乳液体系中新型纳米材料的合成表征及其生成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高科技的发展与实际应用的需要,具有特殊结构和功能的纳米材料的设计、制备以及相关技术路线和规律的研究日益显示其重要性。近年来,人们采用不同的合成路线成功的制备了具有各种形貌的纳米材料,不断完善了纳米材料的结构、物性分析检测手段,并对纳米材料的生长机制做了初步的解释,为纳米材料的可控制备及应用研究奠定了一定的理论和技术基础。与此同时,人们也对纳米材料的控制合成、生成理论的探索提出了更高的要求。本论文主要以上述需求为出发点,选取乳液体系中纳米材料的制备为研究对象,通过稀土无机盐等新型纳米材料及纳米结构的控制合成来探讨乳液体系中材料的基本生成规律,具体研究内容如下:
     1、利用常温微乳液法,仿照生物矿化过程,运用化学的基本理论、方法分析生物矿化过程中的科学问题,深化人们对生物体内矿化过程的认识。通过系列稀土碳酸盐及磷酸盐纳米材料的制备,系统的研究稀土碳酸盐及磷酸盐纳米材料及纳米结构的成核、生长及组装过程,并对其形貌演变规律进行探讨。分析由不同稀土离子与表面活性剂分子的相互作用而引起的表面活性剂构相的改变对产物结构的影响;研究反应过程中的界面效应,结合现有晶体理论,探索乳液体系中纳米材料的基本生成规律。研究发现:由于不同稀土离子和表面活性剂分子作用效果的差异,导致了稀土碳酸盐纳米材料形貌的演变:从纳米线、纳米带转变为“Z”字形结构,进而变成双扇形,最后形成介晶结构以及凝胶产物;而较强的界面作用导致了稀土磷酸盐纳米材料形貌的单一性,即均为超细纤维状结构。另外,溶液的过饱和度等因素也会对产物的晶化过程产生重要影响。
     2、利用常温乳液法反应条件温和、可控参数多的优点,制备具有不同结构的新型稀土功能纳米材料。稀土掺杂磷酸镧荧光纳米纤维的研究结果表明:常温乳液法制备的纳米纤维直径较小(约为5nm),并具有较窄的尺寸分布。由于铕离子的掺杂导致了纳米纤维的晶格缺陷,从而引起了纳米纤维荧光性质与块体材料的不同;而铈、铽离子掺杂的纳米纤维具有较高的量子产率。此外,我们还通过对乳液法制备的碳酸铈产物的功能化,制备了具有不同形貌的介孔氧化铈纳米材料。研究结果表明:该材料具有较大的比表面积和孔容。另外,由于组成不同形貌氧化铈纳米材料的晶粒尺寸不同,导致了紫外光谱中吸收带的蓝移。采用不同的分析技术对材料介孔结构的形成过程进行了研究,结果表明:可能是由于具有与生物矿化产物相似的组成及结构特征,前驱物中有机成分的存在导致了介孔结构的形成。同时,我们还制备出具有较好分散性LaCoO_3纳米粒子,探讨了实验参数对纳米粒子组成及结构的影响,进而对LaCoO_3纳米粒子的光催化活性进行了研究。
     3、在实现常温乳液体系中各种纳米材料可控制备及对其生成规律的认识相对完善的基础之上,将微乳液法和水热法有机结合,利用微乳液法可调工艺参数多,产物尺寸、形貌均匀可控等优点和水热条件下溶质传输更为有效、反应速度快的特点,制备具有不同结构和功能的新型纳米材料和纳米结构。研究两种方法产生的协同效应,探讨高温乳液法制备纳米材料的生成规律。在高温乳液体系中,通过原位组装过程制备了氧化亚铜纳米片阵列和氧化铈纳米薄膜,并对其生成机理进行了研究。合成出具有椭球形结构的碳酸氧铈纳米材料,并将其作为载体,研究了其在柴油氧化脱硫中的催化性能,得到了较好的效果。通过改变表面活性剂的种类,制备了具有团簇形貌的氧化铈纳米结构,电镜分析结果表明特殊的团簇结构导致其Raman光谱散射峰的变化。此外,我们还利用高温乳液法制备了系列具有不同组成的中空结构材料。实验结果表明:该法是一种有效的合成纳米中空球壳材料的新方法。
With the development of high-tech and the requirement of practical application,the design and preparation of functional nanomaterials with novel structures and the invention of diverse synthesis methods are becoming more and more important.Recently,various synthesis routes have been extensively used to prepare different nanomaterials,and the corresponding characterization technologies for structure and property have been improved.Moreover,the growth mechanism of nanomaterials has been proposed preliminarily.To some extent,the theoretic and technical bases have been found to the practical application.At the same time,the more controllable method and the detailed explanation of growth mechanism are needed urgently.Regarding the requirements mentioned above,the synthesis of novel nanomaterials was investigated,and the fundamental growth mechanism was explored through the controllable synthesis of different nanomaterials and nanostructures in emulsion system. The main works of this paper were as followed:
     1、Microemulsion method,a biomimetic mineralization route,was used to investigate the scientific issues from biomineralization process,so these issues could be solved by the basic theories and the analytic technologies in chemistry.As a result,the biomineralization mechanism could be understood more clearly.A series of rare earth carbonate and phosphate nanostructures were synthesized and the influences of experimental conditions on the growth of the products were investigated.Combined with the classical crystal theory and the interface effect between crystal and surfactant,the growth mechanism of nanomaterials in microemulsion system was proposed.With the increase in the atomic number and the decrease in the ionic radii of rare earth elements,the morphologies of the corresponding carbonates changed from simple one-dimensional structures to complex fan-like superstructures,and then to ellipse-like mesocrystals. The morphology evolvement indicated a change of the interactions between rare earth ion and the template molecule as well as possible conformational effects on the long chain template molecules.The intensive interaction of the interface between crystal and surfactant led to the similar morphologies of rear earth phosphates.In addition,the crystallization process could also be influenced by the degree of supersaturation.
     2、Taking advantage of the merits of microemulsion method(including mild reaction conditions and more control parameters),different nanostructured materials of rare earth compounds were synthesized.The lanthanide-doped nanofibers had a mean diameter of 5 nm and a narrow size distribution.The dopant of europium resulted in the distortion of the crystal lattice,which led the fluorescence properties of the ultrafine LaPO_4:Eu nanofibers were different from that of the large diameter ones. The quantum yield of terbium-doped nanofibers was relative high.In addition,different mesoporous ceria nanostructures were successfully synthesized by the microemulsion method.The experiment measurements showed that both the SBET and the Vp of the ceria nanobelts were higher than those of the nanowires.Because of the size effect,the blue-shifting of the absorption band was observed in UV-Vis spectra.The formation mechanism of cefia mesoporous structure was also proposed.Maybe,the precursors had the similar composition and structure characters with the biomineralization products.The organic surfactant molecule,existing in the precursor,resulted in the formation of mesoporous structure.In addition, LaCoO_3 nanoparticles were synthesized and the relationship between experimental condition and structure was studied.Using sunlight as irradiator,the photocatalytic activity of LaCoO_3 was investigated.
