氢氧化镁、氧化锌微/纳米结构的软化学合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳米材料尺寸、形状相关的物理性质为材料的潜在应用提供了广阔的空间,而构筑结构复杂的纳米粒子进一步提升了它们的功能。本论文以氢氧化镁和氧化锌为研究对象,旨在探索其复杂的微/纳米结构的有效液相化学合成途径,并通过控制合成条件来控制产物的微观形貌。
     电沉积技术是一种液相电化学沉积方法,已被广泛地用来制备不同纳米薄膜以及氧化物、金属硫化物和氢氧化物等薄膜。电沉积通常在室温条件下操作,沉积的量由Faraday定律控制,并可通过改变沉积电位、电流密度、溶液组成等控制膜的厚度及结构:此外,电沉积技术工艺简单、价格低廉,是一种经济的沉积方法。
     化学液相沉积类似化学气相沉积技术,将含有构成薄膜成分的一种或几种化合物和单质通过液相供给基片表面,产生化学反应而形成不挥发的固态膜层或材料的方法。其基本要求是基片表面必须有异相的化学反应。该方法具有薄膜沉积速率适中、沉积温度低、可在任何形状和大小的基片上沉积,膜的组成和晶型易于通过沉积条件精确控制等优点。
     氢氧化镁作为一种重要的无机功能材料,被广泛地用于复合材料中无卤防火阻燃填充剂,催化剂、添加剂和陶瓷前驱体。纯品氢氧化镁为六方晶系或无定形片状晶体,是一种无机弱碱类产品,因其具备较强的缓沖性能、较高的活性和吸附能力、处理使用安全以及无腐蚀性、无毒、无害等诸多独特性能,因此被称为“绿色安全中和剂”、“环境友好阻燃剂”以及“第三种碱”。
     氧化锌作为是一种重要的直接宽禁带半导体,因其无毒、廉价和化学稳定性并具有优良光、电和化学性质。因此被广泛用于光电子、涂料、化装品、催化剂和气体传感器等领域。
     本论文的主要工作对氢氧化镁和氧化锌微/纳米结构的新颖软化学合成及其表征进行了较为系统的研究,并取得了以下主要创新性研究成果:
     1.采用简单分子辅助化学液相沉积的方法,在近室温和室温条件下分别在甲酰胺水溶液和氨基乙酸水溶液中合成了层状和三维花状微/纳米结构的氢氧化镁。比较系统地考察了反应物浓度、反应时间、反应温度对氢氧化镁微/纳米结构的影响。初步研究了形成这种特殊微/纳米结构的可能机理。该方法具有反应条件温和,反应参数可调控,不引入外来杂质等优点。
     2.采用阴极还原电沉积的方法,室温下直接在硝酸镁水溶液中沉积得到一层均匀的氢氧化镁薄膜。该膜是由纳米壁构成的均匀网络结构。通过XRD、TG/DSC、FT-IR等物理手段确认所得产物为介观层状氢氧化镁,具有类似分子筛和水滑石层状结构;其次,考虑了两种不同的添加剂(醋酸钠和水溶性离子液体)对电沉积氢氧化镁微结构的影响。在此基础上比较系统地考察了添加剂浓度、沉积时间和沉积电压对所沉积薄膜的影响。并初步阐述了添加剂对所沉积薄膜的作用机理。
     3.采用非水溶液电沉积金属锌膜,然后对其在常压空气中煆烧得到了具有(002)取向加强的氧化锌薄膜。系统地考查了热氧化温度、沉积电位、热处理时间、不同锌盐前驱体对所得薄膜的影响。
     4.采用简单化学液相沉积的方法,在近室温条件下分别在甲酰胺水溶液和溴酸钾水溶液中合成了纳米棒/管构成的海蛰状和纺锤形氧化锌微/纳米结构。考察了反应物浓度对氧化钠微/纳米结构及其荧光性质的影响,并对所形成的特殊微/纳米结构的可能机理作了初步的探讨;其次,研究了柠檬酸三钠添加剂在甲酰胺水溶液液相化学氧化金属锌箔沉积氧化锌微/纳米结构的影响;再次,考察了不同衬底在六次甲基四胺-硝酸锌体系中对沉积氧化锌纳米结构的影响。该方法具有反应条件温和,反应参数可调控,可一步湿法直接合成氧化锌新颖微/纳米结构等优点。
     本论文提出了用简单液相化学沉积及其电沉积的方法制备特殊微/纳米结构的氢氧化镁和氧化锌。这些方法在制备金属氧化物和金属氢氧化物特殊结构具有方法简便,可操作性强等优点,并且所得的薄膜比其它方法制得的薄膜更具有厚度均匀、附着力强、方便控制材料的尺寸和形状等优点。
The ability to control and manipulate the physical and chemical properties of materials as we desired is one of the challenging issues in chemistry and materials science.The size- and shape-dependent physical properties of inorganic nanoparticles provide tunable materials with broad potential applications,and the fabrication of structurally complex nanoparticles further enhances their functionality.This dissertation aims at searching for effective solution routes to synthesize complex micro/nanostructured magnesium hydroxide and zinc oxide,control the morphology of the products by adjusting the reaction conditions.
     Elelctrodeposition has evolved recently to a simple and effective liquid phase method for fabrication of homogenous thin layers of insoluble materials,such as metal,ceramics,metal sulfide and metal hydroxide.Electrodeposition usually operates at room temperature and the quantity of deposition is determined by Faraday law,which is very suitable for preparing thin films.Thickness and structure of films can be precisely controlled by electrochemical parameters on conductive substrate of complex shapes,such as deposition potential,current density and solution composition.Moreover,electrodeposition is an economical deposition method due to simple process and inexpensive equipment.
     The chemical-liquid-deposition process,an analogue to the widely used chemical-vapor-deposition technique,has been well developed for production of insoluble solid films or materials through continuous supply,transport,and chemical reaction of film constituent in a liquid phase.Its basic requirement is heterogeneous chemical reaction on the substrate surface.This method has several merits:(a) appropriate deposition rates can be easily obtained;(b)operation can be achieved at low temperature at ambient conditions;(c)relatively uniform films can be formed on substrates of complex shapes and different size;(d)composition and crystallite of films can be precisely controlled by deposition conditions.
     Magnesium hydroxide is widely used as halogen-free flame retardant filler in composites materials,catalysis,and additive in refractory and paint,precursor for ceramics.Pure magnesium hydroxide,hexagonal or amorphous platelet crystal,is an inorganic weak alkali product.Due to its relatively strong buffer capacity,high activity and adsorption ability,safe disposal and treatment,magnesium hydroxide is considered to green and safe neutralization agent,environment friendly fire-retardant and the third alkaline while being noncorrosive,nontoxic and nonpoisonous.
     Znic oxide,an important direct n-type semiconductor with a band gap of 3.37 eV and a large exciton binding energy of 60 meV,and a high efficiency of exciton recombination at room temperature,has excellent optical,chemical,and electrical properties while being nontoxic,inexpensive,and chemically stable.ZnO has attracted considerable attention recently for various potential applications in optoelectronics,paints,cosmetics,catalysis and gas sensor.
     The main work of this thesis is systematically study on novel soft synthesis and characterization of micro/nanostructured magnesium hydroxide and zinc oxide.The details are given as follows:
     1.Lamellar-like and 3D flower-like Mg(OH)_2 were synthesized in formamide and glycine aqueous solution at near room temperature and room temperature through simple molecule assisted chemical-liquid-deposition process.Effects of reactant concentration,time and temperature on micro/nanostructured magnesium hydroxide were systematically investigated.The possible formation mechanism of these special micro/nanostructures was also discussed.The convenient,self-seeding growth of Mg(OH)_2 nanostructure not only has an attractive economical,but also avoids the incorporation of exotic metals and metals oxides as catalysts or seed particles, respectively.The exclusion of exotic metal catalysts and counterions(from Mg salt involved in other wet-chemical approaches)is very crucial for fabricating reliable and exquisite materials without unintentional properties.
     2.Uniform magnesium hydroxide thin film was obtained from directly electrolysis of magnesium nitrate aqueous solution at room temperature.The film with net-like was built up of nanowall.The as-synthesized magnesium hydroxide with highly textural lamellar mesostructure analogue to zeolite and layered double hydroxide was confirmed by XRD、TG/DSC、FT-IR techniques.Secondly,effects of sodium acetate and water-soluble ionic liquid additives on electrodeposited magnesium hydroxide microstructure were studied,then the influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide thin films deposited from nitrate bath was investigated,such as concentration of additive,duration and applied potential.A possible interaction mechanism responsible for morphologies evolution of thin films was preliminarily elucidated.
     3.A novel route was developed to prepare the polycrystalline ZnO thin films with(002)orientation enhancement by air annealing of zinc metallic films electrodeposited from nonaqueous solution without using any catalyst and template. Effects of annealing temperature,applied potential,annealing duration,different zinc salt precursor on thin films were systematically conducted.
     4.Urchin-like built up of nanorod/tube and spindle-like ZnO were synthesized in formamide and potassium bromate aqueous solution at near room temperature through simple chemical-liquid-deposition process.Effects of reactant concentration on zinc oxide micro/nanostructures and photofluorescence was carried out.The possible formation mechanisms of these unique micro/nanostructures were also presented.Secondly,effects of trisodium citrate additive on chemical-liquid-deposition zinc oxide nano/microstructure were executed.Finally,the influence of different substrate on the nature of zinc oxide grown from zinc nitrate and hexamethylenetetramine system through chemical-bath-deposition process was investigated.Novel micro/nanostructured zinc oxide can be directly obtained by simply adjusting reaction parameters at ambient conditions.
     In this thesis,unique micro/nanostructured magnesium hydroxide and zinc oxide were fabricated through simple chemical-liquid-deposition and cathodic electrodeposition.These methods have advantage over convenient,easy to operation. Moreover,the as-synthesized films were uniform thickness,good adhesion and well tailoring of shape and size compared with other methods.
引文
1.张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    2.张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2001.
    3.王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002.
    4.Hu J Q,Li Q,Meng X M,Lee C S,Lee S T.Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes.Chem.Mater 2003,15(1):305-308.
    5.Yao B D,Chan Y F,Wang N.Formation of ZnO nanostructures by a simple way of thermal evaporation.Appl.Phys.Lett.2002,81(4):757-759.
    6.Searson P C.Electrochemical deposition of novel materials and structures.Solar Energy Mater.& Solar Cell 1992,27(4):377-388.
    7.Therese G H A,Kamath P V.Electrochemical synthesis of metal oxides and hydroxides.Chem.Mater.2000,12(5):1195-1204.
    8.Zhitomirsky I.Cathodic electrodeposition of ceramic and organoceramic materials Fundamental aspects.Advances in Colloid & Interface Science 2002,97(1-3):279-317.
    9.Endres F.Ionic liquids:Solvents for the electrodeposition of metals and semiconductors.ChemPhysChem 2002,3(2):144-154.
    10. Baumgartner M E, Gabe D R. Palladium-iron alloy electrodeposition. Part Ⅰ Single metal systems. Transactions of the Institute of Metal Finishing 2000, 78: 11-16.
    
