
    [68] Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P, Amenitsch H, Antonietti M, Sanchez C. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater., 2004, 3(11): 787-792.
    [69] Sinha A K, Suzuki K, Three-Dimensional Mesoporous Chromium Oxide: A Highly Efficient Material for the Elimination of Volatile Organic Compounds. Angew. Chem. Int. Ed., 2005, 44(2): 271-273.
    
    [70] Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater., 2003, 2(3): 159-163.
    
    [71] Takei T, Houshito O, Yonesaki Y, Kumada N, Kinomura N. Porous properties of silylated mesoporous silica and its hydrogen adsorption. Journal of solid state chemistry. 2007,180 (4): 1180-1187.
    
    [72] Nelson P A, Elliott J M, Attard G S. Mesoporous nickel/nickel oxide electrodes for high power applications. J. New Mater., Electrochem. Sys., 2002, 5(1):63-65.
    [73]Mamak M,Metraux G S,Petrov S,Coombs N,Ozin G A,Green M A,Ozin G,Lanthanum strontium manganite/yttria-stabilized zirconia nanocomposites derived from a surfactant assisted,co-assembled mesoporous phase.J.Am.Chem.Soc.,2003,125(17):5161-5175.
    [74]杨修春,韦亚南,孙海阔,纳米晶复合有序多孔材料的研究进展,材料导报,2006,20(11):54-57.
    [75]Choi S Y,MAamak M,Coombs N,Ozin G A,Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes.Nano Letter,2004,4(7):1231-1235.
    [76]Ye B.,Tmdeau M.,Antonelli D.,Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host.Adv.Mater.,2001,13(1):29-33.
    [77]Yuan Y B,Nie J,Zhang Zheng B,Zhou S Y,Alkylation of Hydroquinone with tert-Butyl Alcohol over Bis[(perfluoroalkyl)sulfonyl]imides Supported on MCM-41.Chinese Journal of Chemistry,2006,24(12):1692-1699.
    [78]Corma A,Martinez S V,Schnoeveld E,Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism.J.Cata.,2000,192(1):163-173.
    [79]刘欣梅,阎子峰,Liu G.Q,介孔纳米二氧化锆的微观结构及其应用.科学通报,2004,49(6):522-526.
    [80]Jimmy C Y,Wang X C,Fu X Z.Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films.Chem.Mater.,2004,16(8):1523-1530.
    [81]Hou K,Tian B Z.Li F Y.Bian Z Q,Zhao D Y,Huang C H.Highly crystallized mesoporous TiO_2 films and their applications in dye sensitized solar cells J. Mater.Chem.,2005,15(24):2414-2420.
    [82]Yoshiko T,Junko N K,Lu D L.Synthesis and application for overall water splitting of transition metal-mixed mesoporous Ta oxide.Solid State lonics,2002,151(1-4):305-311.
    [83]Mamak M,Coombs N,Ozin G,Self-Assembling Solid Oxide Fuel Cell Materials:Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions J.Am.Chem.Soc.,2000,122(37):8932-8939.
    [84]刘存业,李建,匡安龙,倪刚,纳米磁性多层膜电磁介观特性西南师范大学学报,2003,28(6):902-906.
    [85]Choi S Y,Mamak M,Coombs N,Chopra N,Ozin G A.Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystalline Anatase Electrodes.Nano Letter,2004,4(7):1231-1235.
    [86]Ye B,Trudeau M,Antonelli D.Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host Adv.Mater.,2001,13(1):29-33.
    [87]Skadtchenko B O,Trudeau M,Kwon C W,Dunn B,Antonelli D.Synthesis and Electrochemistry of Li- and Na- Fulleride Doped Mesoporous Ta Oxides.Chem.Mater.,2004,16(15):2886-2894.
    [88]Vettraino M,He X,Trudeau M,Drake J E,Antonelli D M.Synthesis of a Stable Metallic Niobium Oxide Molecular Sieve and Subsequent Room Temperature Activation of Dinitrogen Adv.Funct.Mater.,2002,12(3):174-178.
