非模板法溶剂热低温热处理制备纳米结构介孔金属氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构介孔金属氧化物因其具有介孔材料和纳米材料独特而优异的物理化学性能,在催化、气敏传感器、电极材料、陶瓷等领域具有广泛的应用前景。本论文丰富和发展了纳米结构介孔金属氧化物的制备方法,非模板法溶剂热低温热处理制备纳米结构介孔金属氧化物是一种具有反应条件简单、产物结晶好、纯度高、绿色合成等特点的方法。本文使用XRD、SEM、TEM、BET的表征方法,较系统地研究了不同实验参数对样品的比表面积、形貌等的影响,取得的研究成果归纳如下:
     溶剂热-低温热处理法制备纳米结构介孔氧化镁:样品的表征结果表明反应介质的不同对样品的比表面积、形貌有重要影响,醇水体积比1:1得到的氧化镁的比表面积为373.2 m2/g,孔容值0.71 cm3/g,孔径分布2-4 nm,反应介质中蒸馏水的存在有利于样品规则形貌的形成。文中初步探讨了样品内部介孔的形成机理。
     溶剂热-低温热处理法制备纳米结构介孔氧化镍:SEM、SAED照片表明该样品保留了前驱物的六边形形貌和单晶结构。在所测温度范围内,水热反应温度越高,所得样品的形貌越规则。溶剂热-低温热处理法制备纳米结构介孔氧化铟:反应碱源的不同对样品形貌有重要的影响,这为不使用模板剂获得不同形貌的纳米介孔氧化物奠定了实验基础。
Because of the unique physical and chemical properties, nano-structured mesoporous metal oxides have broad application in catalysis, gas sensors, electrode materials, ceramics and other fields. This research enriched and developed the preparation methods of the nanostructured mesoporous metal oxides. Template-free solvothermal low-temperature heat treatment method adopted in this paper is a good way with simple reaction conditions, good product crystallization, high purity characteristics and green features. The samples were characterized by XRD, SEM, TEM and N2 adsorption-desorption analysis. A systematic study has been done for the effects of different experimental parameters on specific surface area and morphology of the samples. Research results obtained in this paper are as follows:
     The preparation of nanostructured mesoporous MgO: N2 adsorption-desorption analysis shows that the different reaction media has an important influence on surface area and morphology of the sample. With the pore size distribution 2-4 nm, the BET surface area and pore volume can reach up to 373.2 m2/g and 0.71 cm3/g when the volume ratio of distilled water to ethanol is 1:1. The reaction medium in the presence of distilled water is conducive to the formation of the regular morphology. We preliminary studied the formation mechanism of mesopores within the samples.
     The preparation of nanostructured mesoporous NiO: The SEM and SAED results show that the sample inherits the hexagonal morphology and single-crystal structure of the precursor. In the measured temperature range the morphology of the samples is more regular as the hydrothermal reaction temperature becomes higher.
     The preparation of nanostructured mesoporous In_2O_3: Without adding the templates, the difference of the alkali source has an important influence on the morphology of the product. This conclusion provided the experimental basis to to obtain the different morphology of products without using the templates.
引文
[1]管洪波,王培,赵璧英,等.低温固相法制备高比表面积的纳米MgO[J].催化学报, 2006,27(9):793-798.
    [2] Bhargava A, Alarco J A, Mackinnon I D R, et al. Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O8[J]. Mater. Lett., 1998, 34(3-6): 133-142.
    [3] Diwald O, Knêzinger E, Intermolecular electron transfer on the surface of MgO nanoparticles[J]. J. Phys. Chem. B, 2002, 106(13): 3495-3502.
    [4]符晓荣,武光明,宋志棠,等.新型溶胶—凝胶法制备纳米MgO薄膜的研究[J].无机材料学报,1999,6,828-832.
    [5]王勇军,王矜奉,董火民,等. Co2O3掺杂对SnO_2-MgO-Nb_2O_5压敏材料性能的影响[J].功能材料,2000,31(6):671-672.
    [6]杨红萍,孔洁,吴博,等.纳米氧化镁合成方法研究进展[J].辽宁化工,2008,37(10): 692-697.
