二氧化锰及其纳米复合材料的可控制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以二氧化锰材料为研究对象,采用水热方法合成一系列不同晶型和形貌的二氧化锰材料;针对其中的层状二氧化锰可插层和可剥离的性质,采用长链烷基铵插层二氧化锰材料为前体,制备聚合物与二氧化锰纳米复合材料,并对其电化学及光学性能进行了研究;采用层板剥离技术,制备二氧化锰纳米片,并以其为构建模块,分别采用静电组装技术和电泳沉积法制备了二氧化锰无机—无机和有机—无机复合薄膜材料。采用X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)、傅立叶变换红外光谱(FTIR)、紫外可见光谱(UV-vis)、X光电子能谱(XPS)、热重-质谱联用(TG-MS)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、场发射扫描电镜(FESEM)、原子力显微镜(AFM)和电化学测试等表征手段对合成产物、反应机理以及材料的组成结构与电化学及光学性能之间的关系进行了较深入的研究。
     采用水热法合成了一系列不同晶型的二氧化锰纳米材料,包括α、β、Na[2×4]一维隧道型二氧化锰,δ型层状二氧化锰,无定型二氧化锰。对于KMnO_4-MnSO_4反应体系,通过调变水热处理时间或起始反应物的浓度,实现了具有不同晶型和形貌的二氧化锰的可控合成。在160℃水热反应处理8h,可以得到α-MnO_2纳米线;继续延长反应时间至72 h,可以得到具有棱柱状形貌的β-MnO_2微晶。在水热反应过程中,α-MnO_2纳米线由于取向堆积自发形成大的团束,随后发生晶型转变,形成β-MnO_2微晶。KMnO_4-MnSO_4反应体系在160℃水热处理30min后,可以得到一种无定型介孔二氧化锰纳米材料。比表面积高达196 m~2·g~(-1),最可几孔径分布为3.7 nm。在1 mol·L~(-1)的Na_2SO_4水溶液中测试其电化学性能,比电容可达323 F·g~(-1),且倍率特性好,恒流充放电循环测试3000次后,比电容的保持率为96%。对于H_2O_2-Mn(NO_3)_2-NaOH反应体系,通过调变水热处理温度,分别可以得到不同晶型二氧化锰产物。在120℃水热反应处理16h,可以得到Na-birnessite型层状二氧化锰;在200℃水热反应处理16h,可以得到Na[2×4]一维隧道型二氧化锰,且产物具有特殊的纳米带状形貌。提高水热处理温度,有利于形成隧道型二氧化锰。
     采用剥离重组法,即将十八烷基三甲基铵插层二氧化锰在N-甲基吡咯烷酮溶剂中超声剥离,再与导电聚合物(聚吡咯和聚苯胺)复合,制备了导电聚合物插层二氧化锰纳米复合材料,并对其作为超级电容器电极材料的电化学性能进行了研究。纳米复合材料表现出比单个组分更加优越的电化学性能,这是由于将导电聚合物与二氧化锰材料复合,可以提高复合材料的导电率;同时,导电聚合物可以将二氧化锰层板撑开,提高了复合材料的空隙率,有利于离子在电极材料中的扩散。聚苯胺插层二氧化锰复合材料的比电容为330 F·g~(-1),而单纯的层状二氧化锰和聚苯胺的比电容分别为208 F·g~(-1)和187 F·g~(-1)。此外,复合材料的电化学循环性能比单个组分也明显得到改善。
     采用熔融共混法,通过将双十八烷基二甲基铵插层二氧化锰与线性低密度聚乙烯(LLDPE)混合制备了LLDPE/MnO_2纳米复合材料。熔融处理10 min可以得到LLDPE插层二氧化锰复合材料,延长熔融处理时间至30 min,可以得到完全剥离型的LLDPE/MnO_2纳米复合材料。LLDPE/MnO_2剥离型纳米复合材料表现出良好的紫外屏蔽性能和热稳定性,这可能与剥离MnO_2纳米片在LLDPE本体中分子级别的分散以及纳米片材料的二维尺寸效应有关。
     采用静电组装技术,分别制备了水滑石纳米片/二氧化锰纳米片无机多层复合薄膜和聚乙烯亚胺/二氧化锰纳米片有机—无机多层复合薄膜(PEI/MnO_2)_n。UV-vis光谱显示薄膜的增长十分均匀。我们考察了(PEI/MnO_2)_n复合薄膜作为超级电容器电极材料的电化学性能。随着(PEI/MnO_2)_n层数的增加,薄膜的比电容线性增加。(PEI/MnO_2)_(10)薄膜电极的比电容为288 F·g~(-1),循环1000次后,比电容保持率为90%。采用超声处理的方法,成功实现了四甲基铵插层二氧化锰在乙腈有机溶剂中剥离;采用电泳沉积法,以含有剥离二氧化锰纳米片的乙腈溶剂为电解液,在氧化铟锡导电玻璃上制备了(00l)取向的层状二氧化锰薄膜。
Manganese oxide materials with different crystalline structures and morphologies have been synthesized by a hydrothermal method.Due to the intercalated and exfoliated characteristic of layered manganese oxides, polymer with manganese oxide nanocomposites have been prepared by using long alkylammonium intercalation manganese dioxide as precursors, and their electrochemical or optical properties were studied.MnO2 nanosheets obtained by delaminating the layered manganese oxide can be used as the building blocks to fabricate inorganic or organic -inorganic nanocomposite films through the electrostatic layer-by-layer adsorption technique or electrophoretic deposition.Reaction conditions,mechanisms, the relationships among structure,composition and electrochemical or optical properties of materials were characterized by means of XRD, ICP-AES,UV-vis,FT-IR,XPS,TG-MS,TEM,HRTEM,FESEM,AFM and electrochemical test.
     A series of different crystallines of manganese oxide nanomaterials, includingα-,β- and Na[2×4]type one-dimensional tunnel manganese oxides,δ-type layered manganese oxide,and amorphous manganese oxide, were prepared by a hydrothermal method.For KMnO_4-MnSO_4 reaction system,the products with different crystalline structures and morphologies can be selectively formed by varying the hydrothermal reaction time and the initial reactant concentration.After hydrothermal treatment for 8 h at 160℃,α-MnO_2 nanowires can be obtained;Elongating hydrothermal time to 72 h,β-MnO_2 microcrystals with a prismatic morphology were obtained. Under the process of hydrothermal reaction,α-MnO_2 nanowires became self-assembled into bundles and subsequently underwent a phase transformation toβ-MnO_2 microcrystals.When hydrothermal treated for 30 min,amorphous mesoporous manganese oxide nanomaterials can be obtained.The products showed a BET surface area of 196 m~2·g~(-1)and a narrow pore size distribution of 3.7 nm.A specific capacitance value of 323 F·g~(-1)was obtained in 1 mol·L~(-1)Na_2SO_4 solution.After 3000 cycles of operation,the capacitance retention was 96%of initial value.For H_2O_2-Mn(NO_3)_2-NaOH reaction system,the hydrothermal temperature is critical to the crystalline structure of final products.The product of Na-birnessite was obtained at 120℃,and Na[2×4]one-dimensional tunnel manganese oxides nanobelts was obtained at 200℃.Increase hydrothermal temperature was conducive to formation of tunnel-type manganese oxides.