    [89]Miguez H,Kitaev V,Ozin G A,Band spectroscopy of colloidal photonic crystal films Appl.Phys.Lett,2004,84(8):1239-1241.
    [90]Wong S.Kitaev V,Ozin G A.Colloidal Crystal Films:Advances in Universality and Perfection J.Am.Chem.Soc.,2003,125(50):15589-15598.
    [91]Sean W,David J,Kitnev V.Colloidal crystal films:advances in universality and perfection.J Am chem Soc,2003,125(50):15589-15598.
    [92]Blaneo A,Chomski E,Grabtchak S.large-scale synthesis of a silicon photonic crystal with a complete three-dimensional band near 1.5 micrometers.Nature,2000,405(6785):437-440.
    [93]Paul J G,Henny J M.Solid state aspects of oxidation catalysis.Catalysis Today,2000,58(1):1-53.
    [94]Sayari A,Liu P.Non-silica periodic mesostructured materials:recent progress.Microporous Mater,1997,12(4-6):149-177.
    [95]Morales A M,Lieber C M.A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.Science.1998,270(5348):208-211.
    [96]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,52-54.
    [97]张立德.纳米材料,化学工业出版社,2001,39-41.
    [98]Gleiter H,Marquardt P.Nanocrystalline Structures---an Approach to New Materials.Metallkd Z,1984,75:263-267.
    [99]Hone J,Batlogg B,Benes Z.Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes.Science,2000,289(5485):1730-1733.
    [100]曹茂盛,荚长斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社.2001.25-26.
    [1] Mann S. The Chemistry of Form. Angew. Chem., Int. Ed., 2000, 39(19):3392-3406.
    [2] Qi L, Colfen H, Antonletti M. Crystal Design of Barium Sulfate using Double-Hydrophilic Block Copolymers. Angew. Chem., Int. Ed. 2000,39(3):604-607.
    [3] Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and Characterization of 3D CoPt Nanostructures. J. Am. Chem. Soc. 2005, 127(40):13756-13757.
    [4] Colfen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem., Int. Ed. 2003, 42(21):2350-2365.
    [5] Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and Characterization of 3D CoPt Nanostructures J. Am. Chem. Soc, 2005,127(40): 13756-13757.
    [6] Pileni M P. Nanocrystal Self-Assemblies: Fabrication and Collective Properties. J. Phys. Chem. B, 2001, 105(17): 3358-3371.
    [7] Murphy C J, Jana N R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater., 2002, 14(1): 80-82.
    [8] Bosch P, de los Reyes J A, Lara V H. A catalytic application of Cu_2O and CuO films deposited over fiberglass. Appl. Surf. Sci., 2001, 174(3-4): 177-184.
    [9] Xu J Z, Zhu J J, Chen H Y, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth, 2002, 244(1): 88-94.
    [10] Wang X, Liu Y, Zheng C, Wang G, Mater. Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant. Res. Bull., 2002, 37(6): 1093-1100.
    
    [11] Reitz J B, Solomon E I. Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity J. Am. Chem. Soc. 1998, 120(44): 11467-11478.
    [12] Zheng X G,Xu C N, Tomokiyo Y, Tanaka E, Yamada H, Soejima Y. Observation of Charge Stripes in Cupric Oxide Phys. Rev. Lett., 2000, 85(24): 5170-5173.
    [13] Zhou K B, Wang R P, Xu B Q, Li Y D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology,2006,17(15): 3939-3943.
    
    [14] Chang Y, Zeng H C. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons. Crystal Growth and Design,2004,4(2): 397-402.
    [15] Wen X G, Zhang W X, Yang S H. Synthesis of Cu(OH)_2 and CuO Nanoribbon Arrays on a Copper Surface. Langmuir, 2003,19(14): 5898-5903.
    [16] Jiang X C, Herricks T, Xia Y N. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Lett., 2002, 2(12): 1333-1338.
    [17] Xu Y Y, Chen D R, Jiao X L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route. J. Phys. Chem. B,2005,109(28):13561-13566.
    [18] Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions". J. Am. Chem. Soc, 2004,126(26): 8124-8125.