     3、Based on the controllable synthesis of different nanomaterials and the relative perfect crystallization mechanism of the usual emulsion method, high temperature emulsion system was used for the preparation of novel nanomaterials and nanostructures.Maybe,the high temperature emulsion system has the merits both from usual emulsion and hydrothermal method, including more control parameters,narrow size distribution of the products, quick crystallization rate and so on.Moreover,the synergy effect of the two methods maybe appears.Cu_2O nanoplate array and CeO_2 nanofilm were in-situ synthesized and the formation mechanism was investigated in the high temperature emulsion system.Under the similar condition, ellipsoid-like CEO(CO_3)_2 nanomaterials were prepared.Using CEO(CO_3)_2 as support,a quite good catalysis was realized in the desulfur of diesel. Through the change of different surfactants,nanoclusters of CeO_2 were prepared,and the relationship between the Raman scatter property and the special structure was investigated.In addition,a new general method was invented for the preparation of hollow microsphere,and a series of different microspheres were synthesized.
引文
[1]国家杰出青年科学基金实施十周年学术报告会摘要汇编,国家自然科学基金委员会,2004年10月.
    [2]Service R.F.,Nanotechnology Grows Up,Science 2004,304(5678),1732-1734.
    [3]国家中长期科学和技术发展规划纲要(2006-2020年),中华人民共和国国务院.
    [4]Yi J.B.,Pan H.,Lin J.Y.,Ding J.,Feng Y.P.,Thongrnee S.,Liu T.,Gong H.,Wang L.,Ferromagnetism in ZnO Nanowires Derived fromElectro-deposition on AAO Template and Subsequent Oxidation,Adv.Mater.2008,20(6),1170-1174.
    [5]Yang J.,Meng X.M.,ZnS nanowires with wurtzite polytype modulated structure,Adv.Mater.2003,15(14),1195-1198.
    [6]Huang M.H.,Wu Y.,Feick H.,Tran N.,Weber E.,Yang P.,Catalytic growth of zinc oxide nanowires by vapor transport,Adv.Mater.2001,13(2),113-116.
    [7]Niu Q.,Zhou Y.,Wang L.,Peng J.,Wang J.,Pei J.,Cao Y.,Enhancing the Performance of Polymer Light-Emitting Diodes by Integrating Self-Assembled Organic Nanowires,Adv.Mater.2008,20(5),964-969.
    [8]Shinde V.R.,Shim H.-S.,Gujar T.P.,Kim H.J.,Kim W.B.,A Solution Chemistry Approach for the Selective Formation of Ultralong Nanowire Bundles of Crystalline Cd(OH)_2 on Substrates,Adv.Mater.2008,20(5),1008-1012.
    [9]Iijima S.,Helical Microtubules of Graphitic Carbon,Nature 1991,354(6348),56-58.
    [10]Wang X.D.,Ding Y.,Summers C.J.,Large-scale synthesis of six-nanometer-wide ZnO nanobelts,J.Phys.Chem.B 2004,108(26),8773-8777.
    [11]Gautam U.K.,Bando Y.,Zhan J.,Costa P.M.F.,Fang X.S.,Golberg D.,Ga-Doped ZnS Nanowires as Precursors for ZnO/ZnGa_2O_4 Nanotubes,Adv.Mater.2008,20(4),810-814.
    [12]Li J.,Sambandam S.,Lu W.,Lukehart C.M.,Carbon Nanofibers "Spot-Welded"to Carbon Felt:A Mechanically Stable,Bulk Mimic of Lotus Leaves,Adv.Mater.2008,20(3),420-424.
    [13]Chen C.C.,Yeh C.C.,Large-scale catalytic synthesis of crystalline gallium nitride,Adv.Mater.2000,12(10),738-741.
    [14]Yang P.,Yan H.,Mao S.,Russo R.,Johnson J.,Saykally R.,Morris N.,Pham J.,He R.,Choi H.-J.,Controlled growth of ZnO nanowires and their optical properties,Adv.Funct.Mater.2002,12(5),323-331.
    [15]Zhang R.Q.,Lifshitz Y.,Lee S.T..Oxide-assisted growth of semiconducting nanowires,Adv.Mater.2003,15(7-8),635-640.
    [16]Nath M.and Parkinson B.A.,Superconducting MgB_2 Nanohelices Grown on Various Substrates,J.Am.Chem.Soc.2007,129(37),11302-11303.
    [17]Mathur S.,Shen H.,Donia N.,Rugamer T.,Sivakov V.,Werner U.,One-Step Chemical Vapor Growth of Ge/SiC_xN_y Nanocables,J.Am.Chem.Soc.2007,129(31),9746-9752.
    [18]Kumar S.K.,Kwanyong S.,Juneho I.,Paritosh M.,Jeunghee P.,and Bongsoo K.,Phase-Controlled Growth of Metastable Fe_5Si_3 Nanowires by a Vapor Transport Method,J.Am.Chem.Soc.2007,129(27),8594-8599.
    [19]刘劲松,曹洁明,李子全,柯行飞,微波固相合成氧化锌纳米棒,化学学报2007,65(15),1476-1480.
    [20]Wang L.,Huang Y.D.,Jiang R.R.,Jia D.Z.,Preparation and characterization of nano-sized LiFePO_4 by low heating solid-state coordination method and microwave heating,Electrochim.Acta 2007,52(24),6778-6783.
    [21]王世敏,许祖勋,傅晶,纳米材料制备技术,北京:化学工业出版社,2001.
    [22]Xu C.Y.,Zhen L.,Yang R.S.,Wang Z.L.,Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction,J.Am.Chem.Soc.2007,129(50),15444-15445.
    [23]徐如人,庞文琴,无机合成与制备化学,北京:高等教育出版社,2001.
    [24]Wang Z.H.,Chen X.Y.,Zhang M.,Qian Y.T.,Template synthesis of Ag_2S nanorods via an ion-exchange route,Chem.Lett.2004,33(6),754-755.
    [25]Xiong Y.J.,Xie Y.,Li Z.Q.,Li X.X.,Gao S.M.,Aqueous-solution growth of GaP and InP nanowires:A general route to phosphide,oxide,sulfide,and tungstate nanowires,Chem.Eur.J.2004,10(3),654-660.
    [26]Yang B.J.,Hu H.M.,Li C.,Yang X.G.,Li Q.W.,Qian Y.T.,One-step route to single-crystal gamma-Mn_3O_4 nanorods in alcohol-water system,Chem.Lett. 2004,33(7),804-805.
    [27]Wang X.,Li Y.D.,Rare-earth-compound nanowires,nanotubes,and fullerene-like nanoparticles:Synthesis,characterization,and properties,Chem.Eur.J.2003,9(22),5627-5635.
    [28]Liang J.H.,Li Y.D.,Synthesis and characterization of Ni(OH)_2 single-crystal nanorods,Chem.Lett.2003,32(12),1126-1127.
    [29]Chen D.,Shen G.Z.,Tang K.B.,Lei S.J.,Zheng H.G.,Qian Y.T.,Microwaveassisted polyol synthesis of nanoscale SnS_x flakes,J.Cryst.Growth 2004,260,469-474.
    [30]Wang X.and Li Y.D.,Synthesis and characterization of lanthanide hydroxide single-crystal nanowires,Angew.Chem.Int.Ed.2002,41(24),4790-4793.
    [31]Xu A.W.,Fang Y.P.,You L.P.and Lin H.Q.,A simple method to synthesize Dy(OH)_3 and Dy_2O_3 nanotubes,J.Am.Chem.Soc.2003,125(6),1494-1495.