    [7] Lucas E M, Klabunde K J, Nanocrystals as destructive adsorbents for mimics of chemical warfare agents[J]. Nanostructured Materials, 1999, 12, 179-182.
    [8] Ryan R, Ravichandra S M, IIya M, et al. Nanocrystalline ultra - high surface area magnesium oxide as a selective base catalyst[J]. Scripat. Mater, 2001, 44(8-9): 1663- 1666.
    [9]张伟,王宝和,纳米氧化镁粉体制备技术的研究进展[J].纳米材料与纳米科技,2004,2,40-44.
    [10]曹颖,王国胜,纳米氧化镁制备技术的研究进展[J].辽宁化工,2008,37(1):40-43.
    [11]刘烨,景殿策,王宝和,等.氢氧化镁纳米棒的制备及热分解动力学研究[J].河南化工,2008,25(1):25-27.
    [12]卢荣丽,胡炳元,王麟生,等.低温水热法制备氧化镁纳米晶[J].功能材料,2007,38(5):825-828.
    [13] Wanga Y, Kea J J, Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed asamicrowave-absorbingadditive[J]. Materials Research Bulletin, 1996, 31(1): 55-61.
    [14] Zhang Y G, Chen Y C, Wang T, et al. Synthesis and magnetic properties of nanoporous Co_3O_4 nanoflowers[J]. Microporous and Mesoporous Materials, 2008, 114(1/3): 257-261.
    [15] Hu L H, Peng Q, Li Y D, Selective synthesis of Co_3O_4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society, 2008, 130(48): 16136-16137.
    [16] Liu J X, Wang Z S, Jiang W, et al. Preparation of Co_3O_4/CNTs composition and their catalytic effects on the thermal decomposition of AP and AP/HTPB propellant[J]. Rare Metals Materials and Engineering, 2007, 36(S3): 649-653.
    [17] Cao Q X, Zhou X H, Cai S D, et al. Influence of Co_3O_4 on ZnO ceramic varistor[J]. Piezoelectrics &Acoustooptics, 1996, 18(4): 260-263.
    [18] Lian S Y, Wang E B, Gao L, et al. Fabrication of single-crystalline Co_3O_4 nanorods via a low-temperature solvothermal process[J]. Materials Letters, 2006, 61(18): 3893-3896.
    [19] Zeng W W, Huang K L, Yang Y P, et al. Solvothermal synthesis and capacitance performance of Co_3O_4 with different morphologies[J]. Acta Physico-Chimica Sinica, 2008, 24(2): 263-268.
    [20] Hu L, Liu Z H, Preparation and application of Co_3O_4 powder[J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13(4): 195-200.
    [21]张立,余贤旺,吴厚平,等.高压水热合成法制备纳米Co_3O_4粉末及其过程机理[J].粉末冶金材料科学与工程,2009,14(5):306-309.
    [22]汪信,陆路德,纳米金属氧化物的制备及应用研究的若干问题[J].无机化学学报,2000,16(2):213-217.
    [23] Lao J Y, Huang J Y, Wang D Z, et al. Self-assembled In_2O_3 nanocrystal chains and nanowire networks[J]. Adv. Mater., 2004, 16(1): 65-69.
    [24]詹自力,徐甲强,蒋登高,等. In_2O_3基气体传感器的研究现状[J].传感器技术, 2003, 22(3): 1-3.
    [25] Marotta V, Orlando s, Parisi G P, et al. Indiumand tin oxide polycrystalline thin film as NO gas sensors produced by reactive pulsed laser ablation and deposition [J]. Appl. Phys. A, 1999, 69, 675-677.
    [26] Steffes H, Enhancement of NO2 sensing properties of In_2O_3-based t hin films using an Au or Ti surface modification[J]. Sens. Actuators, 2001, B78: 106-112.
    [27] Chung W, Gas-sensing properties of spin-coated indium oxide film on various subst rates [J]. J. Mater. Sci., 2001, 12, 591-596.
    [28] Bel Ysheva T V, Kazachkov E A, Gutman E E, Gas sensing properties of In_2O_3 and Au doped In_2O_3 films for detecting CO in air[J]. J. Anal. Chem., 2001, 56(7): 676-678.