    11. Baumgartner M E, Gabe D R. Palladium-iron alloy electrodeposition. Part Ⅱ alloy plating systems. Transactions of the Institute of Metal Finishing 2000, 78: 79-85
    
    12. Penner R M. Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 2002,106 (13): 3339-3353.
    
    13. Orinakova R, Turonova A, Kladekova D, Galova M, Smith R M. Recent developments in the electrodeposition of nickel and some nickel-based alloys. J. Appl. Electrochem. 2006, 36 (9):957-972.
    
    14. Huang Q, Davis D, Podlaha E J. Electrodeposition of FeCoNiCu nanowires. J. Appl. Electrochem. 2006, 36 (8): 871-882.
    
    15. Turyan I, Mandler D. Two-dimensional polyaniline thin film electrodeposited on a self-assembled monolayer. J. Am. Chem. Soc. 1998, 120 (41): 10733-10742.
    
    16. Biallozor S, Kupniewska A. Conducting polymers electrodeposited on active metals. Synthetic Metals 2005, 155 (3): 443-449.
    
    17. Krylova I. Painting by electrodeposition on the eve of the 21st century. Progress in Organic Coatings 2001, 42 (3-4): 119-131.
    
    18. Zhou S M, Feng Y S, Zhang L D. A two-step route to self-assembly of CdS nanotubes via electrodeposition and dissolution. Eur. J. Inorg. Chem. 2003, (9): 1794-1797.
    
    19. Lade S J, Lokhande C D. Electrodeposition of CdS from non-aqueous bath. Mater. Chem. & Phys. 1997,49(2): 160-163.
    
    20. Colletti L P, Flowers B H, Stickney J L. Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. J. Electrochem. Soc. 1998, 145 (5): 1442-1449.
    
    21. Colletti L P, Stickney J L. Optimization of the growth of CdTe thin films formed by electrochemical atomic layer epitaxy in an automated deposition system. J. Electrochem. Soc.1998, 145 (10): 3594-3602.
    