    [32]Cheng F.Y.,Zhao J.Z.,Song W.,Li C.S.,Ma H.,Chen J.,Shen P.W,Facile Controlled Synthesis of MnO_2 Nanostructures of Novel Shapes and Their Application in Batteries,Inorg.Chem.2006,45(5),2038-2044.
    [33]Testino A.,Bellobono I.R.,Buscaglia V.,Canevali C.,D'Arienzo M.,Polizzi S.,Scotti R.,Morazzoni F.,Optimizing the Photocatalytic Properties of Hydrothermal TiO_2 by the Control of Phase Composition and Particle Morphology.A Systematic Approach,J.Am.Chem.Soc.2007,129(12),3564-3575.
    [34]Wang X.,Zhuang J.,Peng Q.,Li Y.D.,A general strategy for nanocrystal synthesis,Nature 2005,437,121-124.
    [35]Song R.Q.,Xu A.W.,Yu S.H.,Layered Copper Metagermanate Nanobelts:Hydrothermal Synthesis,Structure,and Magnetic Properties,J.Am.Chem.Soc.2007,129(14),4152-4153.
    [36]许群,倪伟,超临界流体技术制备纳米材料的研究与展望,化学进展 2007,19(9),1419-1427.
    [37]王晓娟,刘学武,夏远景,李志义,超临界水热合成制备纳米微粒材料,化学工业与工程技术 2007,28(2),18-20.
    [38]Rangappa D.,Naka T.,Kondo A.,Ishii M.,Kobayashi T.,Adschiri T.,Transparent COAl_2O_4 Hybrid Nano Pigment by Organic Ligand-Assisted Supercritical Water,J.Am.Chem.Soc.2007,129(36),11061-11066.
    [39]Moisan S.,Martinez V.,Weisbecker P.,Cansell F.,Mecking S.,Aymonier C.,General Approach for the Synthesis of Organic-Inorganic Hybrid Nanoparticles Mediated by Supercritical CO_2,J.Am.Chem.Soc.2007,129(34),10602-10606.
    [40]Jensen H.,Bremholm M.,Nielsen R.P.,Joensen K.D.,Pedersen J.Birkedal S.,H.,Chen Y.S.,Almer J.,Sφgaard E.G,Iversen S.B.,Iversen B.B.,In Situ High-Energy Synchrotron Radiation Study of Sol-Gel Nanoparticle Formation in Supercritical Fluids,Angew.Chem.Int.Ed.2007,46(7),1113-1116.
    [41]张金中,王中林,刘俊,陈少伟,刘刚玉,著;曹茂盛,曹传宝,译。自组装纳米结构,北京:化学工业出版社,2005.
    [42]欧阳健明,生物矿化的基质调控及其仿生应用,北京:化学工业出版社,2006.
    [43]崔福斋,生物矿化,北京:清华大学出版社,2007.
    [44]Yu S.H.,Colfen H.,Bio-inspired crystal morphogenesis by hydrophilic polymers,J.Mater.Chem.2004,14,2124-2147.
    [45]Shi H.T.,Qi L.M.,Ma J.M.,Cheng H.M,Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles,J.Am.Chem.Soc.2003,125,3450-3451.
    [46]Ying J.Y.,Mehnert C.P.,Wong M.S.,Synthesis and Applications of Supramo lecular-Templated Mesoporous Materials,Angew.Chem.Int.Ed.1999,38,56-77.
    [47]Tsai Y.W.,Tseng Y.L.,Sarma L.S.,Liu D.G.,Lee J.F.,Hwang B.J.,Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy,J.Phys.Chem.B 2004,108(24),8148-8152.
    [48]Chen F.X.,Xu G.Q.,Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion,Mater.Lett.2003,57(21),3282-3286.
    [49]Kuang D.B.,Xu A.W.,Fang Y.P.,Ou H.D.,Liu H.Q.,Preparation of inorganic salts(CaCO_3,BaCO_3,CaSO_4)nanowires in the Triton X-100/cyclohexane/water reverse micelles,J.Cryst.Growth 2002,244,379-383.
    [50]Kwan S.,Kim F.,Akana J.,Yang P.D..Synthesis and assembly of BaWO_4nanorods,Chem.Commun.2001,(5),447-448.
    [51] Liang H. J., Angelini T. E., Braun P. V., Wong G. C. L., Roles of Anionic and Cationic Template Components in Biomineralization of CdS Nanorods Using Self-Assembled DNA-Membrane Complexes, J. Am. Chem. Soc. 2004, 126(43), 14157-14165.
    [52] Thachepan S., Li M., Davis S. A., Mann S., Additive-Mediated Crystallization of Complex Calcium Carbonate Superstructures in Reverse Microemulsions, Chem. Mater. 2006, 18(15), 3557-3561.
    [53] Popescu D. C, Smulders M. M. J., Pichon B. P., Chebotareva N., Kwak S. Y., Asselen O. L. J., Sijbesma R. P., DiMasi E., Sommerdijk N. A. J. M., Template Adaptability Is Key in the Oriented Crystallization of CaCO_3, J. Am. Chem. Soc. 2007,129(45), 14058-14067.
    [54] Li H. Y., Estroff L. A., Hydrogels Coupled with Self-Assembled Monolayers: An in Vitro Matrix To Study Calcite Biomineralization, J. Am. Chem. Soc. 2007,129(17), 5480-5483.
    [55] Wenzl S., Hett R., Richthammer P., Sumper M., Silacidins: Highly Acidic Phosphopeptides from Diatom Shells Assist in Silica Precipitation In Vitro, Angew. Chem. Int. Ed. 2008,47(9), 1729-1732.
    [56] Kulak A. N., Iddon P., Li Y. T., Armes S. P., Colfen H., Paris O., Wilson R. M., Meldrum F. C, Continuous Structural Evolution of Calcium Carbonate Particles: A Unifying Model of Copolymer-Mediated Crystallization, J. Am. Chem. Soc. 2007,129(12),3729-3736.
    [57] Erik D., Mann S., Bio-inspired materials chemistry, Adv. Mater. 2002,14(11), 775-788.
    [58] Li M. Lebeau B. Mann S., Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions, Adv. Mater. 2003,15(23), 2032-2035.
    [59] Mann S., Materials that naturally assemble themselves, Chem. Commun. 2004, (1), 1-4.
    [60] Colfen H., Mann S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. 2003,42(21), 2350-2365.
    [61]德鲁·迈尔斯,著;吴大诚,朱谱新,王罗新,高绪珊,译。表面、界面和胶体—原理及应用,北京:化学工业出版社,2004.
    [62]Yu T.,Park J.,Moon J.,An K.,Piao Y.,Hyeon T.,Synthesis of Uniform Goethite Nanotubes with Parallelogram Cross Section,J.Am.Chem.Soc.2007,129(47),14558-14559.
    [63]Ledo-Suarez A.,Rivas J.,Rodriguez-Abreu C.F.,Rodriguez M.J.,Pastor E.,Hernandez-Creus A.,Oseroff S.B.,Lopez-Quintela M.A.,Facile Synthesis of Stable Subnanosized Silver Clusters in Microemulsions,Angew.Chem.Int.Ed.2007,46(46),8823-8827.
    [64]Chen D.L.,Gao L.,Novel synthesis of well-dispersed crystalline SnO_2nanoparticles by water-in-oil microemulsion-assisted hydrothermal process,J.Colloid Interf.Sci.2004,279(1),137-142.