     Conducting polymer-intercalated layered manganese oxide nanocomposites were synthesized via exchange reaction of conducting polymers(polyaniline and polypyrrole)with n-octadecyltrimethylammonium-intercalated manganese oxide in N-methyl-2-pyrrolidone solvent by a delamination/reassembling process,and their electrochemical properties as electrode materials for supercapacitors were studied.The resulting nanocomposites possessed superior electrochemical performance than each pristine component,which was due to intercalation of conducting polymers into manganese oxide can improve the electrical conductivity and bidimensionality.Polyaniline-intercalated manganese oxide nanocomposites showed a specific capacitance of 330 F·g~(-1),which was much larger than the values of layered manganese oxide(208 F·g~(-1))and polyaniline(187 F·g~(-1)).In addition,the electrochemical cycle performance of the nanocomposites significantly improved than the single component.
     Linear low-density polyethylene(LLDPE)/layered manganese oxide nanocomposites(LLDPE/MnO_2)were synthesized by direct melt compounding of LLDPE in the organic modified layered manganese oxides with dioctadecyldimethylammonium cations.When the melt compounding time was 10 min,the LLDPE intercalated layered manganese oxides nanocomposites were obtained.Elongating the melt compounding time to 30 min,the completely exfoliated LLDPE/MnO_2 nanocomposites could be obtained.The LLDPE/MnO_2 exfoliation nanocomposites showed high UV-shielding efficiency and enhanced thermal stability,which can be attributed to the molecular dispersion of MnO_2 nanolayers in the LLDPE matrix.
     Inorganic multilayer thin films comprising MnO_2 nansheets and LDHs nanosheets,and organic-inorganic multilayer thin films(PEI/MnO_2)_n comprising polyethylenimine(PEI)and MnO_2 nanosheets,were prepared by the electrostatic layer-by-layer adsorption technique.UV-vis spectra showed the multilayer films increased uniformly.The electrochemical properties of(PEI/MnO_2)_n multilayer films were studied.The area specific capacitance values of(PEI/MnO_2)_n films enhanced almost linearly with increasing in the number of bilayers.A specific capacitance value of 288 F.g~(-1)was obtained for(PEI/MnO_2)_(10)film,and the capacitance decreased 10 %of initial value over 1000 cycles.Delamination of layered manganese oxide into colloidal nanosheets occurred when manganese oxide intercalated with tetramethylammonium ions was ultrasonically dispersed in acetonitrile organic solution.An oriented layered manganese oxide thick film with(00l)plane parallel to the substrate was obtained by electrophoretic deposition of negatively charged manganese oxide nanosheets on ITO-coated glass substrate.
引文
[1]谭柱中,梅光贵,李维健,等.锰冶金学[M].湖南:中南大学出版社,2004.1-29
    [2]Qi F,Kanoh H,Ooi K.Manganese oxide porous crystals[J].J.Mater.Chem.,1999,9:319-333
    [3]Brock S L,Duan N G,Tian Z R,Giraldo O,Zhou H,Suib S L.A review of porous manganese oxide materials[J].Chem.Mater.,1998,10:2619-2628
    [4]李景虹.先进电池材料[M].北京:化学工业出版社,2004.52-89
    [5]Turner S,Buseck P R.Todorokites:a new family of naturally occurring manganese oxides[J].Science,1981,212:1024-1027
    [6]Baur W H.Rutile-type compounds.5.Refinement of MnO_2 and MgF_2[J].Acta Crystallogr.,1976,B32:2200-2204
    [7]Bystrom A M.The crystal structure of ramsdellite,an orthorhombic modification of MnO_2[J].Acta Chem.Scand.,1949,3:163-173
    [8]Bystrom A,Bystrom A M.The crystal structure of hollandite,the related manganese oxide minerals,and α-MnO_2[J].Acta Crystallogr.,1950,3:146-154
    [9]Wadsley A D.The crystal structure of psilomelane,(Ba,H_2O)_2Mn_5O_(10)[J].Acta Crystallogr.,1953,6:433-438
    [10]Turner S,Post J E.Refinement of the substructure and superstructure of Romanechite[J].Am.Mineral.,1988,73:1155-1161
    [11]Rziha T,Gies H,Rius J.RUB-7,a new synthetic manganese oxide structure type with a 2×4tunnel[J].Eur.J.Mineral.,1996,8:675-686
    [12]Tamada O,Yamamoto N.The crystal structure of Rb_(0.27)MnO_2 with a 2×5 tunnel[J].Mineral.J.,1986,13:130-140
    [13]Burns R G,Burns V M,Stockman H W.A review of the Todorokite Buserite problem:implications to the mineralogy of marine manganese nodules[J].Am.Mineral.,1983,68:972-980
    [14]Tian Z,Yin Y,Suib S L,O'Young C L.Effect of Mg~(2+)ions on the formation of todorokite type manganese oxide octahedral molecular sieves[J].Chem.Mater.,1997,9:1126-1133
    [15]Turner S,Buseck P R.Defects in Nsutite(γ-MnO_2)and dry-cell battery efficiency[J].Nature,1983,304:143-146
    [16]Turner S,Buseck P R.Manganese oxide tunnel structures and their intergrowths[J].Science,1979,203:456-458
    [17]Feng Q,Miyai Y,Kanoh H,Ooi K.Li~+ extraction/insertion with spinel-type lithium manganese oxides:characterization of redox-type and ion-exchange-type sites[J].Langmuir,1992,8:1861-1867
    [18]Parant J P,Olazcuaga R,Devalette M,Fouassier C,Hagenmuller P.New phases of formula Na_xMnO_2(x≤1)[J].J.Solid State Chem.,1971,3:1-5
    [19]Boullay P,Hervieu M,Raveau B.A new manganite with an original composite tunnel structure:Ba_6Mn_(24)O_(48)[J].J.Solid State Chem.,1997,132:239-248
    [20]Rossouw M H,Liles D C,Thackeray M M.Synthesis and structural characterization of a novel layered lithium manganese oxide,Li_(0.36)Mn_(0.91)O_2,and its lithiated derivative, Li_(1.09)Mn_(0.91)O_2[J].J.Solid State Chem.,1993,104:464-466
    [21]Strobel P,Charenton J C,Lenglet M.Structural chemistry of phyllomanganates:experimental,evidence and structural models[J].Rev.Chim.Miner.,1987,24:199-220
    [22]Strouff P,Boulegue J.Synthetic 10-A and 7-A phyllomanganates:Their structures as determined by EXAFS[J].Am.Mineral.,1988,73:1162-1169
    [23]Ma Y,Luo J,Suib S L.Syntheses ofbirnessites using alcohols as reducing reagents:effects of synthesis parameters on the formation of birnessites[J].Chem.Mater.,1999,11:1972-1979