    22. Ruach-Nir I, Zhang Y, Popovitz-Biro R, Rubinstein I, Hodes G. Shape control in electrodeposited, epitaxial CdSe nanocrystals on (111) gold. J. Phys. Chem. B 2003, 107(10):2174-2179.
    
    23. Rajeshwar K. Electrosynthesized thin films of group Ⅱ-Ⅵ compound semiconductors, alloys and superstructures. Adv. Mater. 1992, 4(1): 23-29.
    
    24. Switzer J A, Shumsky M G, Bohannan E W. Electrodeposited ceramic single crystals. Science 1999, 284: 293-296.
    
    25. Switzer J A, Hung C J, Brefogle B E, Shumsky M G, Van Leeuwen R, Golden T D. Electrodeposited defect chemistry superlattices. Science 1994, 264: 1573-1576.
    
    26. Golden T D, Raffaelle R P, Switzer J A. Cross-sectional scanning tunneling microscopy of electrodeposited metal oxide superlattices. Appl. Phys. Lett. 1993, 63(11): 1501-1503.
    
    27. Switzer J A, Shane M J, Phillips R J. Electrodeposited ceramic superlattices. Science 1990, 247: 444-446.
    28.Switzer J A,Golden T D.Scanning tunneling microscopy of nanoscale electrodeposited superlattices.Adv.Mater.1993,5(6):474-476.
    29.Phillips R J,Golden T D,Shumsky M G,Bohannan E W,Switzer J A.Electrodeposition of textured ceramic superlattices in the Pb-Tl-O system.Chem.Mater.1997,9(7):1670-1677.
    30.Van Leeuwen R A,Hung C J,Kammler D R,Switzer J A.Optical and electronic transport properties of electro&posited thallium(Ⅲ)oxide films.J.Phys.Chem.1995,99(41):15247-15252.
    31.Coyle R T,Switzer J A.Electrochemical synthesis of ceramic films and powders.U S Patent 4882014,November 21,1989.
    32.Jayashree R S,Kamath P V.Nickel hydroxide electrodeposition from nickel nitrate solutions:mechanistic studies.J Power Sources 2001,93(1-2):273-278.
    33.Peulon S,Lincot D.Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films.Adv.Mater.1996,8(2):166-170.
    34.Prasad K R,Koga K,Miura N.Electrochemical deposition of nanostructured indium oxide:High-performance electrode material for redox supercapacitors.Chem.Mater.2004,16(10):1845-1847.
    35.Kondrachova L,Hahn B P,Vijayaraghavan G,Williams R D,Stevenson K J.Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.Langmuir 2006,22(25):10490-10498.
    36.Redepenning J,Mcisaac J P.Electrocrystallization of brushite coatings on prosthetic alloys.Chem.Mater.1990,2(6):625-627.
    37.Pauporte T,Lincot D.Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride.Appl.Phys.Left 1999,75(24):3817-3819.
    38.Barton J K,Vertegel A A,Bohannan E W,Switzer J A.Epitaxial electrodeposition of copper(Ⅰ)oxide on single-crystal copper.Chem.Mater.2001,13(3):952-959.
    39.Nikiforov M P,Vertegel A A,Shumsk-y M G,Switzer J A.Epitaxial electrodeposition of Fe_3O_4 on single-crystal Au(111).Adv.Mater.2000,12(18):1351 - 1353.
    40.Bohannan E W,Shumsky M G,Switzer J A.Epitaxial electrodeposition of copper(Ⅰ)oxide on single-crystal gold(100).Chem.Mater.1999,11(9):2289-2291.
    41.Shankar K,Mor G K,Fitzgerald A,Grimes C A.Cation effect on the electrochemical formation of very high aspect ratio TiO_2 nanotube arrays in formamide-water mixtures.J.Phys.Chem.C 2007,111(1):21-26.
    42.Lei Y,Zhang L D,Fan J C.Fabrication,characterization and Raman study of TiO_2 nanowire arrays prepared by anodic oxidative hydrolysis of TICl_3.Chem.Phys.Lett.2001,338(4-6):231-236.
    43.Tsuchiya H,Schmuki P.Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization.Electrochem.Comm.2005,7(1):49-52.
    44.Oishi T,Matsubara T,Katagiri A.Formation of porous TiO_2 by anodic oxidation and chemical etching of titanium.Electrochemistry 2000,68(2):106-111.
    45.Brefogle B E,Phillips R J,Switzer J A.Epitaxial electrodeposition of silver oxide nitrate (Ag(Ag_3O_4)_2NO_3)onto highly-oriented conducting metal oxides in the lead-thallium-oxygen system.Chem.Mater.1992,4(6):1356-60.
    46.Niederberger M,Colfen H.Oriented attachment and mesocrystals:Non-classical crystallization mechanisms based on nanoparticle assembly.Phys.Chem.Chem.Phys.2006,8(28):3271-3287.
    47.Zhang H,Edwards E W,Wang D Y,Mohwald H.Directing the self-assembly of nanocrystals beyond colloidal crystallization.Phys.Chem.Chem.Phys.2006,8(28):3288-3299.
    48.Zhang WZ,Qiao X L,Chen J G.Synthesis and characterization of silver nanoparticles in AOT microemulsion system.Chem.Phys.2006,330(3):495-500.
    49.Yang J,Lin C K,Wang Z L,Lin J.In(OH)3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties.Inorg.Chem.2006,45(22):8973-8979.
    50.Tian Z R,Voigt J A,Liu,J,Mckenzie B,Mcdermott M J.Biomimetic arrays of oriented helical ZnO nanorods and columns.J.Am.Chem.Soc.2002,124(44):12954-12955.
    51.Wen X,Zhang W,Yang S.Synthesis of Cu(OH)_2 and CuO nanoribbon arrays on a copper surface.Langmuir 2003,19(14):5898-5903.
    52.Wang W Z,Lan C,Li Y Z,Hong K Q,Wang G H.A simple wet chemical route for large-scale synthesis of Cu(OH)_2 nanowires.Chem.Phys.Lett.2002,366(3-4):220-223.
    53.贾修伟.纳米阻燃材料.北京:化学工业出版社,2004
    54.向兰,吴会军,金永成,王金福.阻燃型氢氧化镁制备技术评述.海湖盐与化工,2001,30(5):1-4.
    55.Rothon R N,Homsby P R.Flame retardant effects of magnesium hydroxide.Polym.Degrad & Stab.1996,54(2-3):383-385.
    56.Chin S H,Wang W K.The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene.J.Appl.Polym.Sci.1998,67(6):989-995.
