有机/无机复合纳米粒子的设计、合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机复合纳米粒子以其同时具有无机材料优越的光、电、磁等性质,有机材料的优良加工性能、生物相容性能等特性受到了人们的极大关注。近年来,设计具有特殊功能特性的有机/无机复合纳米粒子成为纳米科学技术的研究热点。本文通过有机/无机复合纳米粒子的制备,对自由基共聚法合成环境响应性纳米二氧化硅粒子、无皂乳液法合成二氧化硅/聚(甲基丙烯酸甲酯-丙烯酰胺)(PMMA-AM)核/壳纳米粒子、离子交换-软模板法合成二氧化硅-聚丙烯酸(PAAc)-Ag复合纳米粒子、自由基共聚法合成PAAc接枝磁性四氧化三铁纳米粒子和界面引发聚合合成四氧化三铁/聚(异丙基丙烯酰胺)(PNIPAM)中空纳米复合微球进行了研究,其中主要工作如下:
     本文首先以正硅酸四乙酯(TEOS)为硅源、无水乙醇为溶剂、氨水为催化剂、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)为偶联剂,采用原位一步法合成了表面乙烯基双键功能化的纳米二氧化硅粒子,并对St(o|¨)ber法和原位一步法两种合成方法进行比较,结果表明原位一步法更为简单、有效。
     本文以AAc为单体、过硫酸钾(KPS)为引发剂、去离子水为溶剂,采用自由基共聚法合成了核/壳或“发”形结构的PAAc接枝纳米二氧化硅粒子;并对不同反应条件下合成的复合粒子PAAc接枝率进行热失重(TGA)表征,发现PAAc接枝率随着聚合反应时间和共聚单体AAc浓度的增大而增大,随着纳米二氧化硅粒子和引发剂浓度的增加而降低。通过动态光散射(DLS)研究表明,PAAc接枝纳米二氧化硅粒子具有环境响应特性,粒子粒径随着pH值的增大呈现先增大后降低的趋势,在pH值为10时达到最大值;随离子强度的增大而降低;并且复合粒子对高价态离子比低价态离子更为敏感。
     本文以双键功能化二氧化硅纳米粒子为大分子单体,甲基丙烯酸甲酯(MMA)、丙烯酰胺(AM)为共聚单体,对合成二氧化硅/PMMA-AM核/壳纳米粒子进行研究,发现这种新型复合粒子形成以二氧化硅纳米粒子为核、PMMA-AM的共聚物为壳的核-壳结构,并且具有良好的亲水性。TGA研究表明:各种反应条件均会对聚合物接枝率产生一定的影响。其中,PMMA-AM接枝率随MMA单体浓度的增加而增加,并逐渐趋于不变;AM的用量在高于1 wt%时对PMMA-AM接枝率影响不大;随引发剂KPS的浓度的增加,PMMA-AM接枝率先增加后降低,当KPS过硫酸钾用量为单体质量的1.2%时接枝率最大;聚合反应温度也使PMMA-AM接枝率呈现先增大后降低的趋势,并于75℃时达到最大,但总体影响不大。
     本文以硝酸银为银盐,硼氢化钠为还原剂,通过离子交换过程,以PAAc为软模板成功制备出银纳米粒子负载的水溶性二氧化硅纳米微球,即S-P-Ag纳米微球。并采用透射电镜(TEM)和紫外-可见(UV-vis)吸收光谱对S-P-Ag纳米微球表面Ag纳米粒子的形态和浓度进行了研究,发现随着银盐浓度和pH的增大,Ag纳米粒子的粒径逐渐增大,其SPR吸收谱图呈现红移现象。以S-P-Ag-7-0.1复合纳米微球为例、大肠杆菌为菌种,研究了复合纳米微球的杀菌活性,结果表明:复合纳米微球具有极高的杀菌活性;并且随着二氧化硅纳米微球固含量的增加,复合纳米微球的杀菌率随之升高;当二氧化硅纳米微球固含量为1000ppm时(此时银纳米粒子含量约为50ppm),复合纳米微球的杀菌率达到了99.99%。
     本文以Fe~(2+)和Fe_(3+)为铁离子源、氨水为沉淀剂采用共沉淀法合成了四氧化三铁纳米粒子,并以TEM对沉淀剂氨水的用量对共沉淀法制备的四氧化三铁纳米粒子的粒径和分散性进行研究,结果发现只要反应体系保持碱性均可获得尺寸均一的四氧化三铁纳米粒子。
     本文以AAc为单体、KPS为引发剂、去离子水为溶剂和乙烯基双键改性的四氧化三铁(Fe_3O_4)粒子为大分子单体,对自由基共聚法制备PAAc接枝纳米Fe_3O_4粒子的合成过程进行了研究,结果发现,接枝后的粒子呈核/壳结构,并且经PAAc接枝改性后的纳米Fe_3O_4粒子团聚现象进一步减弱,分散性得到较好的改善。采用TGA对不同反应条件下制备的PAAc接枝纳米粒子的PAAc接枝率进行了研究,发现PAAc接枝率随着聚合反应时间和共聚单体AAc浓度的增大而增大,随着引发剂浓度和聚合反应温度的增加而先升高后降低。
     最后本文采用两亲性纳米四氧化三铁粒子和氧化-还原反相乳液界面引发过程成功制备出粒径约1~1.5μm,壁厚100 nm左右的Fe_3O_4/PNIPAM中空纳米复合微球,并且微球的矫顽力为零,即为超顺磁性。
Organic/inorganic nanocomposite particles have been of great interest based on the fact that the inorganic enhance the optical,electrical,and magnetic properties while the organic offers the processing and biocompatibility.More recently,the synthesis of organic/inorganic nanoparticles with stimuli-responsive,antibacterial,and biocompatible properties has attracted special interest.In this dissertation,several different organic/inorganic nanoparticles including the poly(acrylic acid) (PAAc)-grafted silica nanoparticles,the silica/poly(methyl methacrylate-acryl amide)(PMMA-AM)core-shell nanoparticles,the silver nanoparticles embedded silica nanospheres,the PAAc-grafted magnetite nanoparticles,and the magnetite/poly(N-isopropylacryl amide) (PNIPAM)hollow nanocomposite microspheres have been successfully synthesized.
     In the first,vinyl bond modified silica nanoparticles were synthesized by modified stober method from tetraethoxysilane(TEOS),γ-methacryloxypropyltrimethoxysilane(MPS)in ethanol solution under base condition.Comparing with stober method,this process can easily obtain the vinyl bond modified silica nanoparticles.
     Silica-PAAc core-shell nanoparticles were successfully prepared via graft copolymerization of acrylic acid(AAc)onto vinyl bond modified silica NPs.Transmission electron microscopy(TEM)results indicated that the obtained micropheres have core-shell morphology.Fourier Transform Infrared(FTIR)analysis and X-ray photoelectron spectroscopy(XPS)measurements confirmed that the surface of the nanoparticles was polymer-rich,which was consistent with the core-shell morphology.The influence of the synthetic conditions,such as reaction time and AAc concentration on the graft yield of PAAc grafted silica NPs was investigated.Dynamic light scattering(DLS)analysis showed that the silica-PAAc core-shell nanoparticles possessed excellent stimuli response to pH and ion strengthen.Because of their pH-responsive behavior and small feature size,nanostructure devices designed from the smart silica nanoparticles have potential applications including sensors and membranes.