    [19] Yu S H, Colfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem., 2004,(14): 2124-2147.
    [20] Penn R L, Banfield J F, Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969-971.
    [21] Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges Langmuir, 1994,10(1): 8-16.
    [22] Hounslow M J, Bramley A S, Paterson W R, Aggregation During Precipitation from Solution. A Pore Diffusion-Reaction Model for Calcium Oxalate Monohydrate. J. Colloid Interface Sci., 1998,203(2): 383-391.
    [23] Colfen H, Mann S, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures Angew. Chem., Int. Ed., 2003, 42(21):2350-2365. [24] Hounslow M J. Mumtaz H S, Collier A P, Bramley A S. A micro-mechanical model for the rate of aggregation during precipitation from solution . Chem. Eng.,Sci.2001,56(7):2543-2552.
    [25]Van der Leeden M C,Van Rosmalen G M.Aspects of additives in precipitation processes:Performance of polycarboxylates in gypsum growth prevention.Desalination,1987,66:185-200.
    [26]Prieto M,Putnis A,Fernandez-Díaz L,Lopez-Andrés S.Metastability in diffusing-reacting systems J.Cryst.Growth,1994,142(1-2):225-235.
    [27]Kralj D,Kontrec J,Brecevic L,Falini G,Nothig-Laslo V.Effect of Inorganic Anions on the Morphology and Structure of Magnesium Calcite Chem.Eur.J.2004,10(7):1647-1656.
    [28]Sheldrick W S,Wachhold M,Solvatothermale Synthese von Chalkogenidometallaten.Angew.Chem.,1997,109(3):214-234.
    [29]管洪波,王培,王晖,赵璧英,朱月香,谢有畅,低温固相法制备高比表面积的纳米MgO.物理化学学报,2006,22(7):793-798.
    [30]吴晓晖,刘金尧,刘崇微,朱起明,何菲,CuO/ZnO/Al_2O3合成甲醇催化剂的制备方法,催化学报,1998,19(2):169-172.
    [31]Jongen N,Hofmann H,Bowen P,Lemaitre J,Calcination and morphological evolution of cubic copper oxalate particles,Journal of Materials Science Letters,2000,19(12):1073-1075.
    [32]Zhang D F,Sun L D,Yin J L,Yan C H,Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods.Adv.Mater.,2003,15(12):1022-1025.
    [33]Zhang B,Davis S A,Mann S.Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films.Chem.Mater.2002,14(3):1369-1375.
    [34]王文亮,李东升,王振军,崔华莉,薛岗林.CuO超细粉体的形貌与红外特性研究,无机化学学报,2002,18(8):823-826.
    [35]张长拴,赵峰,张继军,王向宇,鲍改玲,白玉白,李铁津.纳米尺寸氧化铝的红外光谱研究.化学学报,1999,57(3):275-280.
    [36]王文亮,李东升,秦振平,岳可芬,杨文选.Cu(Ⅱ)源对铜系氧化物催化分解H_2O_2活生的影响催化学报.2001.22(3):301-303.
    [1]Tanaka Y,Utaka T,Kikuchi R,Sasaki K,Eguchi K.CO removal from reformed fuel over Cu/ZnO/Al_2O_3 catalysts prepared by impregnation and coprecipitation methods.Appl Catal,A,2003,238(1):11-18.
    [2]Mirzaei A A,Shaterian H R,Taylor S H,Hutchings G J.Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation:effect of precipitate aging atmosphere on catalyst activity.Catal.Lett.,2003,87(3-4):103-108.
    [3]Pollard A M,Spencer M S,Thomas R G,Williams P A,Holt J Jennings J R.Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts.Appl.Catal.a,1992,85(1):1-11.
    [4]房德仁,刘中民,刘德臣,张慧敏,孟霜鹤,王立刚.铝盐加入方式对CuO/ZnO/Al_2O_3系催化剂性能的影响.石油化工,2004,33(11):1041-1045.
    [5]汤颖,刘晔,路勇,朱萍,何鸣元.CuZnAl水滑石衍生催化剂上甲醇水蒸气重整制氢Ⅱ.催化剂组成的影响 催化学报,2006,27(11):987-992.
