水凝胶模板法制备微纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水凝胶是一种特殊的分散体系,因聚合物相互交联而形成三维网络结构。这种网络结构能够为纳米颗粒的成核和生长提供所需空间和微环境。水凝胶可通过改变单体组成、交联剂类型和制备条件等对其尺寸大小、内部结构和所包含功能基团的种类等进行控制,在合成具有新奇结构先进功能微纳米材料方面有很大的优越性。本论文主要以聚丙烯酰胺水凝胶为模板,利用电流辅助离子迁移的方法,制备了碳酸钙、二氧化铈、金属硫化物等微纳米材料,通过调节电流大小、丙烯酰胺单体含量、反应物浓度以及加入其他功能基团等实验条件,可以对微纳米材料的尺寸和形貌进行控制。本论文主要研究内容和取得的成果如下:
     1.聚丙烯酰胺水凝胶模板法制备多孔碳酸钙空心球及其性能的研究
     以聚丙烯酰胺水凝胶为模板,在恒定的直流电流辅助的作用下,成功制备了多孔的碳酸钙空心微球。首先研究了单体含量对碳酸钙空心球形貌的影响,结果表明丙烯酰胺含量为5%时所制备的碳酸钙微球具有较为均一的形貌和尺寸分布。通过控制电流大小、加入生物小分子和β-环糊精等实验条件,制备得到了不同形貌和尺寸的碳酸钙空心微球,并对其形成机理进行了初步的探讨。本实验制备的以碳酸钙/聚丙烯酰胺水凝胶复合材料为载体的药物传递系统,利用β-环糊精的包合作用将布洛芬成功地负载到复合材料里,其结合了水凝胶在溶液中的溶胀性质和碳酸钙在不同pH下的稳定性。研究表明,该药物传递系统对pH具有良好的响应性。
     2.聚丙烯酰胺水凝胶模板法制备多壁二氧化铈多孔微球
     以聚丙烯酰胺水凝胶为模板,在恒定的直流电流辅助的作用下,经过热处理去除有机模板,成功地制备得到了多壁的CeO2中空微球。实验结果表明,CeO2中空微球是由在水凝胶内部形成的Ce(OH)3经煅烧氧化后得到,经过煅烧处理后XRD图显示CeO2中空微球为立方相结构。通过改变丙烯酰胺单体的含量、反应时间以及Ce(NO3)3·6H2O水溶液与NaOH水溶液的溶度比可以制备具有一层、二层及多层壁的多孔CeO2中空微球,并对其形成机理进行了一定的探讨。
     3.聚丙烯酰胺水凝胶模板法制备金属硫化物微纳米材料
     利用聚丙烯酰胺水凝胶为模板,分别制备了具有不同形貌的硫化铜和硫化镉微纳米材料。研究表明电流在硫化物形成过程中起到了关键的作用。对于硫化铜,通过控制电流大小得到了硫化铜空心球和硫化铜片状结构,再通过调节丙烯酰胺的量得到了由硫化铜纳米片构成的花状结构;对于硫化镉,在一定范围内通过调节电流大小可以控制形成的硫化镉纳米小球的尺寸。初步研究了硫化物微纳米材料的形成机理。
Hydrogels are a unique class of macromolecular networks that may contain a large fractionof aqueous solvent within their structure. Their three dimensional network structure formingfrom crosslinking between polymers can provide the space and microenvironment needed for thenucleation and growth of nanoparticles. Hydrogels can be easily assembled in three dimensionswhile displaying multiple functional domains, and their polymerization chemistry allows theincorporation of polar ligands that mimic the acidic matrix proteins regulating mineral growth.So hydrogels are very useful in synthesis of novel advanced functional materials. In this paper,several micro/nano materials, such as hollow calcium carbonate spheres, multi-wall ceria sheresand metal sulfide, were prepared by polyacrylamide hydrogel template method with acurrent-assist approach to promote the migration of ions. The size and morphology of themicro/nano materials could be controlled by varying the current, the content of acrylamide, theconcentration of reactants or adding functional groups. The main content of this paper and theachievement were as following:
     1. The synthesis of porous CaCO3hollow spheres by polyacrylamide hydrogel templatemethod and the investigation of their properties
     Porous CaCO3hollow spheres were successfully synthesised by polyacrylamide hydrogeltemplate method with a current-assist approach. Firstly, the influence of the content ofacrylamide to the morphology of CaCO3hollow spheres was investigated. The result indicatedthat uniform CaCO3hollow spheres were obtained when the content of acrylamide was5wt%.In addition, CaCO3hollow spheres with various size and morphology were prepared by varyingthe current, adding small biomolecules and β–cyclodextrin. CaCO3/polyacrylamide hydrogelbased drug delivery system (DDS) was prepared. Due to the clathration effect of β–cyclodextrin,ibuprofen molecules were easily loaded into the DDS. This DDS combined the swelling propertyof hydrogel and the pH-sensitive property of CaCO3which resulted in the pH-sensitive propertyof this DDS. In addition, this paper also accounted for the mechanism of the drug release.