     Polymer/silica inorganic/organic composite core/shell nanoparticles bearing amino groups on the surface were prepared via emulsifier-free emulsion copolymerization of methyl methacrylate(MMA)and acrylamide(AM).The prepared composite nanoparticles were characterized using FTIR analysis,TEM,and thermogravimetric analysis (TGA).The results showed that the obtained composite nanoparticles have a core/shell structure,and the surface of the nanopartilces was polymer-rich which were consistent with the core/shell morphology.The influence of the synthetic conditions,such as MMA concentration and potassium persulfate(KPS)concentration on the graft yield of composite nanoparticles was investigated.Because of their surface bearing amino groups,the novel composite nanoparticles have potential application in cohesive material,coating material,and so on.
     Silver nanoparticles embedded on silica nanospheres were prepared by using ion-exchangeable PAAc grafted on the silica surface as soft template followed by chemical reduction.The prepared hybrid nanospheres were characterized using XPS,X-ray diffraction(XRD), TEM,ultraviolet visible absorption spectroscopy(UV-vis),and bactericidal activity measurement.The results suggest that mono-dispersed Ag nanoparticles with controllable diameters can be obtained on the surface of silica nanospheres by varying the Concentration of silver nitrate and the suspension pH value,and the hybrid nanospheres have excellent bactericidal activity and potential application as a bactericidal agent in biomedical fields.
     In addition,novel PAAc grafted magnetic magnetite nanoparticles have been prepared by grafting copolymerization of acrylic acid onto the MPS modified magnetite nanoparticles and characterized with FTIR,TEM and TGA.The results shows that the PAAc grafted magnetite nanoparticles have a core-shell structure and good dispersibility.The influence of synthetic conditions,such as reaction time,AAc concentration,KPS concentration and reaction temperature on the graft yield of PAAc grafted magnetite nanoparticles was investigated.The graft yield increased with the increasing reaction time and AAc concentration,however,had a maximum with the increasing initiator concentration and reaction temperature.
     Finally,stimuli-responsive hollow magnetite/poly(N-isopropylacryl amide)(PNIPAM)nanocomposite microsphere were synthesized via an interfacial polymerization approach at the interfaces of an inverse water/oil emulsion.TEM and magnetic properties results shown that the hollow microspheres with a wall thickness of about 100 nm and a size of about 1.2μm and they are superparamagnetic.
引文
[1]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [2]张立德.纳米材料与纳米科学[M].北京:科学出版社,2000.
    [3]Zilg C,Reichert P.Plastics and rubber nanocomposites based upon layered silicates[J].Kunstsofe Plast Europe,1998,88(10):1812.
    [4]白春礼.纳米科技:梦想与现实[C].2004年中国纳米技术应用研讨会
    [5]张金中,王中林等.自组装纳米结构[M].北京:化学工业出版社,2005.
    [6]毋伟.超细粉体表面修饰[M].北京:化学工业出版社,2004.
    [7]杨生荣,任嗣利,张俊彦.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476
    [8]Meirav C A,Daniel M.Studying thiol adsorption Au,Ag and Hg surfaces by potentiometric measurements[J].J.Electroanal.Chem.,2003,550-551:267-276
    [9]李景虹,程广金,董绍俊.一种新型有序超薄有机膜-自组膜[J].化学通报,1995,(10):11-18
    [10]Feng Y,Teo W K,Siow K S,et al.Corrosion protection of copper by a self-assembled monolayer of alkanethiol[J].J.Electrochem.Soc.,1997,144(1):55-64
    [11]Sung M M,Sung K,Kim C G.Self-assembled monolaryer of alkanethiols on oxidized copper surfaces[J].J.Phys.Chem.B,2000,104(10):2273-2277
    [12]Jeong U,Teng X,Xia Y.Superparamagnetic colloids:controlled synthesis and niche applications[J].Adv.Mater.,2007,19:33-60
    [13]Matsumoto F,Ozaki M,Inatomi Y.Studies on the adsorption behavior of 2,5-dimercapto-1,3,4-thiadiazole and 2-mercapto-5-methyl-1,3,4 thiadiazole at gold and copper electrode surfaces[J].Langmuir,1999,15(3):857-865
    [14]Mark J E.Ceramic reinforced polymers and polymer modified ceramics[J].Polyemr Engineer and Science,1996,36:2893-2905
    [15]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003
    [16]Zhang Z,Liu W,Xue Q.Effects of various kinds of tilers on the tribological behavior of polytetrafluoroethylene composites under dry and oil-lubricated conditions[J]. J. Appl. Poly. Sci., 2001, 80: 1891-1897
    [17] Eigler D M, Lutz C P, Rudge W E. An atomic switch realized with the scanning tunneling microscape[J]. Nature, 1991, 352: 600-603
    [18] Schnur J M, Price R, Rudolph A S. Biologically engineered microstructure-controlled release applications [J]. J. Controlled Release, 1994, 28: 3-13
    
    [19] Hubbell J A, Langer R. Tissue engineering[J]. Chem. Eng. News, 1995, 13: 42-54
    [20] Lee D, Cohen R E, Rubner M F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles[J]. Langmuir, 2005, 21: 9651-9659
    [21] Ho S V, Sheridan P W, Krupetsky E. Supported polymeric liquid membranes for removing organics from aquous solutions: Transport characteristics of polyglycol liquid membranes[J]. J. Membr. Sci., 1996, 112: 13-27
    [22] Imae Y, Atsumi T T. Na~+-driven bacterial flagellar motors: A mini-review[J]. J. Bioenerg. Biomembr., 1989,21: 705-716
    [23] Cheng J Y, Ross C A, Smith H I. Templated self-assembly of block copolymers: top down help bottom up[J]. Adv. Mater., 2006, 18: 2505-2521
    [24] Kock C C. The study of poly-silicon sintering[J]., Nanostructured Mater., 1993, 12: 109-129
    [25] Cerrina F, Marrian C. A path to nanolithography[J]. MRS Bull., 1996, 21(12): 56-62
    [26] Matsui S, Ochiai Y. Focused ion beam applications to solid state devices[J]. Nanotechnology, 1996, 7: 247-258
    [27] Hong S H, Zhu J, Mirkin C A. Multiple ink nanolithography: toward a multiple-pen nano-plotter[J]. Science, 1999,286: 523-525
    [28] Dagata J A. Device fabrication by scanned probe oxidation[J]. Science, 1995, 270: 1625-1627
    [29] Xia Y, Rogers J A, Whitesides G M. Unconventional methods for fabricating and pattering nanostructures[J]. Chem. Rev., 1999, 99: 1823-1848
    [30] Givargizov E I. Highly anisotropic crystals[M]. Dordrecht: Reidel, 1987
    
    [31] Zhang Y, Wang N, Gao S. A simple method to synthesize nanowires[J], Chem. Mater., 2002, 14, 3564-3568
    [32] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001,291, 1947-1949
    [33] Shi W S, Peng H Y, Lee S T. Synthesis of large areas of highly oriented very long silicon nano wires [J]. Adv. Mater., 2000, 12: 1343-1345
    [34] Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires[J]. Adv. Mater., 2000, 12: 298-301
    [35] Duan X F, Lieber C M. Laser-assisted catalytic growth of single crystal GaN nanowires[J]. J. Am. Chem. Soc., 2000, 122: 188-189
    [36] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nano wires [J]. Science, 1998, 279: 208-211
    [37] Wu Y, Yang P. Germanium nanowires growth via simple vapor transport[J]. Chem. Mater., 2000,12: 605-610
    [38] Chen C C, Yeh C C, Chen C H. Catalytic growth and characterization of gallium nitride nanowires[J]. J. Am. Chem. Soc, 2001, 123: 2791-2798
    [39] Zhang J, Peng X S, Wang X F. Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH_3[J]. Chem. Phys. Lett., 2001, 345: 372-376
    [40] Wang Y W, Zhang L D, Liang C H. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires[J]. Chem. Phys. Lett., 2002,357:314-318
    [41] Wang Y W, Meng G W, Zhang L D. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence [J]. Chem. Mater., 2002, 14: 1773-1777
    [42] Wu X C, Song W H, Wang K Y. Preparation and photoluminescence properties of amorphous silica nanowires[J]. Chem. Phys. Lett., 2001, 336: 53-56
    [43] Huang M H, Wu Y, Feick H. Catalytic growth of zinc oxide nanowires by vapor transport[J].Adv. Mater., 2000, 13: 113-116
    [44]Hu J T,Odom T W,Lieber C M.Chemistry and physics on one dimension:synthesis and properties of nanowires and nanotubes[J].Acc.Chem.Res.,1999,32:435-445
    [45]Trentler T J,Gibbons P C,Buhro W E.Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductor:an analogy to vapor-liquid-solid growth[J].Science,1995,270:1791
    [46]Yu H,Buhro W E.Solution-liquid-solid growth of soluble GaAs nanowires[J].Adv.Mater.,2003,15:416-419
    [47]Dingman S D,Rath N P,Buhro W E.Low temperature catalyzed growth of indium nitride fibers from azido-indium precursors[J].Angew.Chem.Int.Ed.,2000,39:1470-1472
    [48]刘吉平,何向阳.纳米科学与技术[M].北京:科学出版社,2002.