    [29] Mal Yshev V V, Pisl Ya Kov A V, KRESNIKOV I F, et al. Sensitivity of semiconductor gas sensors to hydrogen and inert gas atmosphere[J]. J. Anal. Chem, 2001, 56(9): 864-870.
    [30] Gurlo A, Barsan N, Wermar U, et al. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas sensing properties[J]. Chem. Mater., 2003, 15(23): 4377-4383.
    [31] Epifani M, Capone S, Rella R, et al. In2O3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices[J]. J. Sol-gel. Sci. Technol., 2003, 26, 741-744.
    [32] Jiao Z, Wu M H, Gu J Z, et al. The gas sensing characteristics of ITO thin film prepared by sol-gel method[J]. Sens. Actuat, 2003, 94(2): 216-221.
    [33]全宝富,赵志勇,张丹,等. In2O3纳米材料的制备及其气敏特性的研究[J].仪表技术与传感器,2001,1,12-14.
    [34]张燕红,邱向东,赵谢群,等.超细颗粒材料的制备[J].稀有金属,1997,11,451-456.
    [35] Kauffeldt T, Schmidt, Ott A Lakner H, Measuring properties of nanoparticles by sol-gel methods[J]. Press. Inc., 1995, 343-346.
    [36] Ramasamy S, Gleitir H, Investigation of nanocrystalline FeF2 by mossbauer spectroscopy[J]. Solid State Comm., 1990, 74(8): 423-426.
    [37] Deng X Y, Xiang L, Yong J, et al. Preparation of nanometer materials using chemical liquid phase reaction methods and its development[J]. Modern Chemical Industry, 2002, 22(1): 19-21.
    [38] Sporn D, Grobmann J, Kaiser A, et al. Sol-gel processing of nanostructured ceramic and ceramic/metal composite materials[J]. Nano Structured Materials, 1995, 6(1-4): 329-332.
    [39] Yang P, Zhao D, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(6707): 152-155.
    [40] Tian B, Liu X, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs[J]. Nat. Mater., 2003, 2(3): 159-163.
    [41] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15[J]. Chem. Commun., 2003, (1): 98-99.
    [42] Tian B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica[J]. Adv. Mater., 2003, 15(16): 1370-1374.
    [43] Jiao F, Harrison A, Jumas J C, et al. Ordered Mesoporous Fe2O3 with Crystalline Walls[J]. J.Am. Chem. Soc., 2006, 128(16): 5468-5474.
    [44] Jiao F, Jumas J C, Womes M, et al. Synthesis of ordered mesoporous Fe_3O_4 andγ-Fe_2O_3 with crystalline walls using post-template reduction/oxidation[J]. J. Am. Chem. Soc., 2006, 128(39): 12905-12909.
    [45] Jiao F, Harrison A, Hill A H, et al. Mesoporous Mn_2O_3 and Mn_3O_4 with Crystalline Walls[J]. Adv. Mater., 2007, 19(22): 4063-4066.
    [46] Jiao F, Bruce P G. Mesoporous crystallineβ-MnO_2-a reversible positive electrode for rechargeable lithium batteries[J]. Adv. Mater., 2007, 19(5): 657-660.
    [47] Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO_2 by a post-templating reaction[J]. Angew. Chem. Int. Ed., 2005, 44(40): 6550-6553.
    [48] Jiao F, Hill A H, Harrison A, et al. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution[J]. J. Am. Chem. Soc., 2008, 130(15): 5262-5266.
    [49] Dickinson C, Zhou W, Hodgkins R P, et al. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica[J]. Chem. Mater., 2006, 18(13): 3088-3095
    [50] Wang Y, Yang C M, Schmidt W, et al. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica[J]. Adv. Mater., 2005, 17(1): 53-56.
    [51] Rumplecker A, Kleitz F, Salabas E L, et al. Hard templating pathways for the synthesis of nanostructured porous Co3O4[J]. Chem. Mater., 2007, 19(3): 485-496.
    [52] Schüth, F. Non-siliceous mesostructured and mesoporous materials[J]. Chem. Mater., 2001, 13(10): 3184-3195.
    [53] Soler-illia G D A, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem. Rev., 2002, 102(11): 4093-4138.