     2. The synthesis of multi-wall CeO2porous spheres by polyacrylamide hydrogel template method
     The porous CeO2hollow spheres were synthesised successfully by polyacrylamide hydrogeltemplate method with a current-assist approach following a thermal treatment. CeO2hollowspheres were transformed from the oxidation of Ce(OH)3which formed inside hydrogel. Aftercalcination, the XRD pattern confirmed that the yellow powders were cubic phase CeO2. PorousCeO2hollow spheres with different number of layers were obtained by varying the content ofacrylamide, the reacting time and the concentration ratio of Ce(NO3)3·6H2O aqueous solution/NaOH aqueous solution. Besides, the formation mechanism of the porous CeO2hollow sphereswas proposed.
     3. The synthesis of metal sulfide micro/nano materials by polyacrylamide hydrogel templatemethod
     Copper sulfide and Cadmium sulphide micro/nano materials were synthesised bypolyacrylamide hydrogel template method. The result showed that the current played animportant role in the forming of the metal sulfide. Copper sulfide hollow nanospheres andnanosheets were obtained by varying the current, and then a flower-like copper sulfide structurewas prepared by varying the content of acrylamide. As to cadmium sulphide, different size ofcadmium sulphide spheres were prepared by varying the current in a certain range. Finally, theformation mechanism of metal sulfide micro/nano materials was discussed.
引文
[1]Groso A, Petri-Fink A, Magrez A, et al. Management of nanomaterials safety in researchEnvironment [J]. Particle and Fibre Toxicology,2010,7(40):1-8.
    [2]周彦豪.纳米科技与橡胶工业的发展.中国橡胶[J].18,2002. p:23-25.
    [3]Duan X.F, Lieber C.M. General synthesis of compound semiconductor nanowires [J]. Adv.Mater.,2000,12(4):298-302.
    [4]Lao J.Y, Wen J.G, Ren Z.F. Hierarchical ZnO nanostructures [J]. Nano Lett.,2002,2(11):1287-1291.
    [5]蔡彬,杜宝吉,李建江等.模板法及其在纳米材料制备领域的应用研究进展[J].材料导报:综述篇.,2010,8(24):107-112.
    [6]Dong W.J, Zhang T.R, Epstein J. Multifunctional Nanowire Bioscaffolds on Titanium.Chem. Mater.,2007,19(18):44544459.
    [7]Podbielska H, Ulatowska-Jarza A. Sol-gel technology for biomedical engineering. Bull. Pol.Ac.: Tech.,2005,53(3):261-271.
    [8]Meng F, Stephen A.M, and Song J. Rational Solution Growth of r-FeOOH NanowiresDriven by Screw Dislocations and Their Conversion to r-Fe2O3Nanowires [J]. J. Am. Chem.Soc.,2011,133(22):8408–8411.
    [9]Rinaldi A, Jacob T, Su D.S. Dissolved Carbon Controls the Initial Stages of NanocarbonGrowth. Angew. Chem. Int. Ed.,2011,50(14):3313–3317.