    [49]李建林,曹广益,周勇.高能球磨制备TiB_2/TiC纳米复合粉体[J].无机材料学报,2001,16:709-712
    [50]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [51]Zhu Y J,Qian Y T,Li X J.γ-Radiation synthesis and characterization of polyacrylamide-silver nanocomposties[J].Chem.Commun.,1997,1081-1082
    [52]Yin Y,Xu X,Ge X.Synthesis and characterization of poly(butyl acrylate-co-styrene)-silver nanocomposites by γ radiation in W/O microemulsions[J].Chem.Commun.,1998,941-942
    [53]施尔畏,夏长泰,王步国.水热法的应用与发展[J].无机材料学报,1996,(11):193-197
    [54]苏勉曾,谢高阳,申泽文.固体化学及其应用[M].上海:复旦大学出版社,1989
    [55]Rabenau A.The role of hydrothermal synthesis in preparative chemistry[J].Angew.Chem.Int.Ed.,1985,24:1026-1040
    [56]Qian Y T.Solvothermal synthesis of nanocrystalline Ⅲ-Ⅴ semiconductors[J].Adv.Mater.,1999,11:1101-1102
    [57]Inoue M,Otsu H,Kominami H.Synthesis of thermally stable porous silica-modified alumina via formation of a precursor in an organic solvent[J].Ind. Eng.Chem.Res.,1996,35:295-306
    [58]Wang Z L.J.Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J].Phys.Chem.B,2000,104:1153-1175
    [59]Peng X G,Manna L,Alivisatos A R Shape control of CdSe nanocrystals[J].Nature,2000,404:59-61
    [60]Peng Z A,Peng X G.Mechanisms of the shape evolution of CdSe nanocrystals[J].J.Am.Chem.Soc.,2001,123:1389-1395
    [61]Sun Y,Gaters B,Xia Y.Crystalline silver nanowires by soft solution processing[J].Nano Lett.,2002,2,165-168
    [62]Herron N,Wang Y,Eckert H.Synthesis and characterization of surface-capped size-quantized cadmium sulfide clusters:chemical control of cluster size[J].J.Am.Chem.Soc.,1990,112:1322-1326
    [63]Routkevitch D,Bigioni T,Moskovits M.Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates[J].J.Phys.Chem.,1996,100:14037-14047
    [64]Prieto A L,Sander M S,Martin-Gonzalez M S.Electrodeposition of ordered Bi_2Te_3 nanowire arrays[J].J.Am.Chem.Soc.,2001,123,7160-7161
    [65]Han W,Fan S,Li Q.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J].Science,1997,277:1287-1289
    [66]Han W,Kobler-Redlich P,Ernst F.Formation of(BN)_xC_y and BN nanotubes filled with bornon carbide nanowires[J].Chem.Mater.,1999,11:3620-3623
    [67]翟华彰,李建保,黄勇.纳米材料何纳米科技的进展、应用及产业化现状[J].材料工程,2001,(11):43-48
    [68]Postma H W C,Teepen T,Yao Z.Carbon nanotube single-electron transistors at room temperature[J].Science,2001,293:76-79
    [69]张阳德,潘爱华,潘一峰.纳米生物医学工程进展[J].中国现代医学杂志,2001,11(3):34-38
    [70]陈小泉,古国榜,刘焕彬.钛氧有机物热解制备TiO_2-SiO_2复合膜及其光催化活性研究[J].化学学报,2003,61(11):1714-1719
    [71]祖庸.纳米ZnO的奇妙用途[J].新型材料,1999,(3):14-16
    [72]Reisfeld R,Jorgensen C K.in Chemistry,spectroscopy and application of sol-gel glassed[M].Berlin:Spring-verlag,1991
    [73]Reisfeld R,Brusilovsky D,Eyal M.A new solid-state tunable laser in the visible[J].Chem.Phys.Lett.,1989,160:43-44
    [74]Pope E J A,Asami A,Mackenzie J D.Transparent silica gel-PMMA composites[J].J.Mater.Res.,1989,4:1018-1023
    [75]Morikawa A,Lyoku Y,Kakimoto M.Preparation of new polyimide-silica hybrid materials via the sol-gel process[J].J.Mater.Chem.,1992,(7):679-689
    [76]Toki M,Chow T Y,Ohnaka T.Structure of poly(vinylpyrrolidone)-silica hybrid[J].Polym.Bull.,1992,29:653-660
    [77]Ruiz-Hitchky E.Conducting polymers intercalated in layered solids[J].Adv.Mater.,1993,5:334-340
    [78]Firouzi A,Kumar D,Bull L M.Cooperative organization of inorganic-surfactant and biomimetic assemblies[J].Science,1995,267:1138-1143
    [79]Chaput F,Riehl D,Levy Y.Azo oxide gels for optical storage[J].Chem.Mater.,1993,5:589-591
    [80]Coltrain B K,Landry C J T,O Reily J M.Role of trialkoxysilane functionalization in the preparation of organic-inorganic composites[J].Chem.Mater.,1993,5:1445-1455
    [81]Gautier Luneau I,Mosset A,Galy J.Sol-gel processing and structureal study of a vitreous polysiloxane doped with titanium[J].J.Mater.Sci.,1990,25:3739-3745
    [82]Lebeau B,Maquet J,Sanchez C.Relaxation behaviour of NLO chromophores grfated in hybrid sol-gel matrices[J].J.Mater.Chem.,1994,(12):1855-1860
    [83]Schmidt H.Chemistry,spectroscopy and applications of sol-gel galsses[M].Berlin:Springer-Verlag,1991
    [84]Schmidt H.Ultrastructure processing of advanced materials[M].New York:Wiley,1992
    [85]Schmidt H.Chemical processing of advanced materials[M].New York:Wiley,1992
    [86] Hobson S T, Shea K J. Bridged bisimide polysilsequioxane xerogels: new hybrid organic-inorganic materials[J]. Chem. Mater., 1997, 9: 616-623
    [87] Loy D A, Shea K J. Bridged polysilesquioxanes: highly porous hybrid organic-inorganic materials[J]. Chem. Rev., 1995, 95: 1431-1442
    [88] Loy D A, Carpenter J P, Yamanaka S A. Polymerization of bis(triethoxysilyl)ethenes: impact of substitution geometry on the formation of ethenylene- and vinylidene-bridged polysilsesquioxanes[J]. Chem. Mater., 1998, 10: 4129-4140
    
    [89] Oviatt H W Jr, Shea K J. Application of organic bridged polysilsesquioxane xerogels to nonlinear optical materials by the sol-gel method[J]. Chem. Mater., 1995,7:493-498
    
    [90] Suratwala T, Gardlund Z, Davidson K. Silylated coumarin dyes in sol-gel hosts: structure and environmental factors on fluorescent properties [J]. Chem. Mater., 1998, 10: 190-198
    [91] Judeinstein P. Synthesis and properties of polyoxometalates based inorganic-organic polymers[J]. Chem. Mater., 1992, 4: 4-7