    [65]Lu C.H.,Wen M.C.,Synthesis of nanosized TiO_2 powders via a hydrothermal microemulsion process,J.Alloy.Compd.2008,448(1-2),153-158.
    [66]Yang J.,Lin C.K.,Wang Z.L.,Lin J.,In(OH)_3 and In_2O_3 Nanorod Bundles and Spheres:Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties,Inorg.Chem.2006,45(22),8973-8979.
    [67]Deng H.,Yang S.H.,Xiao S.,Gong H.M.,Wang Q.Q.,Controlled Synthesis and Upconverted Avalanche Luminescence of Cerium(Ⅲ)and Neodymium(Ⅲ)Orthovanadate Nanocrystals with High Uniformity of Size and Shape,J.Am.Chem.Soc.2008,130(6),2032-2040.
    [68]Chen M.,Pica T.,Jiang Y.B.,Li P.,Yano K.,Liu J.P.,Datye A.K.,Fan H.Y.,Synthesis and Self-Assembly of fcc Phase FePt Nanorods,J.Am.Chem.Soc.2007,129(20),6348-6349.
    [69]Sun Y.X.,Guo G.S.,Tao D.L.,Wang Z.H.,Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions,J.Phys.Chem.Solids 2007,68(3)373-377.
    [70]Wang J.,Wang D.Y.,Sobal N.S.,Giersig M.,Jiang M.,Mohwald H.,Stepwise Directing of Nanocrystals to Self-Assemble at Water/Oil Interfaces,Angew.Chem. Int. Ed. 2006,45(47), 7963-7966.
    [71] Yu S. H., Colfen H., Tauer K., Antonietti M., Tectonic arrangement of BaCO_3 nanocrystals into helices induced by a racemic block copolymer, Nat. Mater. 2005,4(1),51-55.
    [72] Colfen H., Antonietti M., Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment, Angew. Chem. Int. Ed. 2005, 44(35), 5576-5591.
    [73] Redl F. X., Cho K. S., Murray C. B., O'Brien S., Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots, Nature 2003,423(6943), 968-971.
    
    [74] Wang Z. L., Nanostructures of Zinc Oxide, Materialstoday 2004,6,26-33.
    [75] Shevchenko E. V., Ringler M., Schwemer A., Talapin D. V., Klar T. A., Rogach A. L., Feldmann J., Alivisatos A. P., Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties, J. Am. Chem. Soc. 2008,130 (11), 3274-3275.
    [76] Xu J., Xia J. F., Lin Z. Q., Evaporation-Induced Self-Assembly of Nanoparticles from a Sphere-on-Flat Geometry, Angew. Chem. Int. Ed. 2007,46(11), 1860-1863.
    [77] Jiao F., Harrison A., Bruce P. G, Ordered Three-Dimensional Arrays of Monodispersed Mn_3O_4 Nanoparticles with a Core-Shell Structure and Spin-Glass Behavior, Angew. Chem. Int. Ed. 2007,46 (21), 3946-3950.
    [78] Wu C. K., Hultman K. L., O'Brien S., Koberstein J. T., Functional Oligomers for the Control and Fixation of Spatial Organization in Nanoparticle Assemblies, J. Am. Chem. Soc. 2008,130(11), 3516-3520.
    [79] Bai F., Wang D. S., Huo Z. Y., Chen W., Liu L. P., Liang X., Chen C., Wang X., Peng Q., Li Y. D., A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals, Angew. Chem. Int. Ed. 2007, 46(35), 6650-6653.
    [80] Li F., Delo S. A., Stein A., Disassembly and Self-Reassembly in Periodic Nanostructures: A Face-Centered-to-Simple-Cubic Transformation, Angew. Chem. Int. Ed. 2007, 46(35), 6666-6669.
    [81] Chen Z. Y, Moore J., Radtke G, Sirringhaus H., O'Brien S., Binary Nanoparticle Superlattices in the Semiconductor-Semiconductor System:CdTe and CdSe,J.Am.Chem.Soc.2007,129(50),15702-15709.
    [82]Zhuang J.Q.,Wu H.M.,Yang Y.A.,Cao Y.C.,Supercrystalline Colloidal Particles from Artificial Atoms,J.Am.Chem.Soc.2007,129(46),14166-14167.
    [83]Shen Z.R.,Yamada M.,Miyake M.,Control of Stripelike and Hexagonal Self-Assembly of Gold Nanoparticles by the Tuning of Interactions between Triphenylene Ligands,J.Am.Chem.Soc.2007,129(46),14271-14280.
    [84]Ge J.P.,Hu Y.X.,Yin Y.D.,Highly Tunable Superparamagnetic Colloidal Photonic Crystals,Angew.Chem.Int.Ed.2007,46(39),7428-7431.
    [85]Zhuang Z.B.,Peng Q.,Wang X.,Li Y.D.,Tetrahedral Colloidal Crystals of Ag_2S Nanocrystals,Angew.Chem.Int.Ed.2007,46(43),8174-8177.
    [86]Zhuang J.Q.,Wu H.M.,Yang Y.A.,Cao Y.C.,Controlling Colloidal Superparticle Growth Through Solvophobic Interactions,Angew.Chem.Int.Ed.2008,47(12),2208-2212.
    [87]Ren J.T.,Tilley R.D.,Preparation,Self-Assembly,and Mechanistic Study of Highly Monodispersed Nanocubes,J.Am.Chem.Soc.2007,129(11),3287-3291.
    [88]朱静,纳米材料和器件,北京:清华大学出版社,2003.
    [89]傅献彩,沈文霞,姚天扬,侯文华,物理化学(下),北京:高等教育出版社,2006.
    [90]徐光宪,稀土(下册),北京:冶金工业出版社,1995.
    [91]张若桦,稀土元素化学,天津:天津科学技术出版社,1987.
    [92]刘光华,稀土材料与应用技术,北京:化学工业出版社,2005.
    [93]Zhang J.,Lin Z.,Lan Y.Z.,Ren G.Q.,Chen D.G.,Huang F.,Hong M.C.,A Multistep Oriented Attachment Kinetics:Coarsening of ZnS Nanoparticle in Concentrated NaOH,J.Am.Chem.Soc.2006,128(39),12981-12987.
    [94]Li R.F.,Luo Z.T.,Papadimitrakopoulos F.,Redox-Assisted Asymmetric Ostwald Ripening of CdSe Dots to Rods,J.Am.Chem.Soc.2006,128(19),6280-6281.
    [95]Stubenrauch C.,Wielputz T.,Sottmann T.,Roychowdhury C.,DiSalvo F.J.,Microemulsions as templates for the synthesis of metallic nanoparticles,Colloid.Surface.A 2008,317(1-3),328-338.
    [96] Singh S., Bhardwaj P., Singh V., Aggarwal S., Mandal U. K., Synthesis of nanocrystalline calcium phosphate in microemulsion—effect of nature of surfactants, J. Colloid Interf. Sci. 2008,319(1),322-329.
    [97] Yang X. H., Wu Q. S., Li L., Ding Y. P., Zhang G. X., Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants, Colloid. Surface. A 2005, 264,(1-3), 172-178.