    [24]Prieto O,Arco M D,Rives V.Structural evolution upon heating of sol-gel prepared birnessites[J].Thermochim.Acta,2003,401:95-109
    [25]Shen X F,Ding Y S,Liu J,Han Z H,Budnick J I,Hines W A,Suib S L.A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves(OMS)[J].J.Am.Chem.Soc.,2005,127:6166-6167
    [26]Luo J,Suib S L.Preparative parameters,magnesium effects,and anion effects in the crystallization of birnessites[J].J.Phys.Chem.B,1997,101:10403-10413
    [27]Liu Z H,Ooi K,Kanoh H,Tang W P,Yang X J,Tomida T.Synthesis of thermally stable silica-pillared layered manganese oxide by an intercalation/solvothermal reaction[J].Chem.Mater.,2001,13:473-478
    [28]Liu Z H,Ooi K,Kanoh H,Tang W P,Tomida T.Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions[J].Langrnuir,2000,16:4154-4164
    [29]Omomo Y,Sasaki T,Wang L Z,Watanabe M.Redoxable nanosheet crystallines of MnO_2derived via delamination of a layered manganese oxide[J].J.Am.Chem.Soc.,2003,125:3568-3575
    [30]Cui Y,Liu Z H,Wang M Z,Ooi K.New approach to the delamination of layered manganese oxide[J].Chem.Lett.,2006,35:740-741
    [31]王训.过渡金属氧化物一维纳米材料液相合成、表征与性能研究[D].北京:清华大学,2004
    [32]孙晓明.低维功能纳米材料的液相合成、表征与性能研究[D].北京:清华大学,2005
    [33]Wang X,Li Y.Rational synthesis of α-MnO_2 single-crystal nanorods[J].Chem.Commun.,2002,7:764-765
    [34]Wang X,Li Y.Selected-control hydrothermal synthesis of α- and β-MnO_2 single crystal nanowires[J].J.Am.Chem.Soc.,2002,124:2880-2881
    [35]Ma R,Bando Y,Zhang L,Sasaki T.Layered MnO_2 nanobelts:hydrothermal synthesis and electrochemical measurements[J].Adv.Mater.,2004,16:918-922
    [36]Liu Z,Ma R,Ebina Y,Takada K,Sasaki T.Synthesis and delamination of layered manganese oxide nanobelts[J].Chem.Mater.,2007,19:6504-6512
    [37]Zheng D,Sun S,Fan W,Yu H,Fan C,Cao G,Yin Z,Song X.One-step preparation of single-crystalline β-MnO_2 nanotubes[J].J.Phys.Chem.B,2005,109:16439-16443
    [38]Ma R,Bando Y,Sasaki T.Directly rolling nanosheets into nanotubes[J].J.Phys.Chem.B,2004,108:2115-2119
    [39]Wang X,Li Y.Rational synthetic strategy.From layered structure to MnO_2 nanotubes[J]. Chem. Lett., 2004, 33: 48-49
    [40] Yuan J K, Li W N, Gomez S, Suib S L. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures [J]. J Am. Chem. Soc., 2005, 127:14184-14185
    [41] Li W N, Yuan J K, Shen X F, Gomez S, Xu L P, Sithambaram S, Aindow M, Suib S L. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials[J]. Adv. Funct. Mater., 2006, 16: 1247-1253
    [42] Li W N, Yuan J K, Gomez S, Sithambaram S, Suib S L. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels ans shapes[J]. J. Phys.Chem. B, 2006, 110: 3066-3070
    [43] Xu R, Wang X, Wang D S, Zhou K B, Li Y D. Surface structure effects in nanocrystal MnO_2 and Ag/MnO_2 catalytic oxidation of CO[J]. J Catal., 2006, 237: 426-430
    [44] Lin Y, Cui X, Li L. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides[J]. Electrochem. Commun., 2005, 7: 166-172
    [45] Cheng F Y, Chen J, Gou X L, Shen P W. High-power alkaline Zn-MnO_2 batteries using γ-MnO_2 nanowires/nanotubes and electrolytic zinc powder[J]. Adv. Mater., 2005, 17: 2753-2756
    [46] Thackeray M M. Manganese oxides for lithium batteries[J]. Prog. Solid State Chem., 1997, 25: 1-71
    [47] Subramanian V, Zhu H W, Vajtai R, Ajayan P M, Wei B Q. Hydrothermal synthesis and pseudocapacitance properties of MnO_2 nanostructures[J]. J. Phys. Chem. B, 2005, 109: 20207-20214
    [48] Lakshmi B B, Patrissi C J, Martin C R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures[J]. Chem. Mater., 1997, 9: 2544-2550
    [49] Zitoun D, Pinna N, Frolet N, Belin C. Single crystal manganese oxide multipods by oriented attachment[J]. J. Am. Chem. Soc, 2005,127: 15034-15035
    [50] Villegas J C, Garces L J, Gomez S, Duand J P, Suib S L. Particle size cryptomelane nanomaterials by use of H_2O_2 in acidic conditions[J]. Chem. Mater., 2005, 17: 1910-1918
    [51] Ding Y S, Shen X F, Sithambaram S, Gomez S, Kumar R, Crisostomo V M, Suib S L, Aindow M. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem. Mater., 2005, 17: 5382-5389
    [52] Wu M S, Lee J T, Wang Y Y, Wan C C. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition[J]. J. Phys. Chem. B, 2004, 108: 16331-16333
    [53] Wu C, Xie Y, Wang D, Yang J, Li T. Selected-control hydrothermal synthesis of γ-MnO_2 3D nanostructures[J]. J. Phys. Chem. B, 2003, 107: 13583-13587
    [54] Liu Y, Zhang M, Zhang J H, Qian Y T. A simple method of fabricating large-area α-MnO_2 nanowires and nanorods[J]. J. Solid State Chem., 2006, 179: 1757-1761
    [55] Ding Y S, Shen X F, Gomez S, Luo H, Aindow M, Suib S L. Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures[J]. Adv. Funct. Mater., 2006, 16:549-555
    [56] Wang X, Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chem. Eur. J., 2003, 9: 300-306
    [57] Tang B, Wang G, Zhou L, Ge J. Novel dandelion-like (3-manganese dioxide microstructures and their magnetic properties [J]. Nanotechnology, 2006, 17: 947-951
    [58] Xi G , Peng Y , Zhu Y , Xu L , Zhang W , Yu W , Qian Y. Preparation of β-MnO_2 nanorods through a γ-MnOOH precursor route [J]. Mater. Res. Bull., 2004, 39: 1641-1648
    [59] Yang B, Hu H, Li C, Yang X, Li Q, Qian Y. One-step route to single-crystal nanorods in alcohol-water system[J]. Chem. Lett., 2004, 33: 804-805
    [60] Gao Y, Wang Z, Wan J, Zou G, Qian Y. A facile route to synthesize uniform single-crystalline α-MnO_2 nanowires[J]. J. Cryst. Growth, 2005, 279: 415-419
    [61] Zhang Y, Liu Y, Guo F, Hu Y, Liu X, Qian Y. Single-crystal growth of MnOOH and beta-MnO_2 microrods at lower temperatures[J]. Solid State Commun., 2005, 134: 523-527
    [62] Zhang C, Qiao T, Hu Y, Zhou D. Simple hydrotheramL preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO_2 nanowires[J]. J. Cryst. Growth, 2005, 280: 652-657