    [92] Cao G, Hong H, Mallouk T E. Layered metal phosphateds and phosphonates: from crystals to monolayer[J]. Acc. Chem. Res., 1992, 25: 420-427
    
    [93] Katz H E, Wilson W L, Scheller G. Chromophore structure, second harmonic generation, and orientational order in zirconium phosphonte/phosphate self-asembled multilayers [J]. J. Am. Chem. Soc., 1994,116: 6636-6640
    [94] Long N J. Organometallic compounds for nonlinear optics- the search for en-light-enment[J]. Angew. Chem. Int. Ed., 1995, 34:21-38
    
    [95] Moteshaci K, Myles D C. Molecular recognication in membrane mimics: a fluorescenece probe[J]. J. Am. Chem. Soc, 1994,116: 7413-7414
    
    [96] Katz H E, Bent S F, Wilson W L. Synthesis, layer assembly, and fluorescence dynamics of poly(phenylenevinylene) oligomer phosphonates [J]. J. Am. Chem. Soc, 1994, 116:6631-6635
    
    [97] Zhao, B.; Brittain, W. J. Polymer brushes: surface-immobilized macromolecules Prog. Polym. Sci. 2000, 25: 677-710
    [98] Tsubokawa N, Yoshikawa S. Grafting of polymers with controlled molecular weight onto ultrafine silica surfaces[J]. J. Polym. Sci. Part A: Polym. Chem., 1995, 33:581-586
    [99] Green M L, Rhine W E, Calvert P. Preparation of poly(ethylene glycol)-grafted alumina[J]. J. Mater. Sci. Lett., 1993, 12: 1425-1427
    [100] Yoshihara T. Dispersion of surface-modified ultrafine particles by use of hydrophobic monomers[J]. Int. J. Adhesion Adhesive, 1999, 353-357
    [101] Tsubokawa N, Hisanori I. Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface[J]. J. Polym. Sci. Part A: Polym. Chem., 1992, 30: 2241-2246
    [102] Luciana S, Maurizio P, Fabio B. Grafting of selected presynthesized macromonomers onto various dispersions of silica particles[J]. J. Appl. Polym. Sci., 2002, 85: 1287-1296
    [103] Tsubokawa N, Ishida H, Hashimoto K. Effect of initiating groups introduced onto ultrafine silica on the molecular weight polystyrene grafted onto the surface[J]. Polym. Buletin, 1993, 31: 457-464
    [104] Hayashi S, Handa S, Tsubokawa N. Introduce of peroxide groups onto carbon black surface by radical trapping and radical graft polymerization of vinyl monomers initiated by the surface peroxide groups[J]. J. Polym. Sci. Part A: Polym. Chem., 1996, 34: 1589-1595
    [105] Yukio S, Kumi S, Tsubokawa N. Effective grafting of polymers onto ultrafine silica surface: photopolymerization of vinyl monomers initiated by the system consisting og trichloroacetyl groups on the surface and Mn2(CO)_(10)[J]. J. Polym. Sci. Part A: Polym. Chem., 2001, 39: 2157-2163
    [106] Nguyen V, Yoshida W, Cohen Y. Graft polymerization of vinyl aceate onto silica[J]. J. Appl. Polym. Sci., 2003, 87: 300-310
    [107] Meyer T, Spange S, Hsse S. Radical grafting polymerization of vinyl formamide with functionalized silica particles[J]. Macromol. Chem. Phy., 2003, 204: 725-732
    [108] Zhang K, Chen H, Chen X. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization[J]. Macromol. Mater. Eng., 2003,288:380-385
    [109] Yagci Y, Tasdelen M A. Mechanistic transformations involving living and controlled/living polymerization methods[J]. Prog. Polym. Sci., 2006, 31: 1133-1170
    [110] Carrot G, Dimanti S, Manuzak M. Atom transfer radical polymerization of n-butylzcrylatie from silica nanoparticles[J]. J. Polym. Sci. Part A.: Polym. Chem., 2001,39:4294-4301
    [111] Piech, M.; Bell, N. S. Controlled Synthesis of Photochromic Polymer Brushes by Atom Transfer Radical Polymerization. Macromolecules 2006, 39: 915-922
    [112] Li, C.; Han, J.; Ryu, C. Y.; Benicewicz, B. C. A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles. Macromolecules 2006, 39: 3175-3183
    [1]董鹏.单分散二氧化硅颗粒的研究进展[J].自然科学进展,2000,10(3):201-207
    [2]胡兵,蒋斌波,陈纪忠.单分散性SiO_2的制备与应用[J].化工进展,2005,24(7):603-607
    [3]Jiang L,Wang W,Wei X.Effects of water on the preparation,morphology and poperties of PI/SiO_2 nanocomposite films prepared by Sol-Gel Process.J.Appl.Polym.Sci.,2007,104:1579-1586
    [4]陈艳,王新宁,高宗明.聚酰胺/SiO_2纳米复合材料的研究[J].高分子学报,1997,1:73-78
    [5]Vaia R A,Ishii H G,Giannelis E P.Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layers silicates[J].Chem.Mater.,1993,5:1694-169
    [6]谢海安,戴宏程.超微细二氧化硅的改性研究及其应用[J].湖北化工,2001,(5):23-25
    [7]奚利飞,郑俊萍.智能材料的研究现状及展望[J].材料导报,2003,17(9):235-237
    [8]魏凤春,张恒,张晓.智能材料的开发与应用[J].材料导报,2006,20(5):375-378
    [9]Ulijin R V.Enzyme-responsive materials:a new class of smart biomaterials[J].J.Mater.Chem.,2006,16:2217-2225
    [10]Tuncel D,Tiftik H B,Salih B.pH-Responsive polypseudorotaxane synthesized through cucurbit[6]uril catalyzed 1,3-dipolar cycloaddition[J].J.Mater.Chem.,2006,16:3291-3296
    [11]Stile R A,Healy K E.Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications.I.effects of linear po[y(acrylic acid)chains on phase behavior[J].Biomacromolecules,2002,3:591-600
    [12]Eastoe J,Sanchez-Dominguez M,Wyatt P,et al.A photo-responsive organogel[J]. Chem. Commun., 2004, (22): 2608-2609
    [13] Berndt I, Pedersen J S, Richtering W. Structure of multiresponsive "intelligent" core-shell microgels[J]. J. Am. Chem. Soc., 2005, 127: 9372-9373
    [14] Tan B H, Ravi P, Tarn K C. Synthesis and characterization of novel pH-responsive polyampholyte microgels[J]. Macromol. Rapid Commun., 2006, 27: 522-528
    [15] Chen H, Hsieh Y L. Ultrafine hydrogel fibers with dual temperature- and pH-responsive swelling behaviors[J]. J. Polym. Sc. Part A: Polym. Chem., 2004, 42:6331-6339.