    57.郭如新 氢氧化镁在工业废水处理中的应用.工业小处理,2000,20(2):1-4.
    58.Dagaonkar M V,Beenackers A A C M,Pangarkar V G.Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell.Chem.Eng.Sci.2001,56(3):1095-1101.
    59.Gibson A,Wajer M.The use of magnesium hydroxide as an alkali and cellulose protector in chemical pulp bleaching.Pulp & Paper-Canada 2003,104(11):28-32.
    60.Thakore A,Oei J,Ringrose B,Gibson A,Wajer M.The use of magnesium hydroxide as a cost effective cellulose protector in the pressurized alkaline peroxide(Eop)bleaching stage.Pulp & Paper-Canada 2005,106(5):46-49.
    61.Li Z,Court G,Belliveau R,Crowell M,Murphy R,Gibson A,Wader M,Branch B,Ni Y.Using magnesium hydroxide(Mg(OH)_2)as the alkali source in peroxide bleaching at Irving paper.Pulp & Paper-Canada 2005,106(6):24-28.
    62.Zu P,Tang Z K,Wong G K L,Kawasaki M,Ohtomo A,Koinuma H,Segawa Y.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature.Sol.Stat.Comm.1997,103(8):459-463.
    63.Look D C,Claflin B,Alivov Y I,Park S J.The future of ZnO light emitters.Phys.Stat.Sol.(a)2004,201(10):2203-2212.
    64.Herrera-Zaldivar M,Valenzuela-Benavides J,Pal U.STM and STS characterization of ZnO nanorods.Optical Mater.2005,27(7):1276-1280.
    65.Tak Y,Yong K.Cont rolled growth of well aligned ZnO nanorod array using a novel solution method.J.Phys.Chem.B 2005,109(41):19263-19269.
    66.Ji Y L,Guo L,Xu H,Simon P,Wu Z.Regularly shaped,single-crystalline ZnO nanorods with wurtzite structure.J.Am.Chem.Soc.2002,124(50):14864-14865.
    67.Zheng M J,Zhang L D,Li G H,Shen W Z.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique.Chem.Phys.Lett.2002,363(1-2):123-128.
    68.Wang Q T,Wang G Z,Xu B,Jie J S,Han X H,Li G P,Li Q S,Hou J G.Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane.Mater.Lett.2005,59(11):1378-1382.
    69.Reynolds D C,Look D C,Jogai B,Litton C W,Cantwell G,Harsch W C.Valence-band ordering in ZnO.Phys.Rev.B 1999,60(4):2340-2344.
    70.van Dijken A,Meulenkamp E A,Vanmaekelbergh D,Meijerink A.The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission.J.Lumin.2000,(87/89):454-456.
    71.Reynolds D C,Look D C,Jogai B.Fine structure on the green band in ZnO J.Appl.Phys.2001,89(11):6189-6191.
    72.Look D C.Recent advances in ZnO materials and devices.Mater.Sci.Eng.B 2001,80(1-3):383-387.
    73.Park W I,Yi G C.Schottky nanocontacts on ZnO nanorod arrays.Appl.Phys.Lett 2003,82(24):4358-4360.
    74.Dietl T.Ferromagnetic semiconductors.Semicond.Sci.Technol.2002,17(4):377-392.
    75.Heo Y W,Norton D P,Tien L C,Kwon Y,Kang B S,Ren F,Pearton S J,LaRoche J R.ZnO nanowire growth and devices.Mater.Sci.Eng.2004,R 47(1-2):1-47.
    76.杨凤霞,刘其丽,毕磊.纳米氧化锌的应用综述.安徽化工 2006,139(1):13-17.
    77.Huang M H,Mao S,Feick H,Yan H Q,Wu Y Y,Kind H,Weber E,Russo R,Yang P D。Room-temperature ultraviolet nanowire nanolasers.Science 2001,292:1897-1899.
    1.贾修伟.纳米阻燃材料.北京:化学工业出版社,2004
    2.Rothon R N,Homsby P R.Flame retardant effects of magnesium hydroxide.Polym.Degrad.& Stab.1996,54(2-3):383-385.
    3.Chiu S H,Wang W K.The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene.J.Appl.Polym.Sci.1998,67(6):989-995.
    4.Yu J C,Xu A,Zhang L,Song R,Wu L.Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates.J.Phys.Chem.B 2004,108(1):64-70.
    5.Xiang L,Jin Y C,Jin Y.Study on the growth of magnesium hydroxide crystals.Chin.J.Inorg.Chem.2003,19(8):837-842.
    6.Lv J,Qiu L Z,Qu B J.Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method.J.Cryst.Growth 2004,267(3-4):676-684.
    7.Lv J,Qiu L Z,Qu B J.Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends.Nanotechnology 2004,15(11):1576-1581.
    8.Jia B P,Gao L.Morphology transformation of nanoscale magnesium hydroxide:from nanosheets to nanodisks.J.Am.Ceram.Soc.2006,89(12):3881-3884.
    9.Giorgi R,Bozzi C,Dei L G,Gabbiani C,Ninham B W,Baglioni R Nanoparticles of Mg(OH)_2:Synthesis and application to paper conservation.Langmuir 2005,21(18):8495-8501.
    10.Henrist C,Mathieu J P,Vogels C,Rulmont A,Cloots R.Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution.J.Cryst.Growth 2003,249(1-2):321-330.
    11.Liang CH,Sasaki T,Shimizu Y,Koshizaki N.Pulsed-laser ablation of Mg in liquids:surfactant-directing nanoparticle assembly for magnesium hydroxide nanostmctures.Chem. Phys.Lett.2004,389(1-3):58-63.
    12.Ranjit K T,Klabunde K J.Solvent effects in the hydrolysis of magnesium methoxide,and the production of nanocrystalline magnesium hydroxide.An aid in understanding the formation of porous inorganic materials.Chem.Mater.2005,17(1):65-73.
    13.Shirure V S,Pore A S,Pangarkar V G.Intensification of precipitation using narrow channel reactors:Magnesium hydroxide precipitation.Industrial & Eng.Chem.Res.2005,44(15):5500-5507.
    14.Mckelvy M,Sharma R,Chizmeshya A G,Carpenter R W,Streib K,Magnesium hydroxide dehydroxylation:In situ nanoscale observations of lamellar nucleation and growth.Chem.Mater.2001,13(3):921-926.
    15.Ding Y,Zhang G T,Wu H,Hai B,Wang L B,Qian Y T.Nanoscale magnesium hydroxide and magnesium oxide powders:Control over size,shape,and structure via hydrothermal synthesis.Chem.Mater.2001,13(2):435-440.