    [63] Zhang W, Yang Z, Liu Y, Tang S, Han X, Chen M. Controlled synthesis of Mn_3O_4 nanocrystallites and MnOOH nanorods by a solvothermal method[J]. J. Cryst. Growth, 2004, 263: 394-399
    [64] Shanna P K, Whittingham M S. The ole of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH synthesized by hydrothermal [J]. Mater. Lett., 2001,48: 319-323
    [65] Xia G G, Tong W, Tolentino E N, Duan N G, Brock S L, Wang J Y, Suib S L. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2 × 4 tunnel structure[J]. Chem. Mater., 2001, 13: 1585-1592
    [66] Liu Z H, Ooi K. Preparation and alkali-metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2×4 runnel structure[J]. Chem. Mater., 2003, 15: 3696-3703
    [67] Shen X F, Ding Y S, Liu J, Laubernds K, Zerger R P, Polverejan M, Son Y C, Aindow M, Suib S L. Synthesis, characterization, and catalytic applications of manganese oxide octahedral molecular sieve (OMS) nanowires with a 2 × 3 tunnel structure[J]. Chem. Mater., 2004, 16, 5327-5335
    [68] Liu J, Makwana V, Cai J, Suib S L, Aindow M. Effects of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2)[J]. J. Phys. Chem. B, 2003,107, 9185-9194
    [69]Feng Q,Yanagisawa K,Yamasaki N.Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures[J].J.Porous Mater.,1998,5:153-161
    [70]Shen X F,Ding Y S,Liu J,Cai J,Laubernds K,Zerger R P,Vasiliev A,Aindow M,Suib S L.Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials[J].Adv.Mater.,2005,17:805-809
    [71]Yuan Z,Zhang Z,Du G,Ren T,Su B.A simple method to synthesis single-crystalline manganese oxide nanowires[J].Chem.Phys.Lett.,2003,378:349-353
    [72]Yuan Z,Ren T,Du G,Su B.A facile preparation of single-crystalline α-Mn_2O_3 nanorods by ammonia-hydrothermal treatment of MnO_2[J].Chem.Phys.Lett.,2004,389:83-86
    [73]Yuan Z,Ren T,Du G,Su B.Facile preparation of single-crystalline nanowires of and γ-MnOOH and β-MnO_2[J].Appl.Phys.A-Mater.,2005,80:743-747
    [74]Wei M D,Konishi Y,Zhou H S,Sugihara H,Arakawa H.Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process[J].Nanotechnology,2005,16:245 -249
    [75]沈家骢.超分子层状结构——组装与功能[M].北京:科学出版社,2004.1-185
    [76]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.1-36
    [77]Yang X J,Kanoh H,Tang W P,Liu Z H,Ooi K.New route for preparation of layered manganese oxides with multivalent metal in the interlayer[J].Chem.Lett.,2001,30:612-613
    [78]Liu Z H,Yang X J,Ooi K.Intercalation of cobaltammine complex ions into layered manganese oxide[J].J.Colloid Interf.Sci.,2003,265:115-120
    [79]Paterson E.Intercalation of synthetic buserite by dodecylammonium chloride[J].Am.Mineral.,1981,66:424-427
    [80]Wortham E,Bonnet B,Jones D J,Roziere J,Burns G R.Birnessite-type manganese oxide-alkylamine mesophases obtained by intercalation and their thermal behaviour[J].J.Mater.Chem.,2004,14:121-126
    [81]Nakayama M,Komatsu H,Ozuka S,Araki Y,Ogura K.Immobilization of methylene blue between electrodepsoited manganese oxide multilayers[J].Chem.Lett.,2005,34:1420-1421
    [82]Feng Q,Honbu C,Yanagisawa K,Yamasaki N.Synthesis of lithiophorite with sandwich layered structure by hydrothermal soft chemical process[J].Chem.Lett.,1998,27:757-756
    [83]Feng Q,Honbu C,Yanagisawa K,Yamasaki N.Hydrothermal soft chemical reaction for formation of sandwich layered manganese oxide[J].Chem.Mater.,1999,11:2444-2450
    [84]Gao Q M,Giraldo O,Tong W,Suib S L.Preparation of nanometer-sized manganese oxides by intercalation of organic ammonium ions in synthetic Birnessite OL-1[J].Chem.Mater.,2001,13:778-786
    [85]Nakayama M,Konishi S,Tanaka A,Ogura K.A novel electrochemical method for preparation of thin films of layered manganese oxides[J].Chem.Lett.,2004,33:670-671
    [86]Nakayama M,Konishi S,Tagashira H,Ogura K.Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium[J].Langmiur,2005,21:354-359
    [87] Nakayama M, Tagashira H, Konishi S, Ogura K. A direct electrochemical route to construct a polymer/manganese oxide layered structure[J]. Inorg. Chem., 2004, 43: 8215-8217
    [88] Nakayama M, Tagashira H. Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes[J]. Langmuir, 2006, 122: 3864-3869
    [89] Wong S T, Cheng S. Synthesis and characterization of pillared Buserite[J]. Inorg. Chem., 1992, 31: 1165-1172
    [90] Ma Y, Suib S L, Ressler T, Wong J, Lovallo M, Tsapatsis M. Synthesis of porous CrO_x pillared octahedral layered manganese oxide materials[J]. Chem. Mater., 1999, 11: 3545-3554
    [91] Liu Z H, Ooi K, Kanoh H, Tang W P, Tomida T. Synthesis of silica-pillared microporous manganese oxide[J]. Chem. Lett., 2000, 29: 390-391
    [92] Liu Z H, Tang X H, Zhang C X, Zhou Q. A novel TiO_2-pillared microporous manganese oxide[J]. Chem. Lett., 2005, 34: 1312-1313
    [93] Wang J, Liu Z H, Tang. X, Ooi K. Preparation and structural evolution of SiO_2-TiO_2 pillared layered manganese oxide nanocomposite upon intercalating reaction[J]. J. Colloid Interf. Sci., 2007, 307:527-530
    [94] Liu Z H, Yang X J, Makita Y, Ooi K. Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process[J]. Chem. Mater., 2002, 14: 4800-4806
    [95] Liu Z H, Yang X J, Makita Y, Ooi K. Synthesis of a new layered manganese oxide nanocomposite through a delamination/reassbling process[J]. Chem. Lett., 2002, 31: 680-681
    [96] Xu Y H, Feng Q, Kajiyoshi K, Yanagisawa K, Yang X J, Makita Y, Kasaishi S, Ooi K. Hydrothermal Syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)_2-manganese oxides[J]. Chem. Mater., 2002, 14: 3844-3851
    [97] Tian Z B, Feng Q, Sumida N, Makita Y, Ooi K. Synthesis of manganese oxide nanofibers by selfassembling hydrothermal process[J]. Chem. Lett., 2004, 33: 952-953
    [98] Yang X J, Makita Y, Liu Z H, Sakane K, Ooi K. Structural characterization of self-assembled MnO_2 nanosheets from Birnessite manganese oxide single crystals[J]. Chem. Mater., 2004, 16: 5581-5588