    [6]余立挺,马建新.CuZnAlZr催化剂上甲醇氧化水蒸气重整制氢Ⅰ.催化剂组成的优化.催化学报,2004,25(7):523-528.
    [7]Matter P H,Braden D J,Ozkan U S.Steam reforming of methanol to H_2 over nonreduced Zr-containing CuO/ZnO catalysts.J.Catal.,2004,223(2):340-351.
    [8]Wilmer H,Kurtz M,Klementiev K,Tkachenko O,Grünert W,Hinrichsen O,Birkner A,Rabe S,Merz K,Driess M,Woll C,Muhler M,Methanol synthesis over ZnO:A structure-sensitive reaction?.Phys.Chem.Chem.Phys.2003,5(20):4736-4740.
    [9]Donia A M.Synthesis,identification and thermal analysis of coprecipitates of silver-(cobalt,nickel,copper and zinc)oxalate,Polyhedron.1997,16(17): 3013-3031.
    [10]Zhu Y W,Sow C H,Yu T,Zhao Q,Li P H,,Shen Z X,Yu D P,Thong J T L.Co-synthesis of ZnO-CuO Nanostructures by Directly Heating Brass in Air.Adv.Funct.Mater.2006,16(18):2415-2422.
    [11]Dang H J,Wang J,Fan S S.The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres.Nanotechnology 2003,14(7):738-741.
    [12]Yu T,Zhu Y W,Xu X J,Shen Z X,Chen P,Lim C T,Thong J T L,Sow C H.Controlled growth and field-emission properties of cobalt oxide nanowalls.Adv.Mat.2005,17(13):1595-1601.
    [13]Zhu Y W,Yu T,Sow C H,Liu Y J,Wee A T S,Xu X J,Lim C T,Thong J T L.Efficient field emission from α-Fe_2O_3 nanoflakes on an atomic force microscope tip.Appl.Phys.Lett.,2005,(87):023103-023106.
    [14]Yu T,Zhu Y W,Xu X J,Yeong K S,Shen Z X,Chen P,Lim C T,Thong J T L,Sow C H.Substrate-friendly synthesis of metal oxide nanostructures using a hotplate.Small.2006,2(1):80-84.
    [15]Seung C L,Zhang Y,Hyun R.Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires.Chem Phys Lett,2002,363(1-2):134-138.
    [16]Wu J J,Liu S C.Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition.Adv.Mater.,2002,14(3):215-218.
    [17]Zhang X H,Xie S Y,Jiang Z Y,Tian Z Q,Xie Z X,Huang R B,Zheng L S.Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system.J.Phys.Chem.B,2003,107(37):10114-10118.
    [18]Gabal M A.Kinetics of the thermal decomposition of CuC_2O_4-ZnC_2O_4 mixture in air.Thermochimica Acta,2003,402(1-2):199-208.
    [19]黄连荣,陈栋华,彭玉华.不同制备方法的CuC_2O_4-ZnC_2O_4·2H_2O的热行 为和热分解动力学.中南民族大学学报(自然科学版),2004,23(3):12-16.
    [20]Chen D H,Huang L R,Tang W J.Preparation and Kinetics of the Thermal Decomposition of nanosized CuC_2O_4-ZnC_2O_4·2H_2O.Wuhan University Journal of Natural Sciences,2006,11(3):667-671.
    [21]张炜,朱慧,夏智勋.TMO对铝镁贫氧推进剂低压燃烧性能影响,固体火箭技术,2002,25(3):38-40.
    [22]罗元香,陆路德,刘孝恒,杨绪杰,汪信.纳米CuO的制备及对NH_4ClO_4热分解的催化性能.无机化学学报,2002,18(12):1211-1214.
    [1] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949.
    [2] Xu C X, Sun X W, Chen B J, Shum P. Nanostructural zinc oxide and its electrical and optical properties. 2004, 95(2): 661-666.
    
    [3] Peppley B A, Amphlett J C, Kearns L M, Mann R F. Methanol-steam reforming on Cu/ZnO/Al_2O_3. Part 1: the reaction network. Appl. Catal. A, 1999,179(1-2):21-29.