    [54] Kasuga T, Hiramat su M, Hoson A, et al. Formation of Titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163.
    [55]任成军,钟本和,周大利,等.水热法制备高活性TiO2光催化剂的研究进展[J].稀有金属, 2004,21(6):903-906.
    [56] Li X L, Liu J F, Li Y D, Large-scale synthesis of tungsten oxide nanowires with high aspect ratio[J]. Inorg. Chem., 2003, 42(3), 921-924.
    [57] Lou X W, Zeng H Ch, An inorganic route for controlled synthesis of W18O49 nanorods andnanofibers in solution[J]. Inorg. Chem., 2003, 42, 6169-6171.
    [58] Lian S Y, Wang E B, Gao L, Growth of single-crystal magnetite nanowires from Fe_3O_4 nanoparticles in a surfactant-free hydrothermal process[J]. Solid State Comm., 2004, 132(6): 375-378.
    [59] Xia Ch T, Shi E W, Zhong W Zh, et al. Hydrothermal synthesis of BaTiO_3 nano/microcrystals [J]. J. Cryst. Growth, 1996, 166(1-4): 961-966.
    [60] Kumada N, Kinomura N, Eoodward P W, et al. Crystal structure of Bi_2O_4 withβ-Sb2O4-type structure[J]. J. Solid State Chem., 1995, 116(2): 281-285.
    [61]王文帝,徐化云,刘金华,等. MoO3纳米纤维电极材料的水热合成和电化学表征[J].功能材料,2006,37(3):434-439.
    [62] Patzke G R, Michailovski A, Krumeich F, et al. One-Step Synthesis of Submicrometer Fibers of MoO3[J]. Chem. Mater., 2004, 16, 1126-1134.
    [63] R. Roy, Acceleration the kinetics of low-temperature inorganic synthesis[J]. J. Solid State Chem., 1994, 111, 11-17.
    [64]施尔畏,夏长泰,王步国,水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [65] Qadri S B, Skelton E F, Hsu D, et al. Induced transition-temperature reduction in nanoparticles of ZnS[J]. Phys. Review B, 1999, 60(13): 9191-9193.
    [66] Laudise R A, Ballman A A, et al. Hydrothermal synthesis of zinc oxide and Zinc Sulfide[J]. J. Phys. Chem., 1960, 64, 688-691.
    [67] Xie Y, Qian Y T, Wang W Z, et al. A benzene-thermal synthetic route to nanocrystalline GaN[J]. Science[J], 1996, 272(5270): 1926-1927.
    [68] Xie Y, Yan P, Lu J, et al. A safe low temperature route to InAs nanofibers[J]. Chem. Mater., 1999, 11(9): 2619-2622.
    [69] Rajagopalan S, Koper O, Decker S, et al. Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures[J]. Chem. Eur. J., 2002, 8(11): 2602-2607.
    [70] Choudary B M, Mulukutla R S, Klabunde K J, Benzylation of aromatic compounds with different crystallites of MgO[J]. J. Am. Chem. Soc. 2003, 125(8): 2020-2021.
    [71] Ding Y, Zhang G T, Wu H, et al. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis[J]. Chem. Mater., 2001, 13(2): 435-440.
    [72] Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synthesis of nanocrystalline MgO andts use as a bacteriocide[J]. Adv. Funct. Mater., 2005, 15(10): 1708-1715.
    [73] H. Hattori, Heterogeneous Basic Catalysis[J]. Chem. Rev, 1995, 95, 537-558.
    [74] Xu B Q , Wei J M, Wang H Y, et al. Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catal. Today, 2001, 68, 217-225.
    [75] Niu H X, Yang Q, Yu F, et al. Simple synthesis of single-crystalline nanoplates of magnesium oxide[J]. Chin. J. Chem. Phys., 2006, 19(5): 438-442.
    [76] Chen D H, Zhu L Y, Liu P, et al. Rod-like morphological magnesium hydroxide and magnesium oxide via a wet coprecipitation process[J]. J. Porous Mater., 2009, 16, 13-18.
    [77] Sun R Q, Sun L B, Chun Y, et al. Synthesizing nanocrystal-assembled mesoporous magnesium oxide using cotton fibres as exotemplate[J]. Micro. Meso. Mater., 2008, 111, 314-322.