    [16] Yoshida T, Kanaoka S, Aoshima S. Photo-responsive copolymers with azobenzene side groups synthesized by living cationic polymerization: Efficient amplification of photosensitivity in aqueous photo-switching system [J]. J. Polym. Sc. Part A: Polym. Chem., 2005, 43: 5337-5342
    [17] Csetneki I, Filipcsei G, Zrinyi M. Smart nanocomposite polymer membranes with On/Off switching control[J]. Macromolecules, 2006, 39: 1939-1942
    [18] Yang C C, Tian Y, Jen A K Y, et al. New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing[J]. J. Polym. Sci. Part A: Polym. Chem., 2006,44: 5495-5504
    [19] Park T G. Temperature modulated protein release from pH/temperature-sensitive hydrogels[J]. Biomaterials,1999,20: 517-521
    [20] Tobushi H, Hara H, Yamada E, et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series[J]. Smart Mater. Struct., 1996, 5: 483-491
    [21] Ji F L, Zhu Y, Hu J L, et al. Smart polymer fibers with shape memory effect[J]. Smart Mater. Struct., 2006, 15: 1547-1554
    [22] Zhu C, Hard C, Lin C, Gitsov I. Novel materials for bioanalytical and biomedical applications: Environmental response and binding/release capabilities of amphiphilic hydrogels with shape-persistent dendritic junctions[J]. J. Polym. Sc. Part A: Polym. Chem., 2005, 43: 4017-4029
    [23] Vallet-Regi M, Ramila A, del Real R P, et al. A new property of MCM-41: drug delivery system[J]. Chem. Mater., 2001, 13: 308-311
    [24] Horcajada P, Ramila A, Perez-Pariente J, et al. Influence of pore size of MCM-41 matrices on drug delivery rate[J]. Microporous Mesoporous Mater., 2004, 68: 105-109
    [25] Fisher K A, Huddersman K D, Taylor M J. Comparison of micro-and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues[J]. Chem. Eur. J., 2003, 9: 5873-5878
    [26] Berndt I, Pedersen J S, Richtering W. Temperature-sensitive core-shell microgel particles with dense shell[J]. Angew. Chem. Int. Ed., 2006, 45: 1737-1741
    
    [27] Angelatos A S, Radt B, Caruso F. Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules[J]. J. Phys. Chem. B, 2005,109: 3071-3076
    [28] Li J, Liu B, Li J. Controllable self-assembly of CdTe/poly(N-isopropylacrylamide-acrylic acid) microgels in response to pH stimuli[J]. Langmuir, 2006, 22: 528-531
    [29] Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed., 2005, 44: 5083-5087
    [30] Li Z F, Kang E T, Neoh K G, et al. Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid[J]. Biomaterials, 1998, 19: 45-53
    [31] Franchina J G, Lackowski W M, Dermody D L, et al. Electrostatic immobilization of glucose oxidase in a weak acid, polyelectrolyte hyperbranched ultrathin film on gold: fabrication, characterization, and enzymatic activity[J]. Anal. Chem., 1999, 71: 3133-3139
    [32] Suzuki K, Siddiqui S, Chappell C, et al. Modification of porous silica particles with poly(acrylic acid)[J]. Polym. Adv. Technol., 2000, 11: 92-97
    [33] Zengin H, Hu B, Siddiqui J A, et al. Surface modification of glass beads with poly(acrylic acid)[J]. Polym. Adv. Technol., 2006, 17: 372-378
    [34] Heikkinen J J, Heiskanen J P, Hormi O E O. Grafting of functionalized silica particles with poly(acrylic acid)[J]. Polym. Adv. Technol., 2006, 17: 426-429
    [35] Zhao H, Kang X, Liu L. Comb-coil polymer brushes on the surface of silica nanoparticles[J]. Macromolecules, 2005, 38: 10619-10622
    [36]Caruso F.Nanoengineering of particle surfaces[J].Adv.Mater.,2001,13:11-22
    [37]Decher G.Fuzzy Nanoassemblies:toward layered polymeric multicomposites[J].Science,1997,277:1232-1237
    [38]Antipov A A,Sukhorukov G B,Donath E,et al.Sustained release properties of polyelectrolyte multilayer capsules[J].J.Phys.Chem.B,2001,105:2281-2284
    [39]Shi X,Caruso F.Release behavior of thin-walled microcapsules composed of polyelectrolyte multilayers[J].Langmuir,2001,17:2036-2042
    [40]Fu Y,Xu H,Bai S,et al.Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film[J].Macromol.Rapid Commun.,2002,23:256-259
    [41]Xu P,Wang H,Lv R,et al.Synthesis of TiO_2-SiO_2_/polymer core-shell microspheres with a microphase-inversion method[J].J.Polym.Sc.Part A:Polym.Chem.,2006,44:3911-3920
    [42]Zeng Z,Yu J,Guo Z.Preparation of polymer/silica composite nanoparticles bearing carboxyl groups on the surface via emulsifier-tree emulsion copolymerization[J].J.Polym.Sc.Part A:Polym.Chem..2005,43:2826-2835
    [43]Cheng X,Chen M,Zhou S,et al.Preparation of SiO_2/PMMA composite particles via conventional emulsion polymerization[J].J.Polym.Sc.Part A:Polym.Chem.,2006,44:3807-3816
    [44]Stober W,Fink A,Bohn E.Controlled growth of monodisperse silica spheres in the micron size range[J].J.Colloid Interface Sci.,1968,26:62-69
    [45]Abbound M,Turner M,Dugret E,et al.PMMA-based composite materials with reactive ceramic fillers.Part 1.-Chemical modification and characterisation of ceramic particles[J].J.Mater.Chem.,1997,7:1527-1532
    [46]Grondahl L,Chandler-Temple A,Trau M.Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate):surface functionalization for tissue engineering applications[J].Biomacromolecules,2005,6:2197-2203
    [47]赵瑞玉,董鹏,梁文杰.单分散二氧化硅体系制备中正硅酸乙酯水解与成核及颗粒生长的关系[J].石油大学学报,1995,19(5):89-92
    [48]赵丽,余家国,程蓓.单分散二氧化硅球形颗粒的制备与形成机理[J].化学 学报,2003,61(4):562-566
    [49]朱捷,朱红.正交设计在单分散球形SiO_2制备中的应用[J].功能材料,2005,36(4):577-579
    [50]Biesalshi M,Johannsmann D,Ruhe J.Synthesis and swelling behavior of a weak polyacid brush[J].J.Chem.Phys.,2002,117:4988-4994
    [51]Seidel C.Strongly stretched polyelectrolyte brushes[J].Maeromolecules,2003,36:2536-2543
    [52]Pincus P.Colloid stabilization with grafted polyelectrolytes[J].Macromolecules,1991,24:2912-2919
    [53]Treat N D,Ayres N,Boyes S G,et al.A facile route to poly(acrylic acid)brushes using atom transfer radical polymerization[J].Macromolecules,2006,39:26-29
    [54]Stevens M J,Plimpton S J.The effect of added salt on polyelectrolyte structure[J].Eur.Phys.J.B,1998,2:341-345
    [1]Tamai T,Watanabe M.Acylic polymers/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol-gel process[J].J.Polym.Sci.Part A Polym.Chem.,2006,44:273-280
    [2]Zeng Z,Yu J,Guo Z.Preparation of polymer/silica composite nanoparticles bearing carbonxyl groups on the surface via emulsifier-free emulsion copolymerization[J].J.Polym.Sci.Part A:Polym.Chem.,2005,43:2826-2835
    [3]Treat N D,Ayres N,Brittain W J.A facile route to poly(acrylic acid)brushed using atom transfer radical polymerization[J].Macromolecules,2006,39:26-29
    [4]黄忠兵,唐芳琼.二氧化硅/聚苯乙烯单分散性核/壳复合球德制备[J].高分子学报,2004,(6):835-838
    [5]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,2004
    [6]姜立忠,战佳宇,武德珍.甲基丙烯酰氧基三甲氧基硅烷改性SiO_2的制备[J].北京化工大学学报,2007,34:287-289.