    [99] Zhou Q, Zhang C, Liu Z, Tang X, Li H. Preparation of lysine-intercalated manganese oxide nanocomposite by a delamination/reassembling process[J]. Colloid. Surface. A, 2007, 295: 269-273
    [100] Wang L Z, Takada K, Kajiyama A, Onoda M, Michiue Y, Zhang L Q, Watanabe M, Sasaki T. Synthesis of a Li-Mn-oxide with disordered layer stacking through flocculatin of exfoliated MnO_2 nanosheets, and its electrochemical properties[J]. Chem. Mater, 2003, 15: 4508-4514
    [101] Wang L Z, Ebina Y, Takada K, Kurashima K, Sasaki T. A new mesoporous manganese oxide pillared with doubled layers of alumina[J]. Adv. Mater., 2004, 16: 1412-1416
    [102] Her R K. Multilayers of colloidal particles [J]. J. Colloid Interef. Sci., 1966, 21: 569-594
    [103] Decher G Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997:277: 1232-1237
    [104] Wang L Z, Omomo Y, Sakai N, Fukuda K, Nakai I, Ebina Y, Takada K, Watanabe M, Sasaki T. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycation[J]. Chem. Mater., 2003, 15: 2873-2878
    [105] Sakai N, Ebina Y, Takada K, Sasaki T. Electrochromic films composed of MnO_2 nanosheets with controlled optical density and high coloration efficiency[J]. J. Electrochem. Soc, 2005, 152:E384-E389
    [106] Sakai N, Ebina Y, Takada K, Sasaki T. Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light[J]. J. Phys. Chem. B, 2005, 109: 9651-9655
    [107] Wang L Z, Sakai N, Ebina Y, Takada K, Sasaki T. Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabracation, structure, and electrochemical behavior[J]. Chem. Mater., 2005, 17: 1352-1357
    
    [108] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. J. Electrochem. Soc, 1991, 138: 1539-1548
    
    [109] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors. Theoretical and experimental constraints [J]. J. Electrochem. Soc, 1996, 143: 3791-3799
    [110] Burke A. Ultracapacitors: why, how, and where is the technology [J]. J. Power Sources, 2000, 91:37-50
    [111] Kotz R, Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochim. Acta, 2000, 45: 2483-2498
    [112] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39: 937-950
    [113] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chem. Rev., 2004, 104,4245-4269
    [114] Arico A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005,4: 366-377
    [115] Mastragostino M, Arbizzani C, Paraventi R, Zanelli A. Polymer selection and cell design for electric-vehicle supercapacitors[J]. J. Electrochem. Soc, 2000, 147: 407-412
    [116] Frackowiak E. Carbon materials for supercapacitor application[J]. Phys. Chem. Chem. Phys., 2007, 9, 1774-1785
    [117] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc, 1995, 142: 2699-2703
    [118] Cao L, Lu M, Li H L.Preparation of mesoporous nanocrystalline Co_3O_4 and its applicability of porosity to the formation of electrochemical capacitance[J]. J. Electrochem. Soc, 2005, 152: A871-A875
    [119] Kim H K, Seong T Y, Lim J H, Cho W I, Yoon Y S. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors[J]. J. Power Sources, 2000, 102: 167-171
    
    [120] Chang J K, Tsai W T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors[J]. J. Electrochem. Soc., 2003, 150: A1333-A1338
    [121] Nam, Kyung-Wan; Kim, Kwang-Bum. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism[J]. J. Electrochem. Soc, 2002, 149: A346-A354
    [122] Wang S Y, Wu N L. Operating characteristics of aqueous magnetite electrochemical capacitors[J]. J. Applied Electrochem., 2003, 33: 345-348
    [123] Liu H, He P, Li Z, Sun D, Huang H, Li J, Zhu G. Crystalline vanadium pentoxide with hierarchical mesopores and its capacitive behavior[J]. Chem. Asian J. 2006, 1: 701-706
    
    [124] Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V_2O_5n·H_2O in potassium chloride (KCl) aqueous solution[J]. J. Solid State Chem., 1999, 148: 81-84
    [125] Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. J. Power Sources, 2002, 111: 185-190
    [126] Laforgue A, Simon P, Fauvarque J F, Mastragostino M, Soavi F, Sarrau J F, Lailler, P, Conte M, Rossi E, Saguatti S. Activated carbon/conducting polymer hybrid supercapacitors[J]. J. Electrochem. Soc, 2003, 150: A645-A651
    [127] Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Belanger D. The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor[J]. J. Electrochem. Soc, 2003, 150: A747-A752
    [128] Ryu K S, Wu X, Lee Y G, Chang S H. Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane[J]. J. Appl. Polym. Sci., 2003, 89: 1300-1304
    [129] Hughes M, Chen G Z, Shaffer M S, Fray D J, Windle A H. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole[J]. Chem. Mater. 2002, 14: 1610-1613
    [130] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. J. Solid State Chem., 1999, 144:220-223
    [131] Toupin M, Brousse T, Belanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide[J]. Chem. Mater., 2002, 14: 3936-3952
    
    [132] Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004, 104: 3893-3946
    [133] Reddy R N, Reddy R G. Sol-gel MnO_2 as an electrode material for electrochemical capacitors[J]. J. Power Sources, 2003, 124: 330-337
    [134] Wang X, Yuan A, Wang Y. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte[J]. J. Power Soureces, 2007, 172: 1007-1011
    
    [135] 张宝宏, 张娜. 纳米MnO_2超级电容器的研究[J]. 物理化学学报, 2003, 19: 286-288
    [136] Lee H Y, Manivannan V, Goodenough J B. Electrochemical capacitors with KCl electrolyte[J]. C. R. Acad. Sci. Serie IIc Chem., 1999, 2: 565-577
    [137] Wang X, Wang X, Huang W, Sebastian P J, Gamboa S. Sol-gel template synthesis of highly ordered MnO_2 nanowire arrays [J]. J. Power Sources, 2005, 140: 211-215
    [138] Chen H, Dong X, Shi J, Zhao J, Hua Z, Gao J, Ruan M, Yan D. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance[J]. J. Mater. Chem., 2007, 17, 855-860