    [98] Ding Y. H., Liu X. X., Guo R., Synthesis of hollow PbS nanospheres in pluronic F127/cyclohexane/H_2O microemulsions, Colloid. Surface. A 2007,296(1-3),8-18.
    [99] Zhang J., Wang Y. H., Zheng J. S., Huang F., Chen D. G., Lan Y. Z., Ren G. Q., Lin Z., Wang C, Oriented Attachment Kinetics for Ligand Capped Nanocrystals: Coarsening of Thiol-PbS Nanoparticles, J. Phys. Chem. B 2007, 111(6), 1449-1454.
    [100] Piepenbrock M. M., Stirner T., O'Neill M., Kelly S. M, Growth Dynamics of CdTe Nanoparticles in Liquid and Crystalline Phases, J. Am. Chem. Soc. 2007,129(24),7674-7679.
    [101] Destree C, Nagy J. B., Mechanism of formation of inorganic and organic nanoparticles from microemulsions, Adv. Colloid Interfac. 2006,123-126(16), 353-367.
    [1] Wang X., Zhuang J., Peng Q., Li Y.D., Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals, Inorg. Chem. 2006, 45(17), 6661-6665.
    [2] Wang Z. L., Song J.H., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 2006,312(5771), 242-246.
    [3] Yang S. W., Gao L., Controlled Synthesis and Self-Assembly of CeO_2 Nanocubes, J. Am. Chem. Soc. 2006, 128(29), 9330-9331.
    [4] Sathe T. R., Agrawal A., Nie S., Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation, Anal. Chem. 2006, 78(16), 5627-5632.
    [5] Medintz I. L., Clapp A. R., Melinger J. S., Deschamps J. R., Mattoussi H. A, Reagentless Biosensing Assembly Based on Quantum Dot-Donor Forster Resonance Energy Transfer, Adv. Mater. 2005, 17(20), 2450-2455.
    [6] Wang X., Zhuang J., Peng Q., Li Y. D., A general strategy for nanocrystal synthesis, Nature 2005,437(7055),121-124.
    [7] Shi H. T., Qi L. M., Ma J. M., Cheng H. M., Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles, J. Am. Chem. Soc. 2003, 125(12), 3450-3451.
    [8] Gao P. X., Ding Y, Mai W. J., Hughes W. L., Lao C. S., Wang Z. L., Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science 2005, 309(5741),1700-1704.
    [9] Miao J. Y., Cai Y, Chan Y. F., Sheng P., Wang N., A Novel Carbon Nanotube Structure Formed in Ultra-Long Nanochannels of Anodic Aluminum Oxide Templates, J. Phys. Chem. B. 2006, 110(5), 2080-2083.
    [10] Letant S. E., van Buuren T. W., Terminello L. J., Nanochannel Arrays on Silicon Platforms by Electrochemistry, Nano Lett. 2004,4(9), 1705-1707.
    
    [11] Aizenberg J., Crystallization in Patterns: A Bio-Inspired Approach, Adv. Mater. 2004, 16(15), 1295-1302.
    [12] Olszta M. J., Gajjeraman S., Kaufman M., Gower L. B., Nanofibrous Calcite Synthesized via a Solution-Precursor-Solid Mechanism, Chem. Mater. 2004, 16(12), 2355-2362.
    [13] Busch S. Regeneration of Human Tooth Enamel, Angew. Chem. Int. Ed. 2004, 43(11), 1428-1431.
    [14] Hamley I. W., Nanotechnology with Soft Materials, Angew. Chem. Int. Ed. 2003, 42(15), 1692-1712.
    [15] Yu S. H., Colfen H., Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem. 2004, 14(14), 2124-2147.
    [16] Yu S. H., Colfen H., Tauer K., Antonietti M., Tectonic arrangement of BaCO_3 nanocrystals into helices induced by a racemic block copolymer, Nat. Mater. 2005, 4(1), 51-55.
    [17] Wang T. X., Xu A.W., Colfen H., Formation of Self-Organized Dynamic Structure Patterns of Barium Carbonate Crystals in Polymer-Controlled Crystallization, Angew. Chem. Int. Ed. 2006, 45(27), 4451-4455.
    [18] Donners J. J. J. M., Nolte R. J. M., Sommerdijk N. A. J. M., A Shape-Persistent Polymeric Crystallization Template for CaCO_3, J. Am. Chem. Soc. 2002, 124(33), 9700-9701.
    [19] Han Y. J., Aizenberg J., Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer, J. Am. Chem. Soc. 2003, 125(14), 4032-4033.
    [20] Xu A. W., Qiu Y., Dong W. F., Antonietti M., Colfen H., Stable Amorphous CaCO_3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid, Adv. Mater. 2005, 17(18), 2217-2221.
    [21] Thachepan S., Li M., Davis S. A., Mann S., Additive-Mediated Crystallization of Complex Calcium Carbonate Superstructures in Reverse Microemulsions, Chem. Mater. 2006, 18(15), 3557-3561.
    [22] Liu D. X., Yates M. Z., Formation of Rod-Shaped Calcite Crystals by Microemulsion-Based Synthesis, Langmuir 2006, 22(13), 5566-5569.
    [23] Guo X. H., Yu S. H., Cai G. B., Crystallization in a Mixture of Solvents by Using a Crystal Modifier: Morphology Control in the Synthesis of Highly Monodisperse CaCO_3 Microspheres, Angew. Chem. Int. Ed. 2006,45(24), 3977-3981.
    [24] Sugawara A., Nishimura T., Yamamoto Y., Inoue H., Nagasawa H., Kato T., Self-Organization of Oriented Calcium Carbonate/Polymer Composites: Effects of a Matrix Peptide Isolated from the Exoskeleton of a Crayfish, Angew. Chem. Int. Ed. 2006, 45(18), 2876-2879.
    [25] Butler M. F., Glaser N., Weaver A. C, Kirkland M., Heppenstall-Butler M., Calcium Carbonate Crystallization in the Presence of Biopolymers, Cryst. Growth & Des. 2006,6(3),781-794.
    [26] Yu S. H., Colfen H., Antonietti M., Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures, J. Phys. Chem. B 2003, 107(30), 7396-7405.
    [27] Sindhu S., Jegadesan S., Edward Leong R. A., Valiyaveettil S., Morphosynthesis of Mixed Metal Carbonates Using Micellar Aggregation, Cryst. Growth & Des. 2006,6(6),1537-1541.
    [28] 倪嘉缵, 稀土生物无机化学,北京:科学出版社, 2002.
    [29] Caravan P., Ellison J. J., McMurry T. J., Lauffer R. B., Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications, Chem. Rev. 1999; 99(9), 2293-2352.
    [30] Morton R. C, Diamandis E. P., Streptavidin-based macromolecular complex labeled with a europium chelator suitable for time-resolved fluorescence immunoassay applications, Anal. Chem. 1990, 62(17), 1841-1845.
    [31] Horrocks W. D., Bolender J. P., Smith W. D., Supkowski R. M., Photosensitized Near Infrared Luminescence of Ytterbium(III) in Proteins and Complexes Occurs via an Internal Redox Process, J. Am. Chem. Soc. 1997, 119(25), 5972-5973.
    [32] Tlatlik H., Simon P., Kawska A., Zahn D., Kniep R., Biomimetic Fluorapatite - Gelatine Nanocomposites: Pre-Structuring of Gelatine Matrices by Ion Impregnation and Its Effect on Form Development, Angew. Chem. Int. Ed. 2006, 45(12), 1905-1910.