    16.Yah C L,Xue D F,Zou L J,Yan X X,Wang W.Preparation of magnesium hydroxide nanoflowers.J.Cryst.Growth 2005,282(3-4):448-454.
    17.Li Y D,Sui M,Ding Y,Zhang G;Zhuang J H,Wang C.Preparation of Mg(OH)_2 nanorods.Adv.Mater.2000,12(11):818-821.
    18.Hao L,Zhu C,Mo X,Jiang W,Hu Y,Zhu Y,Chen Z.Preparation and characterization of Mg(OH)_2 nanorods by liquid-solid arc discharge technique.Inorg.Chem.Comm.2003,6(3):229-232.
    19.Booster J L,Van Sandwijk A,Reuter M A.Conversion of magnesium fluoride to magnesium hydroxide.Minerals Eng.2003,16(3):273-281.
    20.Therese G H A,Kamath P V.Cathodic reduction of different metal salt solutions Part Ⅰ:synthesis of metal hydroxides by electrogeneration of base.J.Appl.Electrochem.1998,28(5):539-543.
    21.Dinamani M,Kamath P V.Electrosynthesis of Mg(OH)_2 coatings on stainless steel substrates.J.Appl.Electrochem.2004,34(9):899-902.
    22.Ranjit K T,Klabunde K J.Amphiphilic templating of magnesium hydroxide.Langmuir 2005,21(26):12386-12394.
    23.Yang D N,Zhang J,Wang R M,Liu Z F.Solution phase synthesis of magnesium hydroxide sulfate hydrate nanoribbons.Nanotechnology 2004,15(11):1625-1627.
    24.Zhou Z Z,Sun Q H,Hu Z S,Deng Y L.Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.J.Phys.Chem.B 2006,110(27):13387-13392.
    25.Ding Y,Zhang G T,Zhang S Y,Huang X M,Yu,W C,Qian Y T.Preparation and characterization of magnesium hydroxide sulfate hydrate whiskers.Chem.Mater.2000,12(10):2845-2852.
    26.Yue T,Gao S Y,Zhu L X,Xia S P,Yu K B.Crystal growth and crystal structure of magnesium oxysulfate 2MgSO_4·Mg(OH)_2·2H_2O.J.Mol.Struct.2002,616(1-3):247-252.
    27.Lu H D,Hu Y A,Yang L,Wang Z Z,Chen Z Y,Fan W C.Study of the fire performance of magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene.Macromol.Mater.& Eng.2004,289(11):984-989.
    28.Ding Y,Zhao H Z,Sun Y G,Zhang G T,Wu H,Qian Y T.Superstructured magnesium hydroxide sulfate hydrate fibres:Photoluminescence study.Int.J.Inorg.Mater.2001,3(2):151-156.
    29.Zhu W C,Xiang L,He T B,Zhu S L.Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers.Chem.Lett.2006,35(10):1158-1159.
    30.Botha A,Strydom C A.Preparation of magnesium hydroxy carbonate from magnesium hydroxide.Hydrometallurgy 2001,62(3):175-183.
    31.van der Merwe E M,Strydom C A.Quantitative thermogravimetric analysis of binary mixtures - Magnesium hydroxide and magnesium acetate.J.Therm.Anal.& Calorim.2004,76(1):149-156.
    32.L'vov BV,Novichikhin A V,Dyakov A O.Mechanism of thermal decomposition of magnesium hydroxide.Thermochim.Acta 1998,315(2):135-143.
    33.Khusnutdinov V A.The kinetics of thermal decomposition of magnesium carbonates and hydroxide.Zhurnal Fizicheskoi Khimii 1998,72(11):2081-2082.
    34.Halikia I,Neou-Syngouna P,Kolitsa D.Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data.Thermochim.Acta 1998,320(1-2):75-88.
    35.Oliveira E F,Hase Y.Infrared study and isotopic effect of magnesium hydroxide.Vibr.Spectrosc.2001,25(1):53-56.
    36.Ostwald H R,Asper R.Bivalent metal hydroxides,in R.M.A.Lieth(Ed.),Physics and Chemistry of Mineral with Layered Structures,Vol.1,Reidel,Dordrecht,1977,pp.71-86.
    37.Niederberger M,Colfen H.Oriented attachment and mesocrystals:Non-classical crystallization mechanisms based on nanoparticle assembly.Phys.Chem.Chem.Phys.2006,8(28):3271-3287.
    38.Mann S.The chemistry of form.Angew.Chem.Int.Ed.2000,39(19):3393-3406.
    39.Burford N,Eelman M D,Mahony D E,Morash M.Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry:Assessing the biochemical fate of bismuth pharmaceutical agents.Chem.Commun.2003,(1):146-147.
    40.Zhang B,Ye X,Dai W,Hou W,Xie Y.Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni_3S_2 nanostructures grown directly on nickel foils.Chem.Eur.J.2006,12(8):2337-2342.
    1.Luo H M,Zhang J F,Yan Y S.Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases.Chem.Mater.2003,15(20):3769-3773.
    2.Choi K-S,Lictenegger H C,Stucky G D,McFarland E W.Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces.J.Am.Chem.Soc.2002,124(42):12402-12403.
    3.Tan Y,Steinmiller E M P,Choi K-S.Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating.Langmuir 2005,21(21):9618-9624.
    4.Tan Y,Srinivasan S,Choi K -S.Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions.J.Am.Chem.Soc.2005,127(10):3596-3604.
    5.Xing L L,Li D P,Hu S X,Jing H Y,Fu H L,Mai Z H,Li M.Electrochemical growth of highly oriented organic-inorganic superlattices using solid-supported multilamellar membranes as templates.J.Am.Chem.Soc.2006,128(5):1749-1754.
    6.Yarger M S,Steinmiller E M P,Choi K S.Electrochemical synthesis of cobalt hydroxide films with tunable interlayer spacings.Chem.Commun.2007,(2):159-161.
    7.Baeck S H,Choi K S,Jaramillo T F,Stucky G D,McFarland E W.Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO_3 thin films.Adv.Mater.2003,15(15):1269-1273.
    8.Ranjit K T,Klabunde K J.Amphiphilic templating of magnesium hydroxide.Langmuir,2005,21(26):12386-12394.
    9.Alivisatos A P.Semiconductor clusters,nanocrystals,and quantum dots.Science,1996,271:933-937.
    10. Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32(5):435-45.
    