    [139] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. J. Electrochem. Soc., 2000, 147: 444-450
    [140] Chin S F, Pang S C, Anderson M A. Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors [J]. J. Electrochem. Soc, 2002, 149: A379-A384
    [141] HuCC, Tsou T W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition[J]. Electrochem. Commun., 2002, 4: 105-109
    [142] Wu M S. Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition[J]. Appl. Phys. Lett., 2005, 87: 153102-153104
    [143] Nakayama M, Kanaya T, Inoue R. Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor[J]. Electrochem. Commun., 2007, 9: 1154-1158
    [144] Zhitomirsky I, Cheong M, Wei J. The cathodic electrodeposition of manganese oxide films for electrochemical supercapacitors[J]. JOM, 2007, 7: 66-69
    [145] Chen C Y, Lyu Y R, Su C Y, Lin H M, Lin C K. Characterization of spray pyrolyzed manganese oxide powders deposited by electrophoretic deposition technique[J]. Surf. Coat. Tech., 2007, 202: 1277-1281
    [146] Dai Y, Wang K, Zhao J, Xie J. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO_4 solution[J]. J. Power Sources, 2006, 161:737-724
    
    [147] 杨建军,黄俊杰,江志裕. 喷墨打印法制备MnO_2薄膜电极的超电容性能[J].物理化学学报, 2007, 23: 1365-1369
    [148] Kim H, Popov B N. Synthesis and characterization of MnO_2-based mixed oxides as supercapacitor[J]. J. Electrochem. Soc, 2003, 150: D56-D62
    [149] Prasad K R, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochem. Commun., 2004, 6: 1004-1008
    [150] Subramanian V, Zhu H, Wei B. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials[J]. Electrochem. Commun., 2006, 8: 827-832
    [151] Li J, Wang X, Huang Q, Gamboa S, Sebastian P J. A new type of MnO_2·cH_2O/CRF composite electrode for supercapacitors[J]. J. Power Sources, 2005, 160: 1501-1505
    [152] Rios E C, Rosario A V, Mello R M Q, Micaroni L. Poly(3-methylthiophene)/MnO_2 composite electrodes as electrochemical capacitors[J]. J. Power Sources, 2007, 163: 1137-1142
    [153] Liu R, Lee S B. MnO_2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one step coelectrodeopsition for electrochemical energy storage[J]. J. Am. Chem. Soc., 2008, 130: 2942-2943
    [154] Shen XF, Ding YS, Hanson JC, Aindow M, Suib SL. In situ synthesis of mixed-valent manganese oxide nanocrystals: An in situ synchrotron X-ray diffraction study[J]. J. Am. Chem. Soc, 2006, 128: 4570-4571
    [155] Ding Y S, Shen X F, Sithambaram S, Gomez S, Kumar R, Crisostomo V M B, Suib S L, Aindow M. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chem. Mater., 2005, 17: 5382-5389
    [156] Liu X M, Fu S Y, Huang C J. Synthesis, characterization and magnetic properties of β-MnO_2 nanorods[J]. Powder Technol, 2005, 154: 120-124
    [157] Penn R L, Banfield J F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281:969-971
    [158] Pacholski C, Komowski A, Weller H. Self-assembly of ZnO: From nanodots, to nanorods[J]. Angew. Chem. Int. Ed., 2002, 41: 1188-1191
    
    [159] Zhao L, Lu T, Yosef M, Steinhart M, Zacharias M, Gosele U, Schlecht S. Single-crystalline CdSe nanostructures: From primary grains to oriented nanowires[J]. Chem. Mater., 2006, 18: 6094-6096
    
    [160] Yang M, Pang G, Li J, Jiang L, Feng S. Preparation of ZnO nanowires in a neutral aqueous system: Concentration effect on the orientation attachment process[J]. Eur. J. Inorg. Chem., 2006, 3818-3822
    
    [161] Horvath E, Kukovecz A, Konya Z, Kiricsi I. Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave[J]. Chem. Mater., 2007, 19: 927-931
    
    [162] Zhou Q, Li X, Li Y G, Tian B Z, Zhao D Y, Jiang Z Y. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO_2[J]. Chin. J. Chem., 2006, 24: 835-839
    
    [163] Li L, Song H, Chen X. Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J]. Electrochim. Acta, 2006, 51: 5715-5720
    [164] Wang Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. 2006, 51: 3223-3227
    [165] Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property[J]. J Power Sources, 2006, 158: 779-783
    [166] Hu Y S, Guo Y G, Sigle W, Hore S, Balaya P, Maier J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity[J]. Nat. Mater., 2006, 5: 713-717
    [167] Yang X, Wang Y, Xiong H, Xia Y. Interfacial synthesis of porous MnO_2 and its application in electrochemical capacitor[J]. 2007, 53: 752-757
    
    [168] Xue T, Xu C, Zhao D, Li X, Li H. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates[J]. J. Power Sources, 2007, 953-958
    [169] Zhao J, Lai C, Dai Y, Xie J. Pore structure control of mesoporous carbon as supercapacitor material[J]. 2007, 61: 4639-4642
    [170] Luo J Y, Xia Y Y. Effect of pore structure on the electrochemical capacitive performance of MnO_2[J]. J. Electrochem. Soc, 2007, 154: A987-A992
    [171] Xu M W, Zhao D D, Bao S J, Li H L. Mesoporous amorphous MnO_2 as electrode material for supercapacitor[J]. J. Solid State Electrochem., 2007, 11: 1101-1107
    [172] Tian Z, Tong W, Wang J, Duan N, Krishnan V V, Suib S. L. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts[J]. Science, 1997, 276: 926-930
    [173] Luo J, Zhang J, Xia Y. Highly electrochemical reaction of lithium in the ordered mesoporous β-MnO_2[J]. Chem. Mater., 2006, 18: 5618-5623
    
    [174] Chigane M, Ishikawa M. Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism[J]. J. Electrochem. Soc, 2000, 147: 2246-2251
    [175] Feng Q, Horiuchi T, Liu L, Yanagisawa K, Mitsushio T. Hydrothermal soft chemical synthesis of runnel manganese oxides with Na~+ as template[J]. Chem. Lett., 2000, 29: 284-285
    [176] Kang L, Liu Z H, Yang Z, Ooi K. Simultaneous synthesis of high crystalline manganese oxides with layered and runnel structures[J]. Mater. Lett., 2006, 60: 3565-3568