    [33] Simon P., Zahn D., Lichte H., Kniep R., Intrinsic Electric Dipole Fields and the Induction of Hierarchical Form Developments in Fluorapatite-Gelatine Nanocomposites:A General Principle for Morphogenesis of Biominerals?Angew.Chem.Int.Ed.2006,45(12),1911-1915.
    [34]申泮文,徐辉碧,庞代文,化学生物学与生物技术,北京:科学出版社,2005.
    [35]Fasol G.,Nanowires:Small Is Beautiful,Science 1998,280(5363),545-546.
    [36]Kuang D.B.,Xu A.W.,Fang Y.P.,Ou H.D.,Liu H.Q.,Preparation of inorganic salts(CaCO_3,BaCO_3,CaSO_4)nanowires in the Triton X-100/cyclohexane/water reverse micelles,J.Cryst.Growth 2002,244(3-4),379-383.
    [37]Moulik S.P.,Paul B.K.,Structure,dynamics and transport properties of microemulsions,Adv.Colloid Interface Sci.1998,78(2),99-195.
    [38]Lin J.C.,Dipre J.T.,Yates M.Z.Microemulsion-Directed Synthesis of Molecular Sieve Fibers,Chem.Mater.2003,15(14),2764-2773.
    [39]Daiguebonne C.,Guillou O.,Baux C.,Dret F.L.,Boubekeur K.,A new bidimensional material:Ln_2(CO_3)_3.8H_2O(Ln=La,Ce)Synthesis and crystal structure,J.Alloy.Compd.2001,323-324,193-198.
    [40]Colfen H.,Antonietti M.,Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment,Angew.Chem.Int.Ed.2005,44(35),5576-5591.
    [41]Colfen H.,Mann S.,Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures,Angew.Chem.Int.Ed.2003,42(21),2350-2365.
    [42]Xu A.W.,Antonietti M.,Crlfen H.,Fang Y.P.,Uniform Hexagonal Plates of Vaterite CaCO_3 Mesocrystals Formed by Biomimetic Mineralization,Adv.Funct.Mater.2006,16(7),903-908.
    [1]欧阳健明,生物矿化的基质调控及其仿生应用,第一版,北京:化学工业出版社,2006.
    [2]Riwotzki K.,Meyssamy H.,Schnablegger H.,Komowski A.,Haase M.,Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO_4:Ce,Tb Nanocrystals,Angew.Chem.Int.Ed.2001,40(3),573-575.
    [3]Hashimoto N.,Takada Y.,Sato K.,Ibuki S.,Green-luminescent(La,Ce)PO_4:Tb phosphors for small size fluorescent lamps,J.Lumin.1991,48-49(part2),893-897.
    [4]Zhang Y.J.,Guan H.M.,Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO_4 single-crystal nanowires,J.Cryst.Growth 2003,256(1-2),156-161.
    [5]Fang,Y.P.,Xu,A.W.,Song,R.Q.,Zhang,H.X.,You,L.P.,Yu,J.C.,Liu,H.Q.,Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires,J.Am.Chem.Soc.2003,125(51),16025-16034.
    [6]Wang X.,Li Y.D.,Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires,Angew.Chem.Int.Ed.2002,41(24),4790-4793.
    [7]Chan C.M.,Wu J.S.,Li J.X.,Cheung Y.K.,Polypropylene/calcium carbonate nanocomposites,Polymer 2002,43(10),2981-2992.
    [8]Huang Q.,Gao L.,Cai Y.,Aldinger F.,Synthesis and Characterization of Strontium Carbonate Nanowires with a Axis Orientation and Dendritic Nanocrystals,Chem.Lett.2004,33(3),290-291.
    [9]Kuther J.,Bartz M.,Seshadri R.,Vaughan G.B.M.,Tremel W.,Crystallization of SrCO_3 on a self-assembled monolayer substrate:an in-situ synchrotron X-ray study,J.Mater.Chem.2001,11(2),503-506.
    [10]Rautaray D.,Sainkar S.R.,Sastry M.,SrCO_3 Crystals of Ribbonlike Morphology Grown within Thermally Evaporated Sodium Bis-2-ethylhexylsulfosuccinate Thin Films,Langmuir 2003,19(3),888-892
    [11]Onsager L.,The effects of shape on the interaction of colloidal particles,Ann.N.Y.Acad.Sci.1949,51(4),627-659.
    [12] Nikoobakht B., Wang Z. L., El-Sayed M. A., Self-Assembly of Gold Nanorods, J. Phys. Chem. B. 2000,104(36),8635-8640.
    [13] Cooper T. M., Stone M. O., Investigation of Self-Assembly upon Formation of an Electrostatic Complex of Congo Red and a Helical Peptide, Langmuir 1998, 14(23),6662-6668.
    [14] Sugimoto T., Preparation of monodispersed colloidal particles, Adv. Colloid Interface Sci. 1987,28,65-108.
    [15] Liu B., Yu S. H., Li L., Zhang F., Zhang Q., Yoshimura M., Shen P., Nanorod-Direct Oriented Attachment Growth and Promoted Crystallization Processes Evidenced in Case of ZnWO_4, J. Phys. Chem. B. 2004,108(9),2788-2792.
    [16] Banfield J. F., Welch S. A., Zhang H. Z., Ebert T. T., Penn R. L., Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products, Science 2000, 289(5480),751-754.
    [17] Alivisatos A. P., Enhanced: Naturally Aligned Nanocrystals, Science 2000, 289(5480), 736-737.
    [18] Zhang J., Lin Z., Lan Y. Z., Ren G. Q., Chen D. G., Huang F., Hong M. C., A Multistep Oriented Attachment Kinetics: Coarsening of ZnS Nanoparticle in Concentrated NaOH, J. Am. Chem. Soc. 2006,128(39),12981-12987.
    [19] Piepenbrock M. O. M., Stirner T., O'Neill M., Kelly S. M. Growth Dynamics of CdTe Nanoparticles in Liquid and Crystalline Phases, J. Am. Chem. Soc. 2007,129(24),7674-7679.
    [20] Li R. F., Luo Z. T., Papadimitrakopoulos F., Redox-Assisted Asymmetric Ostwald Ripening of CdSe Dots to Rods, J. Am. Chem. Soc. 2006, 128(19), 6280-6281.
    [21] Zhang J., Wang Y. H., Zheng J. S., Huang F., Chen D. G., Lan Y. Z., Ren G. G., Lin Z., Wang C., Oriented Attachment Kinetics for Ligand Capped Nanocrystals: Coarsening of Thiol-PbS Nanoparticles, J. Phys. Chem. B 2007, 111(6), 1449-1454.
    [1] Bell A. T., The Impact of Nanoscience on Heterogeneous Catalysis, Science 2003, 299(5613),1688-1691.
    [2] Wang H., Uehara M., Nakamura H., Miyazaki M., Maeda H., Synthesis of Well-Dispersed Y_2O_3:Eu Nanocrystals and Self-Assembled Nanodisks Using a Simple Non-hydrolytic Route, Adv. Mater. 2005,17(20),2506-2509.
    [3] Yu T., Joo J., Park Y., Hyeon T., Single Unit Cell Thick Samaria Nanowires and Nanoplates, J. Am. Chem. Soc. 2006,128(6), 1786-1787.