    
    [4] Ni Y H, Cao X F, Wu G G, Hu G Z, Yang Z S Wei X W. Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology, 2007, 18(15): 155603-155609.
    [5] Li M, Liu X L, Cui D L, Xu H Y, Jiang M H. Preparation of ZnO bulk porous nanosolids of different pore diameters by a novel solvothermal hot press (STHP) method. Mat. Res. Bull., 2006,41(7): 1259-1265.
    
    [6] Lakshmi B B, Patrissi C J, Martin C R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater., 1997,9(11):2544-2550.
    [7] Jiu J, Kurumada K, Tanigaki M. Preparation of nanoporous ZnO using copolymer gel template. Mater. Chem. Phys., 2003,81(1): 93-98.
    
    [8] Liu Z F, Jin Z G, Li W, Qiu H J. Assembly of ordered ZnO porous thin films by cooperative assembly method using polystyrene spheres and ultrafine ZnO particles. Mat. Res. Bull., 2006,41 (1): 119-127.
    
    [9] Xiao Y. H., Li L , Li Y , Fang M. Zhang L D. Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology. 2005,16(6): 671-674.
    [10]Pujol O.,Bowen P.,Stadelmann P.A.,Hofmann H.Growth and self-assembly of nanostructured COC_2O_4 center dot 2H(2)O particles.J.Phys.Chem.B,2004,108(35):13128-13136.
    [11]Polarz S,Orlov A V.,Schuth F,Lu A H.Highly Efficient Syntheses of Hyaluronic Acid Oligosaccharides.Chem.Eur.J.2007,13(2):592-540.
    [12]李梅,孙海燕,刘秀琳,徐红燕,王成建,崔得良,蒋民华,高等学校化学学报,2006,27(3):414-418.
    [13]Shan C X,Liu Z,Zhang Z Z,Shen D Z,Hark S K.A simple route to porous ZnO and ZnCdO nanowires.J.Phys.Chem.B,2006,110(23):11176-11179.
    [14]Jongen N.,Bowe P.n,Lemaitre J,Valmalette J C,Hofmann H,J.Colloid Interface Sci.,Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose(HPMC):Control of morphology.2000,226(2):189-198.
    [15]童长钿,李启厚,赖复兴,艾侃.超细草酸镍粒子的制备及其形状和粒度控制.湿法冶金,2003,22(1):22-27.
    [16]Wang X,Li Y D.Rational synthesis of alpha-MnO2 single-crystal nanorods.Chem.Commun.,2002(7):764-765.
    [17]Zhang D B,Qi L M,Ma J M,Cheng H M.Morphological control of calcium oxalate dihydrate by a double-hydrophilic block copolymer.Chem.Mater.,2002,14(6):2450-2457.
    [18]Hayrapetyan S S,Khachatryan H G.The porosity of partly sintered nickel iron oxalates.Microporous and Mesoporous Materials,2006,89(1-3):33-38.
    [19]Zhang B,Davis S A,Mann S.Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films.Chem.Mater.,2002,14(3):1369-1375.
    [20]Penn R L,Banfield J F.Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals. Science, 1998,281(5379): 969-971.
    [21] Apurba D, Soumitra K, Supriya C, Subhadra C. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006,17(5): 1533-1540.
    [22] Mahamuni S, Borgohain K, Bendre B S, Leppert V J , Risbud S. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J.Appl. Phys. 1999, 85(5): 2861-2865.
    [23] Wu J J, Liu S C. Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Adv. Mater., 2002,14(3):215-218.
    [24] Zhang X H, Xie S Y, Jiang Z Y, Tian Z Q, Xie Z X, Huang R B, Zheng L S. Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system. J. Phys. Chem. B, 2003,107(37): 10114-10118.
    [25] Hu J Q, Ma X L, Xie Z Y, Wong N B, Lee C S, Lee S T. Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chem. Phys. Lett.,2001,344(1-2):97-100.