    [7]Jiang L,Liu J,Wu D.A methodology for the preparation of nanoporous polyimide films with low dielectric constants[J].Thin Solid Films,2006,510:241-246
    [1] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhaced Raman scattering[J]. Science, 1997, 275: 1102-1106
    [2] Shipway A N, Willner I. Nanoparticles as structural and functional units in surface-confined architectures [J]. Chem. Commun., 2001, 20: 2035-2045
    [3] Wang C, Flynn N T, Langer R. Controlled structure and properties of thermaoresponsive nanoparticle-hydrogel composites[J]. Adv. Mater., 2004,16: 1074-1079
    [4] Biswas A, Aktas O C, Schurmann U. Tunable multiple plasmon resonance wavelengths respons from multicomponent polymer-metal nanocomposite systems[J]. Appl. Phys. Lett., 2004, 84: 2655-2657
    [5] Kreibig U, Vollmer M. Optical Properties of Metal Clusters[M]. Berlin: Springer, 1995
    [6] Schmid G. Large cluster and colloids: metals in embryonic state[J]. Chem. Rev., 1992,92: 1709-1727
    [7] Goia D V, Matijevic E. Preparation of monodispersed metal particles[J]. New J. Chem. 1998,22:1203-1216
    [8] Sun Y G, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002,298: 2176-2179
    [9] Hou H Q, Reneker D H. Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nano fibers [J]. Adv. Mater., 2004, 16: 69-73
    [10] Son W K, Youk J H, Lee T S. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles[J]. Macromol. Rapid Commun., 2004, 25: 1632-1637
    [11] Endo M, Kim Y A, Ezaka M. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers [J]. Nano Lett., 2003, 3: 723-726
    [12] Claeyssens F, Pratontep S, Xirouchaki C. Immobilization of large size-selected silver cluster on graphite[J]. Nanotechnology, 2006, 17: 805-807
    [13] Li Z, Huang H, Shang T. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibers[J]. Nanotechnology, 2006, 17: 917-920
    [14] Andres R P, Bein T, Dorogi M. Hats off to the tricron protease[J]. Science, 1996, 272: 1323-1324.
    [15] Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqeous solution[J]. Langmuir, 2002, 18: 4921-4925
    [16] Lim D C, Lopez-Salido I, Dietsche R. Size-selectivity in the oxidation behaviors of Au nanoparticles[J]. Angew. Chem. Int. Ed., 2006,45: 2413-2415
    [17] Liu Y L, Hsu C Y, Wang M L. A novel approach of chemical functionalization of nano-scaled silica particles[J]. Nanotechnology, 2003, 14: 813-819
    [18] Park J H, Kim S, Kim Y C. Polymer/nanoporous silica nanocomposite blue-light-emitting diodes[J]. Nanotechnology, 2005,16: 1793-1797
    [19] Jiang L, Liu J, Wu D. A methodology for the preparation of nanoporous polyimide films with low dielectric constants[J]. Thin Solid Films, 2006, 510: 241-246
    [20] Wang W, Asher S A. Photochemical incorporation of silver quantum dots in monodispers silica colloids for photonic crystal applications[J]. J. Am. Chem. Soc, 2001, 123: 12528-12535
    [21] Sadtler B, Wei A. Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects[J]. Chem. Commun., 2002, 21: 1604-1605
    [22] Kurihara K, Rockstuhl C, Nakano T. The size control of silver nano-particles in silica matrix film[J]. Nanotechnology, 2005, 16: 1565-1568
    [23] Kalele S A, Ashtaputre S S, Hebalkar N Y. Optical detection of antibody using silica-silver core-shell particles[J]. Chem. Phys. Lett., 2005,404: 136
    [24] Chen Z W, Gang T, Yan X. Ordered silica microspheres unsymmetrically coated with Ag nanoparticles, and Ag-nanoparticle-doped polymer voids fabrication by microcontact printing and chemical reduction[J]. Adv. Mater., 2006,18: 924-929
    [25]张立德,解思深.纳米材料和纳米结构-国家重大基础研究项目新进展[M].北京:化学工业出版社,2005
    [26]Cant N E,Zhang H L,Critchley K.Fabriation and characterization of self-assembled nanoparticle/polyelectrolyte multilayer films[J].J.Phys.Chem.B,2003,107:13557-13562
    [27]Sennerfors T,Bogdanovic G,Tiberg F.Formation,chemical composition,and structure of polyelectrolyte-nanoparticle multilayer films[J].Langmuir,2002,18:6410-6415
    [28]Fu Y,Xu H,Bai S.Fabricaiton of a stable polyelectrolyte/Au nanoparticles multilayer film[J].Macromol.Rapid Commun.,2002,23:256-259
    [29]Park J,Fouche L D,Hammond P T.Multicomponent pattering of layer-by-layer assembled polyelectrolyte/nanoparticle composite thin films with controlled alignment[J].Adv.Mater.,2005,17:2575-2579
    [30]Hiramatsu H,Osterloh F E.pH-Controlled assembly and disassembly of electrostatically linked CdSe-SiO_2 and Au-SiO_2 nanoparticle clusters[J].Langmuir,2003,19:7003-7011
    [31]Westcott S L,Oldenburg S J,Lee T R.Formation and adsorption of cluster of gold nanoparticles onto functionalized silica nanoparticle surfaces[J].Langmuir,1998,14:5396-5401
    [32]Salgurirno-Maceira V,Spasova M,Farie M.Water-stable,magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres[J].Adv.Funct.Mater.,2005,15:1036-1040
    [33]Nakanishi T,Ohtani B,Uosaki K.Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold[J].J.Phys.Chem.B,1998,102:1571-1577
    [34]Hu K,Brust M,Bard A J.Characterization and surface charge measurement of self-assembled CdS nanoparticle films[J].Chem.Mater.,1998,10:1160-1165
    [35]Park J H,Kim Y G,Oh C.Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates[J].Materials Research Bulletin 2005,40,271-280
    [36] Pol V G, Srivastava D N, Palchik O. Depositon of gold nanoparticles on silica spheres: a sonochemical approach[J]. Chem. Mater., 2003, 15: 1111-1118