    11. Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 1999, 402: 393-395.
    
    12. Mann S. The chemistry of form. Angew.Chem.Int.Ed. 2000, 39(19):3392-3406.
    
    13. van Bommel K J C, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew.Chem.Int.Ed. 2003, 42(9): 980-999.
    
    14. Tian Z R, Voigt J, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H, Xu H. Complex and oriented ZnO nanostructures. Nature Mater. 2003, 2(12): 821-826.
    
    15. Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater. 2000, 12(5): 1195-1204.
    
    16. Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem.Int. Ed. 2005,44 (21): 3218-3223.
    
    17. Siegfried M J, Choi K S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 2004, 16 (19): 1743-1746.
    
    18. Siegfried M J, Choi K S. Elucidating the effect of additives on the growth and stability of Cu_2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 2006, 128(32): 10356-10357.
    
    19. Xu L F, Guo Y, Liao Q, Zhang J P, Xu D S. Morphological control of ZnO nanostructures by electrodeposition. J. Phys. Chem. B 2005, 109 (28): 13519-13522.
    
    20. Therese G H A, Kamath P V. Cathodic reduction of different metal salt solutions Part I: synthesis of metal hydroxides by electrogeneration of base. J. Appl. Electrochem. 1998, 28(5):539-543.
    
    21. Dinamani M, Kamath P V. Electrosynthesis of Mg(OH)_2 coatings on stainless steel substrates. J. Appl. Electrochem. 2004, 34(9):899-902.
    
    22. Matsumoto Y, Morikawa T, Adachi H, Hombo J. A new preparation method of barium titanate perovskite film using electrochemical reduction. Mater. Res. Bull., 1992, 27(11): 1319-1327.
    
    23. Switzer J A. Eelctrochemical synthesis of ceramic films and powders. Am.Ceram.Soc.Bull. 1987,66(10): 1521-1524.
    
    24. Hu G, O'Hare D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J. Am.Chem.Soc. 2005, 127(50): 17808-17813.
    
    25. Xu Z P, Zeng H C. Abrupt structural transformation in hydrotalcite-like compounds Mg_(1-x)Al_x(OH)_2(NO_3)_x·H_2O as a continuous function of nitrate anions. J. Phys. Chem. B 2001,105(9): 1743-1749.
    
    26. Sato H, Morita A, Ono K, Nakano H, Wakabayashi N, Yamagishi A. Templating effects on the mineralization of layered inorganic compounds: (1) Density functional calculations of the formation of single-layered magnesium hydroxide as a brucite model. Langmuir 2003, 19(17): 7120-7126.
    
    27. Oliveira E F, Hase Y. Infrared study and isotopic effect of magnesium hydroxide. Vibr. Spectrosc. 2001,25(1): 53-56.
    
    28. Wu Q, Olafsen A, Vistad O B, Roots J, Norby P. Delamination and restacking of a layered double hydroxide with nitrate as counter anion. J. Mater. Chem. 2005, 15(44): 4695-4700.
    
    29. Xiao Z L, Han C Y, Kwok W K, Wang H H, Welp U, Wang J, Crabtree G W. Tuning the architecture of mesostructures by electrodeposition. J. Am. Chem. Soc. 2004,126(8):2316-2317.
    