    [177] Kang L, Zhang M, Liu Z H, Ooi K. IR spectra of manganese oxides with either layered or tunnel structures[J]. Spectrochim. Acta A, 2007, 67: 864-869
    [178] Kuratani K, Tatsumi K, Kuriyama N. Manganese oxide nanorod with 2×4 tunnel structure: synthesis and electrochemical properties[J]. Cryst. Growth Des., 2007, 8: 1375-1377
    [179] Mao L, Sotomura T, Nakatsu K, Koshiba N, Zhang D, Ohsaka T. Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution[J]. J. Electrochem. Soc, 2002, 149: A504-A507
    [180] Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochim. Acta, 2003, 48: 1015-1021
    [181] Gomez-Romero P. Hybrid organic-inorganic materials - In search of synergic activity [J]. Adv. Mater., 2001, 13: 163-174
    [182] Goward G R, Leroux F, Nazar L F. Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries[J]. Electrochim. Acta, 1998,43: 1307-1313
    [183] Kang S G, Kim K M, Park N G, Ryu K S, Chang S H. Factors affecting the electrochemical performance of organic/V_2O_5 hybrid cathode materials [J]. J. Power Sources, 2004, 133: 263-267
    [184] Murugan A V, Kwon C W, Campet G, Kale B B, Mandale A B, Sainker S R, Gopinath C S, Vijayamohanan K. A novel approach to prepare poly(3,4-ethylenedioxythiophene) nanoribbons between V_2O_5 layers by microwave irradiation[J]. J. Phys. Chem. B, 2004, 108: 10736-10742
    [185] Murugan A V, Quintin M, Delville M H, Campet G, Vijayamohanan K. Entrapment of poly(3,4-ethylenedioxythiophene) between VS2 layers to form a new organic-inorganic intercalative nanocomposite[J]. J. Mater. Chem., 2005, 15: 902-909
    [186] Wang G, Yang Z, Li X, Li C. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method[J]. Carbon, 2005, 43: 2564-2570
    [187] Murugan A V, Viswanath A K, Campet G, Gopinath C S, Vijayamohanan K. Enhancement of double-layer capacitance behavior and its electrical conductivity in layered poly(3, 4-ethylenedioxythiophene)-based nanocomposites[J]. Appl. Phys. Lett., 2005, 87: 243511/1-243511/3
    [188] Murugan A V, Viswanath A K, Gopinath C S, Vijayamohanan K. Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor[J]. J. Appl. Phys., 2006, 100: 074319/1-074319/5
    [189] Murugan A V. Novel organic-inorganic poly (3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitor [J]. J. Power Sources, 2006, 159:312-318
    [190] Wang Y, Li H, Xia Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Adv. Mater., 2006, 18: 2619-2622
    [191] Kamiya Y, Yamamoto N, Imai H, Komai S, Okuhara T. Mesostructured vanadium phosphorus oxides assembled with exfoliated VOPO_4 nanosheets[J]. Micropor. Mesopor. Mater., 2005, 81: 49-57
    [192] Wang L, Rocci-Lane M, Brazis P, Kannewurf C R, Kim Y I, Lee W, Choy J H, Kanatzidis M G α-RuCl_3/polymer nanocomposites: The first group of intercalative nanocomposites with transition metal halides[J]. J. Am. Chem. Soc, 2000, 122: 6629-6640
    [193] Wu C G, Degroot D C, Marcy H O, Schindler J L, Kannewurf C R, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski J P, Liu Y J, Kanatzidis M G Reaction of aniline with FeOCl: Formation and ordering of conducting polyaniline in a crystalline layered host[J]. J. Am. Chem. Soc, 1995, 117: 9229-9242
    [194] Niu Z, Yang Z, Hu Z, Lu Y, Han C. Polyaniline-silica composite conductive capsules and hollow spheres[J]. Adv. Funct. Mater., 2003, 13: 949-954
    [195] Van Hoang H, Holze R. Electrochemical synthesis of polyaniline/montmorillonite nanocomposites and their characterization[J]. Chem. Mater. 2006, 18: 1976-1980
    [196] Karatchevtseva I, Zhang Z, Hanna J, Luca V. Electrosynthesis of macroporous polyaniline-V_2O_5 nanocomposites and their unusual magnetic properties [J]. Chem. Mater., 2006, 18:4908-4916
    [197] Han M G, Cho S K, Oh S G, Im S S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution[J]. Synth. Mater., 2002, 126: 53-60
    [198] Rabin B, L Peter K Y S, Stephen F. Intercalation of Polypyrrole into graphite oxide[J]. Synth. Met., 2006, 156: 1023-1027
    [199] Qin H,Zhao C,Zhang S, Chen G, Yang M. Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite[J]. Polym. Degrad. Stab., 2003, 81, 497-500
    [200] Zanetti M, Bracco P, Costa L. Thermal degradation behaviour of PE/clay nanocomposites [J]. Polym. Degrad. Stab., 2004, 85: 657-665
    [201] Xu J, Wang Q, Fan Z. Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in situ polymerization[J]. Eur. Polym. J., 2005, 41: 3011-3017
    [202] Yang H, Song Y, Xu B, Zheng Q. Preparation of exfoliated low-density polyethylene/montmorillonite nanocomposites through melt extrusion[J]. Chem. Res. Chineses U. 2006,22: 383-387
    [203] Li B, Hu Y, Liu J, Chen Z, Fan W. Preparation of poly (methyl methacrylate)/LDH nanocomposite by exfoliation-adsorption process[J]. Colloid Polym. Sci., 2003, 281: 998-1001
    [204] Chen W, Qu B. Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation[J]. Chem. Mater., 2003, 15: 3208-3213
    [205] Chen W, Qu B. LLDPE/ZnAl LDH-exfoliated nanocomposites: effects of nanolayers on thermal and mechanical properties [J]. J. Mater. Chem., 2004, 14: 1705-1710
    [206] Chen W, Feng L, Qu B. Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE solution[J]. Chem. Mater., 2004, 16, 368-370
    [207] Qiu L, Chen W, Qu B. Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation[J]. Polym. Degrad. Stab., 2005, 87,433-440
    [208] Du L, Qu B. Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites[J]. J. Mater. Chem., 2006, 16, 1549-1549
    [209] Qiu L, Chen W, Qu B. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites [J]. Polymer, 2006, 47, 922-930
    [210] Liu Z, Kang L,Yang Z, Wang Z. Preparation of a polymer-intercalated layered manganese oxide nanocomposite through a delamination/reassembling process[J]. J. Mater. Res., 2006, 21: 1718-1725
    [211] Brock S L, Sanabria M, Suib S L, Urban V, Thiyagarajan P, Potter D I. Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide[J]. J. Phys. Chem. B, 1999, 103: 7416-7428