    [37] Pol V G, Srivastava D N, Palchik O. Sonochemical deposition of silver nanoparticles on silica spheres[J]. Langmuir, 2002, 18: 3352-3357
    [38] Ang L M, Hor T S A, Xu G Q. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method[J]. Chem. Mater., 1999, 11:2115-2118
    [39] Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan L M. Depositon of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chem. Mater., 2001, 13: 1630-1633
    [40] Hilmi A, Luong J H T. Electrochemical detectors prepared by electroless depositon for microfabricated electrophoresis chips[J]. Anal. Chem., 2000, 72: 4677-4682
    [41] Liu J B, Dong W, Zhan P. Synthesis of bimetallic nanoshells by an improved electroless plating method[J]. Langmuir, 2005, 21: 1683-1686
    [42] Teng X W, Liang X Y, Rahman S. Porous nanoparticle membranes: synthesis and application as fuel-cell catalysts[J]. Adv. Mater., 2005, 17: 2237-2241
    [43] Kohler N, Sun C, Wang J. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells[J]. Langmuir, 2005,21:8858-8864
    [44] Joshi H M, Bhumkar D R, Joshi K. Gold nanoparticles as carriers for efficient transmucosal insulin delivery[J]. Langmuir, 2006, 22: 300-305
    [45] Lee D W, Ihm S K, Lee K H. Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability[J]. Chem. Mater., 2005,17:4461-4467
    [46] Kidambi S, Dai J, Bruening M L. Selective hydrogenation by Pd nanoparticles embedded in polyeletrolyte multilayers[J]. J. Am. Chem. Soc., 2004,126: 2658-2659
    [47] Kidambi S, Bruening M L. Multilayered polyelectrolyte films containing palladium nanoparticles: synthesis, characterization, and application in selective hydrogenation.Chem.Mater.,2005,17:301-307
    [48]赵奎,李军,王林.通过静电相互作用制备CdTe/SiO_2[J].高等学校化学学报2005,26,1106-1109
    [49]Pal S,De G.A new approach for the synthesis of Au-Ag alloy nanoparticle incorporated SiO_2 films[J].Chem.Mater.,2005,17:6161-6166
    [50]Lopes W A,Jaeger H M.Hierarchical self-assembley of metal nanostructures on diblock copolymer scaffolds[J].Nature,2001,414:735-738
    [51]Lin Y,Boker A,He J.Self-directed self-assembley of nanoparticle/copolymer mixtures[J].Nature,2005,434:55-59
    [52]Balazs A C,Emrick T,Russell T P.Nanoparticle polymer composites:where two small worlds meet[J].Science,2006,314:1107-1110
    [53]Lubeck C R,Han T Y J,Gash A E.Synthesis of mesostrutureed copper sulfide by cation exchange and liquid-crystal templating[J].Adv.Mater.,2006,18:781-784
    [54]Qi S,Wu D,Bai Z.Direct ion exchange self-metallizaiton:a novel and efficient route for the preparation of double-surface-silvered polyimide films[J].Macromol.Ripid Comm.,2006,27:372-376
    [55]Demir M M,Gulgun M A,Menceloglu Y Z.Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl_2 solutions:relations between preparation conditions,particle size,and catalytic activity[J].Macromolecules,2004,37:1787-1792
    [56]Sheeney-Haj-Ichia L,Cheglakov Z,Willner I.Electroswitchable photoelectrochemistry by Cu~(2+)-polyacrylic acid/CdS-nanoparticle assemblies[J].J.Phys.Chem.B,2004,108:11-15
    [57]Hedden R C,Bauer B J,Smith A P.Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers[J].Polymer;2002,43:5473-5481
    [58]Guo H,Zhao X,Guo H.Preparation of porous SiO_2/Ni/TiO_2 multicoated microspheres respsonsive to electric and magnetic fields[J].Langmuir,2003,19:9799-9803
    [59]Cheng D,Zhou X,Xia H.Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes[J].Chem.Mater.,2005, 17:3578-3581
    [60] Cullity B D, Stock S R. Elements of X-ray Diffraction[M]. Englewood Cliffs: Prentice Hall, 2001
    [61] Jackson J B, Halas N J. Silver nanoshells:variations in morphologies and optical properties[J]. J. Phys. Chem. B, 2001, 105: 2743-2746
    [62] Mandal S K, Roy R K, Pal A K. Surface plasmon resonance in nanocrystalline sivler particles embedded in SiO_2 matrix[J]. J. Phys. D: Appl. Phys., 2002, 35: 2198-2205
    [63] Song C, Wang D, Lin Y. Formation of silver nanoshells on latex spheres[J]. Nanotechnology ,2004,15: 962-965
    [64] Bellantone M, Williams H D, Hench L L. Broad-spectrum bactericidal activity of Ag_2O-doped bioactive glass[J]. Antimicrob. Agents Chemother., 2002, 46: 1940-1945
    [65] Shi Z, Neoh K G, Kang E T. Surface-grafted viologen precipitation of silver nanoparticles and their combined bactericidal activities [J]. Langmuir, 2004, 20: 6847-6852
    [66] Morones J R, Elechiguerra J L, Camacho A. The bactericidal effect of silver nanoparticles [J]. Nanotechnology, 2005, 16: 2346-2353
    [1]O'Handley R C.Mordern magnetic materials:principles and applications[M].New York:Wiley,2000
    [2]Spaldin N.Magnetic materials:fundamentals and device applications[M].Cambridge:Cambridge University Press,20003
    [3]Berkovsky B M,Medvedev V F,Krakov M S.Magnetic fluids:engineering applications[M].New York:Oxford University Press,1993
    [4]Gupta A K,Gupta M.Biomaterials,2005,26:3995
    [5]Hufeli U,Schutt W,Teller J.Scientific and clinical applications of magnetic carriers[M].New York:Plenum,1997
    [6]李卫.添加剂对四氧化三铁粒子分散性的影响[J].湖南师范大学自然科学学报,2004,27(4):51-60
    [7]王弘,曾恒兴,沈瑜生.氧化铁气体传感器研究[J].半导体学报,1987,8(1):43-47
    [8]Sugimoto T,Matijevic E.Formation of uniform spherical magnetite paritlce bu crystallization from ferrous husroxide gels[J].J.Colloid Interf.Sci.,1980,74:227-243
    [9]英廷照,沈辉,章永化.球磨法制备四氧化三铁磁性粒子[J].机械科学与技术,1998,17(11):147-151