    [78] Nagappa B, Chandrappa G T, Mesoporous nanocrystalline magnesium oxide for environmental remediation[J]. Micro. Meso. Mater, 2007, 106, 212-218.
    [79] Li W C, Lu A H, C. Weidenthaler, et al. Hard-templating pathway to create mesoporous magnesium oxide[J]. Chem. Mater., 2004, 16, 5676-5681.
    [80] Roggenbuck J, Tiemann M, Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J. Am. Chem. Soc, 2005, 127, 1096-1097.
    [81] Roggenbuck J, Koch G, Tiemann M, Synthesis of mesoporous magnesium oxide by CMK-3 carbon structure replication[J]. Chem. Mater., 2006, 18, 4151-4156.
    [82] Wang G Z, Zhang L, Dai H X, et al. P123-assisted hydrothermal synthesis and characterization of rectangular parallelepiped and hexagonal prism single-crystalline MgO with three-dimensional wormholelike mesopores[J]. Inorg. Chem., 2008, 47, 4015-4022.
    [83]郑明波,凌宗欣,廖书田,等.低温热处理制备介孔NiO、Co3O4及超电容性能研究[J].化学学报,2009,67(10):1069-1074
    [84]郑明波.纳米介孔材料与介孔-大孔材料的制备及超电容性能研究.南京:南京航空航天大学博士论文,2009.
    [85] Wang W Zh, Liu Y K, Xu C K, et al. Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach[J]. Chem. Phys. Lett., 2002, 362, 119-122.
    [86] Yang Q, Sha J, Ma X Y, Synthesis of NiO nanowires by a sol-gel process[J]. Materials Letters, 2005, 59, 1967-1970.
    [87] Zhan Y J, Zheng Ch L, Liu Y K, Synthesis of NiO nanowires by an oxidation route[J]. Materials Letters, 2003, 57, 3265-3268.
    [88] Liang Zh H, Zhu Y J, Hu X L,β-Nickel hydroxide nanosheets and their thermal decomposition to Nickel oxide nanosheets[J]. J. Phys. Chem. B, 2004, 108(11): 3488-3491.
    [89] Ni X M, Zhao Q B, Zhou F, et al. Synthesis and characterization of NiO strips from a single source[J]. Journal of Crystal Growth, 2006, 289(1): 299-302.
    [90] Wu M Q, Gao J H, Zhang Sh R, et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors[J]. J. Porous Mater., 2006, 13(3-4): 407-412.
    [91] Wu L L, Wu Y Sh, Wei H Y, et al. Synthesis and characteristics of NiO nanowire by a solution method[J]. Materials Letters, 2004, 58(21): 2700-2703.
    [92] Yang D N, Wang R M, He M Sh, et al. Ribbon- and boardlike nanostructures of Nickel hydroxide: synthesis, characterization, and electrochemical properties[J]. J. Phys. Chem. B, 2005, 109(16): 7654-7658.
    [93] Liu X M, Zhang X G, Fu Sh Y, Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Materials Research Bulletin, 2006, 41(3): 620-627.
    [94] Xu C K, Xu G D, Wang G H, et al. Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor[J]. Journal of Materials Science, 2002, 38(4): 779-782.
    [95] Zhou G T, Yao Q Zh, Wang X Ch, et al. Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide[J]. Materials Chemistry and Physics, 2006, 98(2-3): 267-272.
    [96] Wang D Sh, Run X, Wang X, et al. NiO nanorings and their unexpected catalytic property for CO oxidation[J]. Nanotechnology, 2006, 17(4): 979-983.
    [97] Corinne C, Jean F H, Nickel hydroxide“stacks of pancakes”obtained by the coupled effect of ammonia and template agent[J]. J. Phys. Chem. B, 2005, 109(13): 6069-6074.
    [98] Wang X, Li L, Zhang Y G, et al. High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance[J]. Crystal Growth & Design, 2006, 9(6): 2613-2615.
    [99] Wang D B, Song C X, Hu Zh Sh, et al. Fabrication of hollow spheres and thin films of Nickel hydroxide and Nickel oxide with hierarchical structures[J]. J. Phys. Chem. B, 2005, 109(3): 1125-1129.