    [212] Xiong M, You B, Zhou S, Wu L. Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process[J]. Polymer, 2004, 45: 2967-2976
    [213] Xiong M, Gu G, You B, Wu L. Preparation and Characterization of Poly(styrenebutylacrylate) Latex/Nano-ZnO Nanocomposites[J]. J. Appl. Polym. Sci. 2003, 90: 1923-1931
    [214] Li Y, Fu S, Mai Y. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency [J]. Polymer, 2006, 47: 2127-2132
    [215] Sun D, Miyatake N, Sue H J. Transparent PMMA/ZnO nanocomposite films based on colloidal ZnO quantum dots[J]. Nanotechnology, 2007, 18: 215606/1-215606/6
    [216] Han K, Yu, M. Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation [J]. J. Appl. Polym. Sci., 2006, 100: 1588-1593
    [217] Ohkoshi S, Fujishima A, Hashimoto K. Transparent and colored magnetic thin films: (Fe_x~(II)Cr_(1-x)~(II))_(1.5)[Cr~(III)(CN)_6][J]. J. Am. Chem. Soc., 1998, 120: 5349-5350
    [218] Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y. Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors [J]. J. Electrochem. Soc, 2006, 153: A255-A260
    [219] Agrios A G, Cesar I, Comte P, Nazeeruddin M K, Gratzel M. Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition[J]. Chem. Mater., 2006, 18: 5395-5397
    [220] Ollivier P J, Kovtyukhova N I, Keller S W, Mallouk T E. Self-assembled thin films from lamellar metal disulfides and organic polymers[J]. Chem. Commun., 1998, 15: 1563-1562
    [221] Lahav M, Gabriel T, Shipway A N, Willner I. Assembly of a Zn(II)-porphyrin-bipyridinium dyad and Au-nanoparticle superstructures on conductive surfaces[J]. J. Am. Chem. Soc, 1999, 121: 258-259
    [222] Lvov Y, Munge B, Giraldo O, Ichinose I, Suib S L, Rusling J F. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption[J]. Langmuir, 2000, 16: 8850-8857
    [223] Feng Y, Han Z, Peng J, Lu J, Xue B, Li L, Ma H, Wang E. Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan[J]. Mater. Lett., 2006, 60: 1588-1593
    [224] Kim J H, Fujita S, Shiratori S. Fabrication and characterization of TiO_2 thin film prepared by a layer-by-layer self-assembly method[J]. Thin Solid Films, 2006,499: 83-89
    [225] Zhao W, Xu J, Chen H, Electrochemical biosensors based on layer-by-layer assemblies[J]. Electroanalysis, 2006, 18: 1737-1748
    [226] Hao E, Yang B, Zhang J, Zhang X, Sun J, Shen J. Assembly of alternating TiO_2/CdS nanoparticle composite films [J]. J. Mater. Chem., 1998, 8: 1327-1328
    [227] Kumar A, Mandale A B, Sastry M. Sequential electrostatic assembly of amine-derivatized gold and carboxylic acid-derivatized silver colloidal particles on glass substrates[J]. Langmuir, 2000, 16: 6921-6926
    [228] Lee D, Rubner M F, Cohen R E. All-nanoparticle thin-film coatings[J]. Nano Lett., 2006, 6: 2305-2312
    [229] Lee D, Omolade D, Cohen R E, Rubner M F. pH-Dependent structure and properties of TiO_2/SiO_2 nanoparticle multilayer thin films[J]. Chem. Mater., 2007, 19: 1427-1433
    [230] Hibino T, Kobayashi M. Delamination of layered double hydroxides in water[J]. J. Mater. Chem., 2005, 15:653-656
    [231] Li L, Ma R, Ebina Y, Iyi N, Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chem. Mater., 2005,17: 4386-4391
    [232] Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine[J]. Chem. Commun., 2006, 5: 485-496
    [233] Broughton J N, Brett M J. Investigation of thin sputtered Mn films for electrochemical capacitors[J]. Electrochim. Acta, 2004, 49: 4439-4446
    [234] Nagarajan N, Humadi H, Zhitomirsky I. Cathodic electrodeposition of MnO_x films for electrochemical supercapacitors[J]. Electrochim. Acta, 2006, 51: 3039-3045
    [235] Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]2003, 42, 4092-4096
    [236] Toupin M,Brousse T, Belanger D. Charge storage mechanism of MnO_2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater., 2004, 16: 3184-3190
    [237] Tang Z, Kotov N A, Magonov S, Ozturk B. Nanostructured artificial nacre[J]. Nat. Mater., 2003,2:413-418
    [238] Ching S, Hughes S M, Gray T P, Welch E J. Manganese oxide thin films prepared by nonaqueous sol-gel processing: preferential formation of birnessite[J]. Micropor. Mesopor. Mat., 2004, 76, 41-49
    [239] Nakayama M, Fukuda M, Konishi S, Tonosaki T. Effects of reaction parameters on the electrochemical formation of multilayer films composed of manganese oxides and tetra-alkylammonium ions[J]. J. Mater. Res., 2006, 21: 3152-3160
    [240] Takei T, Kobayashi Y, Hata H, Yonesaki Y, Kumadam N, Kinomura N, Mallouk T E. Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films[J]. J. Am. Chem. Soc, 2006, 128: 16634-16640
    [241] Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD)[J]. Prog. Mater. Sci., 2007, 52: 1-61
    [242] Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y. Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors[J]. J. Electrochem. Soc, 2006, 153: A255-A260
    [243] Sugimoto W, Terabayashi O, Murakami Y, Takasu Y. Electrophoretic deposition of negatively charged tetratitanate nanosheets and transformation into preferentially oriented TiO_2(B) film[J]. J. Mater. Chem., 2002, 12: 3814-3818
    [244] Yui T, Mori Y, Tsuchino T, Itoh T, Hattori T, Fukushima Y, Takagi K. Synthesis of photofunctional titania nanosheets by electrophoretic deposition[J]. Chem. Mater., 2005, 17: 206-211
    [245] Chang J J, Jang E S, Sohn B H, Hwang S J, Choy J H. High-T_c superconducting thin film from bismuth cuprate nano-colloids[J]. Thin Solid Films, 2006, 495: 78-81
    [246] Nakayama M, Hoyashita R, Komatsu H, Muneyama E, Shoda K, Kunishige A. Immobilization of methylviologen between well-ordered multilayers of manganese oxide during their electrochemical assembly[J]. Langmuir, 2007, 23, 3462-3465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700