    [26] Andelman T, Gong Y Y, Polking M, Yin M, Kuskovsky I, Neumark G, Brien O S. Morphological control and photoluminescence of zinc oxide nanocrystals. J. Phys. Chem. B, 2005,109(30): 14314-14318.
    [27] Xu X L, Lau S P, Chen J S, Chen G Y, Tay B K. Polycrystalline ZnO thin films on Si(100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth,2001,223(1-2):201-205.
    [28] Lavalley J C, Saussey J, Rais T. Infrared study of the interaction between CO and H_2 on ZnO: Mechanism and sites of formation of formyl species. J. Mol.Catal., 1982,17(2-3): 289-298.
    [29] French S A, Sokol A A, Bromley S T, Catlow C R A, Rogers S C, King F, Sherwood P. From CO_2 to Methanol by Hybrid QM/MM Embedding. Angew. Chem. Int. Ed., 2001,40(23): 4437-4440.
    [30] Kohan A F, Ceder G, Morgan D, Van de Walle C G. First-principles study of native point defects in ZnO. Phys. Rev. B, 2000,61(22): 15019-15027.
    [31] Shen X P, YuanA H, Hu Y M, Jiang Y, Xu Z, Hu Z. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology, 2005,16(10): 2039-2043.
    [32] Jin B J, Im S and Lee S Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000 366(1-2): 107-110.
    [33] Valdisla Ischenco, Sebastian Polarz,Dirk Grote,Victrorina Stavarache,Karin Fink,Matthias Driess. Zinc Oxide Nanoparticles with Defects. Advanced functional material, 2005,15(12):1945-1954.
    [1] Sheldrick W S, Wachhold M. Solvatothermale Synthese von Chalkogenidometallaten. Angew. Chem., 1997,109(3):214-234.
    [2] He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO_3 in low temperature and its photocatalytic performance. Journal of Solid State Chemistry, 2004,177(11):3868-3872.
    [3] Chen H I, Chang H Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A:Physicochem. Eng. Aspects 2004, 242(1-3): 61-69.
    [4] Wang W S, Aggarwal M D, Choi J, Gebre T, Shields A D, Penn B G, Frazier D O. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes: I. Solvent effects and growth morphology. Journal of Crystal Growth 1999, 198/199: 578-582.
    [5] Clark H W, Rievert W J, Olken M M. Synthesis and characterization of A1PO-41 in a mixed solvent system. Microporous Materials. 1996,6(3): 115-124.
    [6] Hu M Z C, Payzant E A, Byers C H. Sol-Gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt-Alcohol-Water Solutions. Journal of Colloid and Interface Science , 2000, 222(1): 20-36.
    [7] Manoli F, Dalas E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth, 2000, 218(1-3):359-364.
    [8] Falini G, Gazzano M, Ripamonti A. Magnesium calcite crystallizatin from water-alcohol mixtures. Chemm. Commun., 1996, (9):1037-1038.
    [9] Dickinson S R, McGrath K M. Switching between kinetic and thermodynamic control: calcium carbonate growth in the presence of a simple alcohol. J. Mater. Chem.,2003,13(4):928-933.
    [10]Chen S F,Yu S H.Polymorph Discrimination of CaCO_3 Mineral in an Ethanol/Water Solution:Formation of Complex Vaterite Superstructures and Aragonite Rods.Chem.Mater.,2006,18(1):115-122.
    [11]岳林海,贾志刚,金达莱,郑遗凡,徐铸德.化学学报,2006,64(7):623-628.
    [12]Nayak S K,Jena P.Giant Magnetic Moments and Magnetic Bistability of Stoichiomatric MnO Clusters.Phys.Rev.Lett.,1998,81(14):2970-2973.
    [13]Wang L Z,Sakai N,Ebina Y,Takada K,Sasaki Y.Inorganic Multilayer Films of Manganese Oxide Nanosheets and Aluminum Polyoxocations:Fabrication,Structure,and Electrochemical Behavior.Chem.Mater.2005,17(6):1352-1357.
    [14]Dollimore D.The thermal decomposition of oxalates.A review.Thermochim.Acta,1987,117(2):331-363.