    [4] Si R., Zhang Y. W., You L. P., Yan C. H., Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks, Angew. Chem. Int. Ed. 2005,44(21),3256-3260.
    [5] Fang Y. P., Xu A. W, You L. P., Song R. Q., Yu J. C, Zhang H. X., Li Q., Liu H. Q., Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes, Adv. Funct. Mater. 2003,13(12),955-960.
    [6] Wang X, Li Y. D., Rare-Earth-Compound Nanowires, Nanotubes, and Fullerene- Like Nanoparticles: Synthesis, Characterization, and Properties, Chem. Eur. J., 2003,9(22),5627-5635.
    [7] Tang C. C., Bando Y, Liu B. D., Golberg D., Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes, Adv. Mater., 2005,17(24),3005-3009.
    [8] Yada M., Mihara M., Mouri S., Kuroki M., Kijima T., Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies, Adv. Mater. 2002,14(4),309-313.
    [9] Riwotzki K., Meyssamy H., Schnablegger H., Kornowski A., Haase M., Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO_4:Ce,Tb Nanocrystals, Angew. Chem. Int. Ed. 2001,40(3), 573-576.
    [10] Hashimoto N., Takada Y, Sato K., Ibuki S., Green-luminescent (La,Ce)PO_4:Tb phosphors for small size fluorescent lamps, J. Lumin. 1991,48-49,893-897.
    [11] Meiser F., Cortez C, Caruso F., Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles, Angew. Chem. Int. Ed. 2004,43 (44), 5954-5957.
    [12] Rambabu U., Munirathnam N.R., Prakash T.L., Buddhudu S., Emission spectra of LnPO_4:RE~(3+) (Ln = La, Gd; RE = Eu, Tb and Ce) powder phosphors, Mater. Chem. Phys. 2002,78(1), 160-169.
    [13] Meyssamy H., Riwotzki K., Kornowski A., Naused S., Haase M., Wet-Chemical Synthesis of Doped Colloidal Nanomaterials: Particles and Fibers of LaPO_4:Eu, LaPO_4:Ce, and LaPO_4:Ce,Tb, Adv. Mater. 1999,11 (10), 840-844.
    [14] Yu L. X., Song H. W., Lu S. Z., Liu Z. X., Yang L. M., Wang T., Kong X. G., Thermal quenching characteristics in LaPO_4:Eu nanoparticles and nanowires, Mater. Res. Bull. 2004,39 (13), 2083-2088.
    [15] Kang Y. C, Kim E. J., Lee D. Y., Park H. D., High brightness LaPO_4:Ce,Tb phosphor particles with spherical shape, J. Alloy. Compd. 2002,347(1-2), 266-270.
    [16] Yu L. X., Song H. W., Lu S. Z., Liu Z. X., Yang L. M., Influence of shape anisotropy on photoluminescence characteristics in LaPO_4:Eu nanowires, Chem. Phys. Lett. 2004,399 (4-6),384-388.
    [17] Pellegrino T., Kudera S., Liedl T., Javier A. M., Manna L., Parak W., On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications, Small 2005,1 (1), 48-63.
    [18] Zhang C. Y., Yeh H. C., Kuroki M. T., Wang T. H., Single-quantum-dot-based DNA nanosensor, Nat. Mater. 2005,4 (11), 826-831.
    [19] Zhang Y. J., Guan H. M., Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO_4 single-crystal nanowires, J. Cryst. Growth 2003,256 (1-2),156-161.
    [20] Fang Y. P., Xu A. W., Song R. Q., Zhang H. X., You L. P., Yu J. C, Liu H. Q., Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires, J. Am. Chem. Soc. 2003,125 (51), 16025-16034.
    [21] Dewxpert-Ghys J., Mauricot R., Faucher M. D., Spectroscopy of Eu~(3+) ions in monazite type lanthanide orthophosphates LnPO_4, Ln = La or Eu, J. Lumin. 1996,69(4), 203-215.
    [22] Haase M., Riwotzki K., Meyssamy H., Kornowski A., Synthesis and properties of colloidal lanthanide-doped nanocrystals, J. Alloy. Compd. 2000,303-304,191-197
    [23] Judd B. R., Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev. 1962,127,750-755.
    [24] Ofelt G. S., Intensities of Crystal Spectra of Rare-Earth Ions, J. Chem. Phys. 1962,37(3), 511-520.
    [25] Balaji T., Buddhudu S., Fluorescence spectra of Ce~(3+)-doped alkaline earth and lanthanide oxyhalide powder phosphors, Mater. Chem. Phys. 1993,34(3-4), 310-312.
    [26] Lin J. H., Yao G Q., Dong Y, Park B., Su M. Z., Does Ce~(4+) play a role in the luminescence of LaPO_4:Ce? J. Alloy. Compd. 1995,225 (1-2), 124-128.
    [27] Smets B. M. J., Phosphors based on rare-earths, a new era in fluorescent lighting, Mater. Chem. Phys. 1987,16 (3-4), 283-299.
    [28] Bumajdad A., Zaki M. I., Eastoe J. l., Pasupulety L., Microemulsion-Based Synthesis of CeO_2 Powders with High Surface Area and High-Temperature Stabilities, Langmuir 2004,20(25),11223-11233.
    [29] Trovarelli A., Leitenburg C, Boaro M., Dolcetti G, The utilization of ceria in industrial catalysis, Catal. Today 1999,50(2),353-367.
    [30] Pengpanich S., Meeyoo V., Rirksomboon T., Bunyakiat K., Catalytic oxidation of methane over CeO_2-ZrO_2 mixed oxide solid solution catalysts prepared via urea hydrolysis, Appl. Catal. A2002,234(1-2),221-233.
    [31] Wong G S., Concepcion M. R., Vohs J. M., Oxidation of Methanol to Formaldehyde on Vanadia Films Supported on CeO_2(111), J. Phys. Chem. B 2002,106(25),6451-6455.
    [32] Vantomme A., Yuan Z. Y, Du G H., Su B. L., Surfactant-Assisted Large-Scale Preparation of Crystalline CeO_2 Nanorods, Langmuir 2005,21 (3), 1132-1135.
    [33] Laha S. C, Ryoo R., Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates, Chem. Commun. 2003,17,2138-2139.
    [34] Lyons D. M., Ryan K. M., Morris M. A., Preparation of ordered mesoporous ceria with enhanced thermal stability, J. Mater. Chem. 2002,12(4),1207-1212.
    [35] Terribile D., Trovarelli A., Llorca J., Leitenburg C, Dolcetti G, The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route, J. Catal. 1998,178(1),299-308.
    [36] Lundberg M., Skarman B., Cesar F., Wallenberg L. R., Mesoporous thin films of high-surface-area crystalline cerium dioxide, Microporous Mesoporous Mater. 2002,54(1-2),97-103.
    [37] Zhang J., Ju X., Wu Z. Y., Liu T., Hu T. D., Xie Y. N., Zhang Z. L., Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method, Chem. Mater. 2001,13 (11),4192-4197.
    [38] Zhou X. D., Huebner W., Anderson H. U., Processing of Nanometer-Scale CeO_2 Particles, Chem. Mater. 2003,15(2),378-382.
    [39] Toro R. G, Malandrino G, Fragala I. L., Nigro R. L., Losurdo M., Bruno G., Relationship between the Nanostructures and the Optical Properties of CeO_2 Thin Films, J. Phys. Chem. B. 2004,108(42),16357-16364.