    [100] Wang Y G, Xia Y Y, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochimica Acta. 2006, 51(16): 3223-3227.
    [101] Xu C K, Hong K Q, Liu Sh, et al. A novel wet chemical route to NiO nanowires[J]. Journal of Crystal Growth, 2003, 255(3-4): 308-312.
    [102] Yang L X, Zhu Y J, Li L, et al. A facile hydrothermal route to flower-like Cobalt hydroxide and oxide[J]. Eur. J. Inorg. Chem., 2006, 23, 4787-4792.
    [103] Sun L N, Wang K L, Luo Sh J, et al. Facile synthesis and catalytic properties ofβ-Co(OH)2 and Mg(OH)2 nanoplates[J]. Chem. Res. Chinese., 2007, 23(5): 508-510.
    [104] Nethravathi C, Sonia S, Ravishankar N, et al. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of r-Cobalt hydroxide[J]., J. Phys. Chem. B, 2005, 109(23): 11468-11472.
    [105] Zhang H, Wu J B, Zhai Ch X, et al. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes[J]. Nanotechnology, 2008, 19(3): 035711-035715.
    [106] He T, Chen D R, Jiao X L, et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size[J]. Langmuir, 2004, 20(19): 8404-8408.
    [107] Lou X W, Deng D, Lee J Y, et al. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties[J]. J. Mater. Chem., 2008, 18(37): 4397-4401.
    [108] Liu H Ch, Yen Sh K, Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2007, 166(2): 478-484.
    [109] He T, Chen D R, Jiao X L, et al. Co3O4 Nanoboxes: surfactant-templated fabrication and microstructure characterization[J]. Adv. Mater., 2006, 18, 1078-1082.
    [110] Cao A M, Hu J S, Liang H P, et al. Hierarchically structured Cobalt oxide (Co3O4): The morphology control and its potential in sensors[J]. J. Phys. Chem. B, 2006, 110(32): 15858-15863.
    [111] Shinde V R, Mahadik S B, Gujar T P, et al. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis[J]. Applied Surface Science, 2006, 252(20): 7487-7492.
    [112] Binotto G, Larcher D, Prakash A S, et al. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4[J]. Powders Chem. Mater., 2007, 19(12): 3032-3040.
    [113] Hou Y L, Hiroshi K, Masatsugu Sh, et al. High-yield preparation of uniform Cobalt hydroxide and oxide nanoplatelets and their characterization[J]. J. Phys. Chem. B, 2005,109(41): 19094-19098.
    [114]董红星,杨合情,尹文艳,等.氧化铟八面体、纳米带、锯齿状纳米线和纳米链的可控合成[J].化学学报, 2007,65(22):2611-2617.
    [115] Kityk I V,Ebothe J, Liu Q S, et al. Drastic increase in the second-order optical susceptibilities for monodisperse In_2O_3 nanocrystals incorporated into PMMA matrices[J]. Nanotechnology, 2006, 17(8): 1871-1877.
    [116] Lei B, Li C, Zhang D H, et al. Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects[J]. Appl. Phys. Lett., 2004, 84(22): 4553-4555.
    [117] Zhang D H, Liu Z Q, Li C, et al. Detection of NO2 down to ppb Levels Using Individual and Multiple In_2O_3 Nanowire Devices[J]. Nano Lett. 2004, 4(10): 1919-1924.
    [118] Xu J Q, Wang X H, Shen J N, Hydrothermal synthesis of In_2O_3 for detecting H2S in air[J]. Sens. Actuators B, 2006, 115(2): 642-646.
    [119] Zhang Z B, Peng Q, Liu J F, et al. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series[J]. Inorg. Chem., 2007, 46(13): 5179-5187.
    [120] Li C, Curreli M, Lin H, et al. Complementary detection of prostate-specific antigen using In_2O_3 nanowires and carbon nanotubes[J]. J. Am. Chem. Soc., 2005, 127(36): 12484-12485.
    [121] Pan Zh W, Dai Z R, Wang Zh L, Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
    [122] Li C, Zhang D H, Liu X L, et al. In_2O_3 nanowires as chemical sensors[J]. Appl. Phys. Lett., 2003, 82(10): 1613-1615.