    [10]何秋星,杨华,陈权启.微乳化法制备纳米磁性Fe_3O_4微粒工艺条件研究[J].磁性材料及器件.2003.34(2):9-11
    [11]杨华,黄可龙,刘素琴.水热法制备的Fe_3O_4磁流体[J].磁性材料及器件,2003,34(2):4-15
    [12]Chen D,Xu R.Hydrothermal synthesis and characterization of nanocrystalline Fe_3O_4 powders[J].Materials Research Bulletin,1998,33(7):1015-1021
    [13]邹涛.强磁性Fe_3O_4纳米粒子的制备及其性能表征[J].精细化工,2002,19(12):707-710
    [14]崔升,沈晓冬,林本兰.四氧化三铁纳米粉的制备方法及应用[J].无机盐工业, 2005,37(2):4-6
    [15]孟哲.磁性纳米级Fe_3O_4的氧气诱导、空气氧化液相合成与表征[J].光谱实验室,2003,20(7):489-491
    [16]Aharon G.Rapid synthesis in ionic liquids of room-temperature-conducting solid microsillica spheres[J].Angew.Chem.Int.Ed.,2005,117(40):6718-6721
    [17]Vijayakumar R,Koltypin Yu,Felner I.Sonochemical synthesis and characterization of pure nanometer-sized Fe_3O_4 particles[J].Mater.Sci.Eng.A,2000,286(1):101-105
    [18]Arturo M.Magnetic iron oxide nanoparticles synthesized via microemulsions[J].J.Colloid Interf.Sci.,1993,158:446-451
    [19]符连社,张洪杰.溶胶-凝胶法及其在生物材料方面的应用[J].化学通报,1998,(12):26-31
    [20]周洁,马明.不同尺寸Fe_3O_4磁性颗粒的制备与表征[J].东南大学学报,2005,35(4):615-618
    [21]陈辉.高温分解法合成Fe_3O_4磁性纳米微粒[J].河南化工,2004,(2):11-12
    [22]赵朝辉.纳米Fe_3O_4磁性颗粒的制备及应用现状[J].化工进展,2005,24(8):867-869
    [23]Yu L,Zheng L,Yang J.Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J].Mater.Chem.Phy.,2000,(66):6-9
    [24]马明.四氧化三铁纳米粒子与癌细胞相互作用的初步研究[J].东南大学学报,2003,33(2):205-207
    [25]张阳德.磁性阿霉素白蛋白纳米粒的研制[J].中国现代医学杂志,2001,11(3):1-3
    [26]关成信.超磁性Fe_3O_4微粒的制备及应用[J].磁性材料及器件,1992,23(3):23-27
    [27]冯远冰.Fe_3O_4超细微粉在静电复印显影剂中的应用[J].磁记录材料,1995,13(4):20-21
    [28]Lu A H,Salabas E L,Schuth F.Magnetic nanoparticles:synthesis,protection,functionalization,and application[J].Angew.Chem.Int.Ed.,2007,46:1222-1244
    [29]施卫贤.磁性四氧化三铁微粒表面有机改性[J].物理化学学报,2001,17(6):507-510
    [30]Rong M Z,Zhang M Q,Zheng Y X et al.Structure-Property relationships of irradiation grafted nanoinorganic particle filled polypropylene composites[J].Polymer,2001,42(1):167-178
    [31]严向阳.功能化磁性微粒的合成与表征[J].陕西师范大学学报,2005,33(2):70-72
    [32]Yoon T J,Kim J S,Kim B G.Multifunctional nanoparticles processing a magnetic motor effect for drug or gene delivery[J].Angew.Chem.Int.Ed.,2005,44:1068-1070
    [33]Willner I,Katz E.Magnetic Control of Electrocatalytic and Bioelectrocatalytic Processes[J].Angew.Chem.Int.Ed.,2003,42:4576-4578
    [34]Selvan S T,Patra P K,Ang C Y.Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells[J].Angew.Chem.Int.Ed.,2007,46:2448-2450
    [35]Hilger I,Dietmar E,Linb W.Developments for the minimally invasive treatment of tumors by targeted magnetic heating[J].J.Phys.:Condens.Matter,2006,18:2981-2986
    [36]Lee H,Lee E,Kim D K.Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for vivo cancer imaging[J].J.Am.Chem.Soc.,2006,128:7383-7387
    [37]Jeong U,Teng X,Wang Y.Superparamagnetic collids:controlled synthesis and niche applications[J].Adv.Mater.,2007,19:33-60
    [38]Proc.Soc.Exp.Biol.Med.1978,58,141
    [39]Giri S,Trewyn B G,Stellmaker M P.Stimuli-responsive controlled-release delivery system based on mesoporous nanorods capped with magnetic nanoparticles[J].Angew.Chem.Int.Ed.,2005,44:5038-5042
    [40]Zhu Y,Shi J,Shen W.Stimuli-responsive controlled drug release from a hollow mesoporous silica spheres/polyelectrolyte mulilaryer core-shell structure[J].Angew.Chem.Int.Ed.,2005,44:5083-5085
    [41] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloid templating[J]. Science, 1998,282: 1111-1113
    [42] Kim S W, Kim M, Lee W Y. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions[J]. J. Am. Chem. Soc, 2002, 124: 7642-7643
    [43] Caruso F, Spasova M, Susha A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem. Mater., 2001, 13: 109-116
    [44] Shchukin D G, Sukhorukov G B, Mohwald H. Smart inorganic/organic nanocomposite hollow microspheres[J]. Angew. Chem. Int. Ed., 2003, 42: 4472-4475
    [45] Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres[J]. J. Colloid Inter. Sci., 2005, 281: 432-435
    [46] Zhou W, Gao P, Shao L. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine[J]. Nanomedicine, 2005,1: 233-237
    [47] Li X H, Zhang D H, Chen J S. Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres[J]. J. Am. Chem. Soc, 2006, 128: 8382-8283
    [48] Chen X, Zhang Z, Li X. Hollow magnetite spheres: synthesis, characterization, and magnetic properties[J]. Chem. Phys. Lett., 2006, 422: 294-299
    [49] Ding Y, Hu Y, Jiang X. Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe_3O-4-polymer hybrid hollow nanospheres[J]. Angew. Chem. Int. Ed., 2004, 43: 6369-6372
    [50] Tartaj P, Gonzalez-Carreno T, Serna C J. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties[J]. Adv. Mater., 2001, 13: 1620-1623
    [51] Amulevicius A, Baltrunas D, Bendikiene V. Investigation of the magnetic properties of nanocrystalline Fe_3O_4 precipitated on the surface of chitin[J]. Physical Status Solid (a), 2002, 189(1): 243-246
    [52] Pol V G, Srivastava D N, Palchik O. Sonochemical deposition of silver nanopar ticles on silica spheres[J]. 2002, 18(8): 3352-3357
    [53] Qiu G H, Wang Q, Nie M. Polypyrrole-Fe_3O_4 Magnetic nanocomposite prepared by ultrasonic irradiation[J]. Macromol. Mater. Eng., 2006, 291(1): 68-74
    [54] Qiu G H, Wang Q. Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe_3O_4 nanoparticles[J]. Polym. Int., 2006, 55(3): 265-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700