    30. Polatides C, Kyriacou G. Electrochemical reduction of nitrate ion on various cathodes-reaction kinetics on bronze cathode. J. Appl. Electrochem. 2005, 35(5): 421-427.
    1.Seddon K R.Ionic liquids for clean technology.J.Chem.Tech.Biotechnol.1997,68(4):351-356.
    2.Antonietti M,Kuang D B,Smarsly B,Yong Z.Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures.Angew.Chem.Int.Ed2004,43(38):4988-4992.
    3.Nakashima T,Kimizuka N.Interfacial synthesis of hollow TiO_2 microspheres in ionic liquids.J.Am.Chem.Soc.2003,125(21):6386-87.
    4.Zhu Y J,Wang W W,Qi R J,Hu X L.Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids.Angew.Chem.Int.Ed.2004,43(11):1410-1414.
    5.Zhou Y,Schattka J H,Antonietti M.Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique.Nano Lett.2004,4(3):477-81.
    6.Abedin S Z El,Borissenko N,Endres F.Electrodeposition of nanoscale silicon in a room temperature ionic liquid.Electrochem.Commun.2004,6(5):510-514.
    7.Abbott A P,McKenzie K J.Application of ionic liquids to the electrodeposition of metals.Phys.Chem.Chem.Phys.2006,8(37):4265-4279.
    8.El Abedin S Z,Endres F.Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids.ChemPhysChem 2006,7(1):58-61.
    9.Lin M C,Chert P Y,Sun I W.Electrodeposition of zinc telluride from a zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt.J.Electrochem.Soc.2001,148(10):C653-C658.
    10.Li H,Liu R,Zhao R X,Zheng Y F,Chert W X,Xu Z D.Morphology control of electrodeposited Cu_2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids.Cryst.Growth & Des.2006,6(12):2795-2798.
    11.Ostwald H R,Asper R.Bivalent metal hydroxides,in R.M.A.Lieth(Ed.),Physics and Chemistry of Mineral with Layered Structures,Vol.1,Reidel,Dordrecht,1977,pp.71-86.
    12.Tan Y,Steinmiller E M P,Choi K-S.Electrochemical tailoring of lamellar-structured ZnO films by interracial surfactant templating.Langmuir 2005,21(21):9618-9624.
    1.Bidnyk S,Schmidt T J,Little B D,Song J J.Near-threshold gain mechanisms in GaN thin films in the temperature range of 20-700 K.Appl.Phys.Lett.1999,74(1):1-3.
    2.Minami T,Ida S,Miyata T,Minamino Y.Transparent conducting ZnO thin fills deposited by vacuum arc plasma evaporation.Thin Solid Films 2003,445(2):268-273.
    3.Segawa Y,Ohtomo A,Kawasaki M,Koinuma H,Tang Z K,Yu P,Wong G K L.Growth of ZnO thin film by laser MBE:Lasing of exciton at room temperature.Phys.Stat.Sol.(b)1997,202(2):669-672.
    4.Sunglae Cho,Jing Ma,YunKi Kim,Yi Sun,George K.L.Wang,and John B.Ketterson,Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn.Appl.Phys.Lett,1999,75(18):2761-2763.
    5.Huang M H,Mao S,Feick H,Yan H,Wu Y,Kind H,Weber K,Russo R,Yang P.Room-temperature ultraviolet nanowire nanolasers.Science 2001,292:1897-1899.
    6.Yan H,Johnson J,Law M,He R,Knutsen K,McKinney J R,Pham J,Saykally R,Yang R ZnO nanoribbon microcavity lasers.Adv.Mater.2003,15(22):1907-1911.
    7.Liu C H,Zapien J A,Yao Y,Meng X M,Lee C S,Fan S S,Lifshitz Y,Lee S T.High-density,ordered ultraviolet light-emitting ZnO nanowire arrays.Adv.Mater.2003,15(10):838-841.
    8.Choy J H,Jang E S,Won J H,Chuang J H,Jang D J,Kim Y W.Soft solution route to directionally grown ZnO nanorod arrays on Si water:room-temperature ultraviolet laser.Adv.Mater.2003,15(22):1911-1914.
    9.Ryu M K,Lee S H,Jang M S,Panin G N,Kang T W.Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique.J.Appl.Phys.2002,92(1):154-158.
    10.Wu J J,Liu S C.Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition.Adv.Mater.2002,14(3):215-218.
    11.Craciun V,Elders J,Gardeniers J G E,Boyd I W.Characteristics of high quality ZnO thin films deposited by pulsed laser deposition.Appl.Phys.Lett.1994,65(23):2963-2965.
    12.Aronovich J,Ortiz A,Bube R H.Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications.J.Vac.Sci.Technol.1979,16(4):994-1003.
    13.Sun Y,Fuge G M,Ashfold M N R.Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods.Chem.Phys.Lett.2004,396(1-3):21-26.
    14.Yu P,Tang Z K,Wong G K L,Kawasaki M,Ohtomo A,Koinuma H,Segawa Y.Room-temperature gain spectra and lasing in microcrystalline ZnO thin films.J.Crystal Growth 1998,184/5:601-604.
    15.Ko H J,Chen Y Y,Zhu Z,Yao T.Photoluminescence properties of ZnO epilayers grown on CaF_2(111)by plasma assisted molecular beam epitaxy.Appl.Phys.Lett,2000,76(14):1905-1907.
    16.Peulon S,Lincot D.Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films.Adv.Mater.1996,8(2):166-170.
    17.Izaki M,Omi T,Transparent zinc oxide films prepared by electrochemical reaction.Appl.Phys.Lett.1996,68(17):2439-2440.
    18.Kamalasnan M N,Chandra S.Sol-gel synthesis of ZnO thin films.Thin Solid Films 1996,288(1-2):112-115.
    19.Andelman T,Gong Y,Polking M,Yin M,Kuskovsky I,Neumark G,O'Brien S.Morphological control and photoluminescence of zinc oxide nanocrystals.J Phys.Chem.B 2005,109(30):14314-14318.
    20.Pal U,Santiago P.Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.J.Phys.Chem.B 2005,109(32):15317-15321.
    21.Govender K,Boyle D S,Kenway P B,O'Brien P.Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution.J.Mater.Chem.2004,14(16):2575-2591.
    22.Znaidi L,Solerillia G J A A,Leguennic R,Sanchez C,Kanaev A.Elaboration of ZnO thin films with preferential orientation by a soft chemistry route.J.Sol-Gel Sci.& Technol.2003,26(1-3):817-821.
    23.Zhang J,Sun L D,Liao C,A simple route towards tubular ZnO.Chem.Commun.2002,(3):262-263.
    24.Yao B D,Chan Y F,Wang N.Formation of ZnO nanostructures by a simple way of thermal evaporation.Appl.Phys.Lett.2002,81(4):757-759.
    25.Pan Z W,Dai Z R,Wang Z L.Nanobelts of semieonducting oxides.Science 2001,291:1947-1949
    26.Lo(?)pez C M,Choi K S.Electrochemical synthesis of dendritic zinc films composed of systematically varying motif crystals.Langmuir 2006,22(25):10625-10629.
    27.Wang S Q,Pan A L,Yin H Y,He Y P,Lei Y,Xu Z D,Zou B S.Synthesis of PbS microcrystals via a hydrothermal process.Mater.Lett.2006,60(9-10):1242-1246.
    28.Xiao Z L,Han C Y,Kwok W K,Wang H H,Welp U,Wang J,Crabtree G W.Tuning the architecture of mesostructures by electrodeposition.J.Am.Chem.Soc.2004,126(8):2316-2317.
    1.Ozgur U,Alivov Y I,Liu C,Teke A,Reshchikov M A,Dogan S,Avrutin V,Cho S J,Morkoc H.A comprehensive review of ZnO materials and devices.J.Appl.Phys.2005,98(4):41301-41404.
    2.Zhang Y,Jia H B,Luo X H,Chen X H,Yu D P,Wang R M.Synthesis,microstructure,and growth mechanism of dendrite ZnO nanowires.J.Phys.Chem.B 2003,107(33):8289-8293.
    3.Bae S Y,Seo H W,Choi H C,Park J,Park J.Heterostructures of ZnO nanorods with various one-dimensional nanostructures.J.Phys.Chem.B 2004,108(33):12318-12326.