    [40] La R. J., Hu Z. A., Li H. L., Shang X. L., Yang Y. Y, Template synthesis of CeO_2 ordered nanowire arrays, Mater. Sci. Eng. A2004,368(1-2),145-148.
    [41] Wu G. S., Xie T., Yuan X. Y, Cheng B. C, Zhang L. D., An improved sol-gel template synthetic route to large-scale CeO_2 nanowires, Mater. Res. Bull. 2004,39(7-8),1023-1028.
    [42] Chae W. S., Lee S. W., Kim Y. R., Templating Route to Mesoporous Nanocrystalline Titania Nanofibers, Chem. Mater. 2005,17(12),3072-3074.
    [43] Sayari A., Yang Y, Nonionic oligomeric polymer directed synthesis of highly ordered large pore periodic mesoporous organosilica, Chem. Commun. 2002,21,2582-2583.
    [44] Blin J. L., Lesieur P., Stebe M. J., Nonionic Fluorinated Surfactant: Investigation of Phase Diagram and Preparation of Ordered Mesoporous Materials, Langmuir 2004,20(2),491-498.
    [45] Bagshaw S. A., Prouzet E., Pinnavaia T. J., Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants, Science 1995,269(5228), 1242-1244.
    [46] Chunman H., Jimmy C. Y., Tszyan K., Angelo C. M., Sukyin L., Morphology- Controllable Synthesis of Mesoporous CeO_2 Nano- and Microstructures, Chem. Mater. 2005,17(17),4514-4522.
    [47] Yin L. X., Wang Y.Q., Pang G. S., Koltypin Y., A. Gedanken, Sonochemical Synthesis of Cerium Oxide Nanoparticles—Effect of Additives and Quantum Size Effect, J. Colloid Interface Sci. 2002, 246 (1),78-84.
    [48] Inoue M., Kimura M., Inui T., Transparent colloidal solution of 2 nm ceria particles, Chem. Commun. 1999,11,957-958.
    [49] Tsunekawa S., Wang J. T., Kawazoe Y., Kasuya A., Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites, J. Appl. Phys. 2003, 94(5),3654-3656.
    [50] Torrance J. B., Lacorro P., Asavaroengchai C, R. M. Metzger, Simple perovskite oxides of transition-methals: why some are metallic, ehile most are insulating, J. Solid State Chem. 1991,90(1),168-172.
    [51]Yamazoe N, Teraora Y. Oxidation catalysis of perovskite-relationship to bulk structure and composition (valance, defect ect), Catal. Today 1990, 8(2), 175-199.
    [52] Zhu Y. F., Wang H., Tan R. Q., Cao L. L., Preparation of nanosized La_(1-x)Sr_xCoO_3 via La_(1-x)Sr_xCo(DTPA)·6H_2O amorphous complex precursor, J. Alloy. Compd. 2003,352(1-2),134-139.
    [1] Deng H., Yang S. H., Xiao S., Gong H. M., Wang Q. Q., Controlled Synthesis and Upconverted Avalanche Luminescence of Cerium(III) and Neodymium(III) Orthovanadate Nanocrystals with High Uniformity of Size and Shape, J. Am. Chem. Soc. 2008,130 (6), 2032 -2040.
    [2] Lu C. H., Wen M. C., Synthesis of nanosized TiO_2 powders via a hydrothermal microemulsion process, J. Alloy. Compd. 2008, 448(1-2),153-158.
    [3] Yang J., Lin C. K., Wang Z. L., Lin J., In(OH)_3 and In_2O_3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties, Inorg. Chem. 2006,45(22), 8973-8979.
    [4] Chen D. L., Gao L., Novel synthesis of well-dispersed crystalline SnO_2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process, J. Colloid Interf. Sci. 2004, 279(1), 137-142.
    [5] Sun Y. X., Guo G. S., Tao D. L., Wang Z. H., Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions, J. Phys. Chem. Solids 2007,68 (3), 373-377.
    [6] Chen M., Pica T., Jiang Y. B., Li P., Yano K., Liu J. P., Datye A. K., Fan H. Y., Synthesis and Self-Assembly of fcc Phase FePt Nanorods, J. Am. Chem. Soc. 2007,129(20),6348-6349.
    [7] Duan G. T., Cai W. P., Luo Y. Y., Li Z. G., Lei Y., Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition, J. Phys. Chem. B 2006,110 (32),15729-15733.
    [8] Wang Z., Qian X. F., Yin J., Zhu Z. K., Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route, Langmuir 2004,20(8), 3441-3448.
    [9] Yan C. L., Xue D. F., Conversion of ZnO Nanorod Arrays into ZnO/ZnS Nanocable and ZnS Nanotube Arrays via an in Situ Chemistry Strategy, J. Phys. Chem. B 2006,110(51), 25850-25855.
    [10] Li R. Y, Sun X. C., Zhou X. R., Cai M., Sun X. L., Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes, J. Phys. Chem. C 2007,111 (26), 9130 -9135.
    [11] Bai F., Wang D. S., Huo Z. Y., Chen W., Liu L. P., Liang X., Chen C., Wang X., Peng Q., Li Y. D., A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals, Angew. Chem. Int. Ed. 2007, 46(35), 6650-6653.
    [12] Ge J. P., Hu Y. X., Yin Y. D., Highly Tunable Superparamagnetic Colloidal Photonic Crystals, Angew. Chem. Int. Ed. 2007,46(39),7428-7431.
    [13] Zhuang Z. B., Peng Q., Wang X., Li Y. D., Tetrahedral Colloidal Crystals of Ag_2S Nanocrystals, Angew. Chem. Int. Ed. 2007,46(43), 8174-8177.
    [14] Cabot A., Puntes V. F., Shevchenko E., Yin Y. D., Balcells L., Marcus M. A., Hughes S. M., Alivisatos A. P., Vacancy Coalescence during Oxidation of Iron Nanoparticles, J. Am. Chem. Soc. 2007,129(34), 10358-10360.
    [15] Li H. X., Bian Z. F., Zhu J., Zhang D. G., Li G. S., Huo Y. N., Li H., Lu Y. F., Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity, J. Am. Chem. Soc. 2007,129(27),8406-8407.
    [16] Peng S., Sun S. H., Synthesis and Characterization of Monodisperse Hollow Fe_3O_4 Nanoparticles, Angew. Chem. Int. Ed. 2007,46(22),4155-4158.
    [17] Xu H. L., Wang W. Z., Template Synthesis of Multishelled Cu_2O Hollow Spheres with a Single-Crystalline Shell Wall, Angew. Chem. Int. Ed. 2007,46(9), 1489-1492.
    [18] Chen C. H., Abbas S. F., Morey A., Sithambaram S., Xu L. P., Garces H. F., Hines W. A., Suib S. L., Controlled Synthesis of Self-Assembled Metal Oxide Hollow Spheres Via Tuning Redox Potentials: Versatile Nanostructured Cobalt Oxides, Adv. Mater. 2008, 20(6), 1205-1209.
    [19] Koo H. J., Kim Y. J., Lee Y. H., Lee W. I., Kim K., Park N.G, Nano-embossed Hollow Spherical TiO_2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells, Adv. Mater. 2008, 20(1), 195-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700