    [15]Ga X,Dollimore D.The thermal decomposition of oxalates:Part 26.A kinetic study of the thermal decomposition of manganese(Ⅱ)oxalate dihydrate Thermochim.Acta.1993,215(5):47-36.
    [16]Nikumbh A K,Athare A E,Pardeshi S K.Thermal and electrical properties of manganese(Ⅱ)oxalate dihydrate and cadmium(Ⅱ)oxalate monohydrate.Thermochim.Acta,1999,326(1-2):187-192.
    [17]顾庆超,楼书聪.化学用表.南京:江苏科技出版社,1979.6-21
    [18]Lerner E,Azoury E,Sarig S.Rapid precipitation of apatite from ethanol-water solution.J.Crystal Growth,1989,97(3-4):725-730.
    [19]Tung M S,O'Farrell T J.Surface properties of hydroxyapatite in fluoride solution.Colloids Surf.1996,110(6):283-285.
    [20]V.A.Fedorov,V.I.Belevantsev,Journal of Molecular Liquids,2003,103,83.
    [21]J.Burgess.Metal Ion in Solution.祝振鑫.向家忠,周浩治 译.北京:原子能出版社.1987.107-109.
    [22]Murakoshi K,Hosokawa H,Tanaka N,Saito M,Wada Y,Yanagida S,Murakoshi K,Sakata T.Mori H.Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction.Chem.Commun.,1998,(3):321-322.
    [23]Huizing A,van Hal H A M,Kwestroo W,Langereis C van Loosdregt P C.Hydrates of manganese(Ⅱ)oxalate.Mat.Res.Bull.,1977,12(6):605-611.
    [24]Lethbridge A Z D,Congreve Z F,Esslemont E,Slawin a M Z,Lightfood P,Synthesis and structure of three manganese oxalate:MC_2O_4 dot 2H_2O_2[C_4H_8(NH_2)_2][Mn_2(C_2O_4)_3],Mn_2(C_2O_4)(OH)_2.Journal of solid state chemistry,2003,172(1):212-218.
    [25]Jacob M U,Perlmutter D D.Thermal decomposition of carbonates,carboxylates,oxalates,acetates,formates,and hydroxides.Thermochim Acta,1981,49(2-3):207-218.
    [26]Donkova B,Mehandjiev D,Mechanism of decomposition of manganese(Ⅱ)oxalate dihydrate and manganese(Ⅱ)oxalate trihydrate.Thermochim Acta,2004,421(1-2):141-149.
    [27]徐杰,杜宝石,王文祥.由DTG曲线确定反应级数的新方法.物理化学学报,1991,7(6):730-734.
    [28]李靖华,张桂恩,王革命,陈文涛.二水合草酸锰脱水过程的机理函数判别和动力学研究.河南师范大学学报(自然科学版),1992,20(4):79-83.
    [29]李靖华,张桂恩,黄山.草酸锰分解过程的机理函数判别和动力学研究.高等学校化学学报,1991,12(11):1513-1516.
    [30]瞿福平,杨义燕.定量结构-生物降解性能关系(QSBR)研究原理及进展.中国环境科学,1999,19(1):18-21.
    [1]Flytzani-Stephanopoulos M,Tianli z,Yue L.Ceria-based catalysts for the recovery of elemental sulfur from SO_2-laden gas streams.Catal Today,2000,62(2-3):145-158.
    [2]Shin M Y,Park D W,Chung J S.Vanadium-containing catalysts for the selective oxidation of H_2S to elemental sulfur in the presence of excess water.Catal Today,2000,63(2-4):405-1411.
    [3]Prasad K R,Miura N.Electrochemical synthesis and characterization of nano-structured tin oxide for electrochemical redox supercapacitors.Electrochemistry Communications,2004,6(8):849-852.
    [4]Zhang F B,Zhou Y K,Li H L.Nanocrystalline NiO as an electrode material for electrochemicalcapacitor.Mater.Chem.Phys.,2004,83(2-3):260-264.
    [5]Prasad R K,Miura N.Electrochemically synthesized MnO_2-based mixed oxides for high performance redox supemapacitors.Electro-chemistry Communications.2004,6(10):1004-1008.