    4.Chen S J,Liu Y C,Ma J G,Zhao D X,Zhi Z Z,Lu Y M,Zhang J Y,Shen D Z,Fan X W.High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn.J Cryst.Growth 2002,240(3-4):467-472.
    5.Xu C,Kim D,Chun J,Rho K,Chon B,Hong S,Joo T.Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 ℃.J.Phys.Chem.B 2006,110(43):21741-21746
    6.Cho S L,Ma J,Kim Y K,Sun Y,Wong G K L,Ketterson J B.Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn.Appl.Phys.Lett.1999,75(18):2761-2763.
    7.Wen X G,Fang Y P,Pang Q,Yang C L,Wang J N,Ge W K,Wong K S,Yang S H.ZnO nanobelt arrays grown directly from and on zinc substrates:Synthesis,characterization,and applications.J.Phys.Chem.B 2005,109(32):15303-15308.
    8.Izaki M,Omi T.Transparent zinc oxide films prepared by electrochemical reaction.Appl.Phys.Lett.1996,68(17):2439-2440.
    9.Lincot D.Electrodeposition of semiconductors.Thin Solid Films 2005,487(1-2):40-48.
    10.Goux A,Pauporte T,Chivot J,Lincot D.Temperature effects on ZnO electrodeposition.Electrochim.Acta 2005,50(11):2239-2248.
    11.Liu Y L,Liu Y C,Liu Y X,Shen D Z,Lu Y M,Zhang J Y,Fan X W.Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates.Physical B-Condens.Matter 2002,322(1-2):31-36.
    12.Dalchiele E A,Giorgi P,Marotti R E,Martin F,Ramos-Barrado J R,Ayouci R,Leinen D.Electrodeposition of ZnO thin films on n-Si(100).Solar Energy Mater.& Solar Cells 2001,70(3):245-254.
    13.Wang Q T,Wang G Z,Xu B,Jie J S,Han X H,Li G P,Li Q S,Hou J G Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane.Mater.Lett.2005,59(11):1378-1382.
    14.Jayakrishnan R,Hodes G.Non-aqueous electrodeposition of ZnO and CdO films.Thin Solid Films 2003,440(1-2):19-25.
    15.Cao B Q,Teng X M,Heo S H,Li Y,Cho S O,Li GH,Cai W R Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties.J.Phys.Chem.C 2007,111(6):2470 - 2476.
    16.Li G R,Dawa C R,Bu Q,Lu X H,Ke Z H,Hong H E,Zheng F L,Yao C Z,Liu G K,Tong Y X.Electrochemical self-assembly of ZnO nanoporous structures.J.Phys.Chem.C 2007,111(5):1919-1923.
    17.Yoshida T,Tochimoto M,Schlettwein D,Wohrle D,Sugiura T,Minoura H.Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition.Chem.Mater.1999,11(10):2657-2667.
    18.Nyffenegger R M.,Craft B,Shaaban M,Gofer S,Erley G,Penner R M.A hybrid electrochemical/chemical synthesis of zinc oxide nanoparticles and optically intrinsic thin films.Chem.Mater.1998,10(4):1120-1129.
    19.Wang Y C,Leu I C,Hon M H.Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition.J Mater.Chem.2002,12(8):2439-2444.
    20.Greene L E,Yuhas B D,Law M,Zitoun D,Yang P D.Solution-grown zinc oxide nanowires.Inorg.Chem.2006,45(19):7535-7543.
    21.Wang X,Li Y D.Solution-based synthetic strategies for 1-D nanostructures.Inorg.Chem.2006,45(19):7522-7543.
    22.Wang F D,Dong A G,Sun J W,Tang R,Yu H,Buhro W E.Solution-liquid-solid growth of semiconductor nanowires.Inorg.Chem.2006,45(19):7511-7521.
    23.Zhang J,Sun L D,Pan H Y,Liao C S,Yan C H.ZnO nanowires fabricated by a convenient route.New J.Chem.2002,26(1):33-34.
    24.Govender K,Boyle DS,Kenway PB,O'Brien E Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution.J.Mater.Chem.2004,14(16):2575-2591.
    25.Jung S H,Oh E,Lee K H,Park W J,Jeong S H.A sonochemical method for fabricating aligned ZnO nanorods.Adv.Mater.2007,19(5):749-753.
    26.Pacholski C,Kornowski A,Weller H.Self-assembly of ZnO:From nanodots to nanorods.Angew.Chem.Int.Ed.2002,41(7):1188-1191.
    27.Zhou X F,Zhang D Y,Zhu Y,Shen Y Q,Guo X F,Ding W P,Chen Y.Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures.J.Phys.Chem.B 2006,110(51):25734-25739.
    28.Munoz-Espi R,Jeschke G,Lieberwirth I,Gomez C M,Wegner G.ZnO-latex hybrids obtained by polymer-controlled crystallization:A spectroscopic investigation.J Phys.Chem.B 2007,111(4):697-707.
    29.Zhang Z P,Yu H D,Shao X Q,Han M Y.Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal.Chem.Eur.J.2005,11(10):3149-3154.
    30.Yu H D,Zhang Z P,Hart M Y,Hao X T,Zhu F R.A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays.J.Am.Chem.Soc.2005,127(8):2378-2379.
    31.Zhang Z P,Yu H D,Wang Y B,Han M Y.Aggregation-driven growth of well-oriented ZnO nanorod arrays.Nanotechnology 2006,17(12):2994-2997.
    32.Wu X F,Bai H,Lu G W,Shi G Q.Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature.Chem.Comm.2006,(15):1655-1657.
    33.Yan C L,Xue D F.Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.J.Phys.Chem.B 2006,110(51):25850-25855.
    34.Liu J P,Huang X T,Li Y Y,Sulieman K M,He X,Sun F L.Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical heterostructures.J Phys.Chem.B 2006,110(43):21865-21872.
    35.Zhang W X,Wen X G,Yang S H,Berta Y,Wang Z L.Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature.Adv.Mater 2003,15(10):822-825.
    36.Liu Y,Chu Y,Li M Y,Li L L,Dong L H.In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process.J.Mater Chem.2006,16(2):192-198.
    37.Ng C H B,Fan W Y.Shape evolution of Cu_2O nanostructures via kinetic and thermodynamic controlled growth.J.Phys.Chem.B 2006,110(42):20801-20807.
    38.Wang X,Li Y D.Selected-control hydrothermal synthesis of alpha- and beta-MnO_2 single crystal nanowires.J.Am.Chem.Soc.2002,124(12):2880-2881.
    39.Wang X,Li Y D.Rational synthesis of alpha-MnO_2 single-crystal nanorods.Chem.Comm.2002,(7):764-765.
    40.Li Z Q,Ding Y,Xiong Y J,Yang Q,Xie Y.One-step solution-based catalytic route to fabricate novel alpha-MnO_2 hierarchical structures on a large scale.Chem.Comm.2005,(7):918-920.
    41.Li B X,Rong G X,Xie Y,Huang L F,Feng C Q.Low-temperature synthesis of γ-MnO_2hollow urchins and their application in rechargeable Li batteries.Inorg.Chem.2006,45(16):6404-6410.
    42.Tang B,Wang G L,Zhuo L H,Ge J C,Cui L J.Facile route to α-FeOOH and α-Fe_2O_3nanorods and magnetic property of α-Fe_2O_3 nanorods.Inorg.Chem.2006,45(13):5196-5200.
    43.Tian Z R R,Voigt J A,Liu J,McKenzie B,McDermott M J,Rodriguez M A,Konishi H,Xu H F.Complex and oriented ZnO nanostructures.Nature Mater 2003,2(12):821-826.
    44.Lao J Y,Huang J Y,Wang D Z,Ren Z F.Hierarchical oxide nanostruactures.J.Mater Chem.2004,14(4):770-773.
    45.Xu L,Su Y,Li S,Chen Y Q,Zhou Q T,Yin S,Feng Y.Self-assembly and hierarchical organization of Ga_2O_3/In_2O_3 nanostructures.J.Phys.Chem.B 2007,111(4):760-766.
    46.Vayssieres L,Keis K,Lindquist S E,Hagfeldt A.Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO.J.Phys.Chem.B 2001,105(17):3350-3352.
    47.Greene L E,Law M,Goldberger J,Kim F,Johnson J C,Zhang Y F,Saykally R J,Yang P D.Low-temperature wafer-scale production of ZnO nanowire arrays.Angew.Chem.Int.Ed.2003,42(26):3031-3034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700