    [123] Tang T, Liu X L, Li C, et al. Complementary response of In_2O_3 nanowires and carbon nanotubes to low-density lipoprotein chemical gating[J]. Appl. Phys. Lett., 2005, 86(10): 103903-103905.
    [124] (a) Curreli M, Li C, Sun Y H, et al. Selective functionalization of In_2O_3 nanowire mat devices for biosensing applications[J]. J. Am. Chem. Soc., 2005, 127(19): 6922-6923. (b) Li C, Lei B, Zhang D H, et al. Chemical gating of In_2O_3 nanowires by organic and biomolecules[J]. Appl. Phys.Lett., 2003, 83(19): 4014-4016.
    [125] Zhang D H, Li C, Han S, et al. Electronic transport studies of single-crystalline In_2O_3 nanowires[J]. Appl. Phys. Lett., 2003, 82(1): 112-114.
    [126] Yu D B, Yu S H, Zhang S Y, et al. Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under amibient pressure[J]. Adv. Funct. Mater., 2003, 13(6): 497-501.
    [127] Thomas W, Thorsten W, Tilman S, et al. Ordered mesoporous In_2O_3: synthesis by structurereplication and application as a methane gas sensor[J]. Adv. Funct. Mater., 2009, 19(4): 1-9.
    [128] Hui Zh, Wang X L, Yang F, et al. Template-free surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In_2O_3[J]. Crystal Growth & Design, 2008, 8(3): 950-956.
    [129] Chen L Y, Zhang Y G, Wang W Zh, et al. Tunable synthesis of various hierarchical structures of In(OH)3 and In_2O_3 assembled by nanocubes[J]. Eur. J. Inorg. Chem., 2008, 9, 1445-1451.
    [130] Xua P Ch, Cheng Zh X, Pan Q Y, et al. High aspect ratio In_2O_3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties[J]. Sensors and Actuators B, 2008, 130(2): 802-808.
    [131] Chen S G, Huang Y F, Cheng Y, et al. Shape-controlled growth of In(OH)3 crystals synthesized by diglycol-mediated solvothermal process[J]. Materials Letters, 2008, 62(10-11): 1634-1637.
    [132] Harald L, Michael S, Sabine S, et al. A new preparation pathway to well-defined In_2O_3 nanoparticles at low substrate temperatures[J]. J. Phys. Chem. C, 2008, 112(4): 918-925.
    [133] Mauro E, Elisabetta C, Jordi A, et al. Chemical synthesis of In_2O_3 nanocrystals and their application in highly performing ozone-sensing devices[J]. Sensors and Actuators B, 2008, 130(1): 483-487.
    [134] Xu J Q, Chen Y P, Shen, et al. Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods[J]. Materials Letters, 2008, 62(8-9): 1363-1365.
    [135] Aleksander G, Stefan L, Gerhard M, et al. Ralf riedel nanocubes or nanorhombohedra unusual crystal shapes of corundum-type Indium oxide[J]. J. Phys. Chem. C, 2008, 112(25): 9209-9213.
    [136] Zhu H, Wang X L, Qian L, et al. Nanoporous In_2O_3 nanocrystal clusters: one-step synthesis, thermal stability and optical property[J]. J. Phys. Chem. C, 2008, 112(12): 4486-4491.
    [137] Yang J, Li Ch X, Quan Z W, et al. One-step aqueous solvothermal synthesis of In_2O_3 nanocrystals[J]. Crystal Growth & Design, 2008, 8(2):695-699.
    [138] Lu W G, Liu Q Sh, Sun Zh Y, et al. Super crystal structures of octahedral c-In_2O_3 nanocrystals[J]. J. Am. Chem. Soc., 2008, 130(22): 6983-6991.
    [139] Huang J H, Gao L, Synthesis and characterization of porous single-crystal-like In_2O_3 nanostructures via a solvothermal-annealing route[J]. J. Am. Ceram. Soc., 2006, 89(2):724-727.
    [140] Ko Ts Sh, Chu C P, Chen J R, et al. Tunable light emissions from thermally evaporated In_2O_3 nanostructures grown at different growth temperatures[J]. Journal of Crystal Growth, 2008, 310(7-9): 2264-2267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700