    [6]Matijevic E.Preparation and properties of uniform size colloids Chem.Mater.,1993,5(4):412-426.
    [7]仲维卓.晶体生长[M],北京:中国科学出版社,1999.72-74.
    [8]Jongen N,Bowen P,Lemaitre J,Valmalette J C,Hofmann H.Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose(HPMC):Control of morphology.J.Colloid Interface Sci.,2000,226(2):189-198.
    [9]Pujol O,Bowen P,Stadelmann P A,Hofmann H.Growth and Self-assembly of Nanostructured COC_2O_4·2H_2O Particles.J.Phys.Chem.B,2004,108(35):13128-13136.
    [10]童长钿,李启厚,赖复兴,艾侃.超细草酸镍粒子的制备及其形状和粒度控制.湿法冶金,2003,22(1):22-27.
    [11]Mann S.The Chemistry of Form.Angew.Chem.200,39(19):3392-3406.
    [12]Penn R L,Banfield J F.Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals.Science,1998,281(5379):969-971.
    [1]Shuji E,Tadataka S.Magnetic Properties of Manganese(1I)and Iron(1)Benzoate adducts with 4-Methylquinoline.ITE Letters on Batteries,New Technologies &Medicine,2001,2(4):514-517.
    [2]Leonard F L.Nuclear magnetic resonance studies of coordination metal complexes using lanthanide shift reagents.Coordination Chemistry Reviews,1983,48:83-100.
    [3]罗兆福,杨毅涌,袁良杰等 酸式邻苯二甲酸铜的合成与晶体结构的研究.分析科学学报,2000,16(2):113-117.
    [4]孙瑞卿,张汉辉,杨齐瑜.掺杂钐离子的邻苯二甲酸锌的光谱研究.光谱学与光谱分析.2004,24(5):592-595.
    [5]马洁峰,刘亚明,于群,李建宇.掺杂型发光稀土配合物邻苯二甲酸锶铕的研究.北京工商大学学报(自然科学版).2006,24(5):13-15.
    [6]任慧娟,洪广言,宋心远.邻苯二甲酸铽发光纤维的研究.中国稀土学报.2005,23(1):125-128.
    [7]任慧娟,洪广言,宋心远,刘桂霞,张学伟.邻苯二甲酸铕发光配合物的合成与表征.吉林大学学报(理学版).2004,42(4):612-615.
    [8]李庆福,黄世华,刘舒曼,张希清.ZnO:Eu~(3+)纳米晶的制备及其光谱分析激光与红外。2003,33(2):145-147.
    [9]Kaspar J,Fornasiero M,Graziani M.Use of CeO_2-based oxides in the three-way catalysis.Catalysis Today,2000,50(2):285-298.
    [10]Noriya I,Woosuck S,Norimitsu M.Resistive-oxygen gas sensors based on CeO_2 fine powder prepared using mist pyrolysis.Sensors and Actuators B,2002,87(1):95-98.
    [11]Wang T W,Sel O,Djerdj I,Smarsly B.Preparation of a large Mesoporous CeO_2with crystalline walls using PMMA colloidal crystal templates.Colloid and Polymer Science,2006,285(1):1-9.
    [12]Terribile D,Trovarelli A.The synthesis and characterization of mesoporous high surface area ceria prepared using a hybrid organic/inorganic route.Journal of Catalysis,1998,178(1):299-308.
    [13]Lundberg M,Cesa F.Mesoporous thin films of high surface area crystalline cerium dioxide.Microporous and Mesoporous Materials,2002,54(1-2):97-103.
    [14]Levy C,Guizard C.Synthesis of ceria based ion conducting mesoporous membranes by soft chemistry.Separation and Purification Technology,2003,32(1-3):327-333.
    [15]孙聚堂,王东利,张克文,王春林.邻苯二甲酸锌配合物的合成、红外光谱和晶体结构.应用化学,1997,14(5):98-100.
    [16]Dijken A V,Meulenkamp E A,Vanmaekelbergh D.The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission.J.Lumin.,2000,454(87-89):454-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700