    [10]Stupp S.I., Braun P.V. CdS Mineralization of Hexagonal Lamellar and Cubic LyotropicLiquid Crystals[J]. Mater.Res.Bull.,1999,34(3):463-469.
    [11] Suh J.S., Jeong K.S, Lee J.S, et al.Study of the Fie Screening Effect of Highly OrderedCarbon Nanotubo Arra [J]. Appl.Phys.Lett.,2002,80(13):2392-2394.
    [12]Yao B.D, Wang N. Carbon Nanotube Arrays Prepared by MWCVD [J]. J.Phys.Chem.B.,2001,105(46):11395-11398.
    [13]Yang H.F., Shi Q.H., Tian B.Z., et al. One-Step Nanocasting Synthesis of HighlyOrdered Sinlgle Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks[J]. J.Am.Chem.Soc.,2003,125(16):4724-4725.
    [14] Rodriguez-Abreu1C, Vilanova N, Solans C+-, et al. A combination of hard and softtemplating for the fabrication of silica hollow microcoils with nanostructured walls [J].Nanoscale Research Letters.,2011,6(1):330-336.
    [15]张艳萍,褚莹.模板法合成核壳功能材料[J].化学进展.,2007,19(1):35-41.
    [16]梁红莲,徐慧娟,吴华涛.基于水凝胶模板法制备有机-无机复合微纳米材料的研究[J].廊坊师范学院学报(自然科学版).,2009,9(4):80-83.
    [17]Yang Y, Chu Y, Yang F, Zhang Y. Uniform hollow conductive polymer microspheressynthesized with the sulfonated polystyrene template [J]. Mater. Chem. Phys.,2005,92(1):164–171
    [18]Zhan J.G., Xu S.Q., Kumacheva E. Polymer Microgels: Reactors for Semiconductor,Metal and Magnetic Nanoparticles[J]. J.Am.Chem.Soc.,2004,126(25):7908-7914.
    [19]Liu G, Zhao D.C, Tomsia A.P, et al. Three-Dimensional Biomimetic Mineralization ofDense Hydrogel Templates [J]. J. Am. Chem. Soc.,2009,131(29):9937–9939.
    [20]Gao T, Fan J C, Meng GW, et al. Thin Au film with highly ordered arrays of hemisphericaldots [J]. Thin Solid Films.,2001,401(1):102-105.
    [21]Crouse D, Lo Y.H, Miller A.E, et al. Self-ordered pore structure of anodized aluminum onsilicon and pattern transfer [J]. Appl Phys Lett.,2000,76(1):49-51
    [22]Luo Z.X, Fang Y, Zhou X.F, et al. Synthesis of highly ordered Iron/Cobalt nanowirearrays in AAO templates and their st ructural properties [J]. Mater Chem Phys.,2008,107(1):91-95.
    [23]Xu C.L, Li H, Xue T, et al. Fabrication of CoPd alloy nanowire arrays on an anodicaluminum oxide/Ti/Si substrate and their enhanced magnetic properties [J]. Scripta. Mater.,2006,54(9):1605-1609.
    [24]Lee S.B, Mitchell D.T, Trofin L, et al. Antibody-based bionanotube membranes forenantiomeric drug separation [J]. Science.,2002,296(5576):2198-2200
    [25]佘希林,袁芳,孙翠华等.多孔阳极氧化铝模板法制备金属钌纳米线阵列[J].稀有金属.,2009,33(4):548-552.
    [26]Xu X, Asher S. A. Synthesis and utilization of monodisperse hollow polymeric particles inphotonic crystals [J]. J. Am. Chem. Soc.,2004,126(25):7940–7945.
    [27]Luo J.Y, Wang Y.G, Xiong H.M, et al. Ordered mesoporous spinel LiMn2O4by asoft-chemical process as a cathode material for lithium-ion batteries [J]. Chem Mater.,2007,19(19):4791-4795.
    [28]Kuzyk A, Laitinen K.T, T rm P. DNA origami as a nanoscale template for proteinassembly [J]. Nanotechnology.,2009,20(23):235305-235309.
    [29]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of aconducting silver wire [J]. Nature,1998,391(6669):775-778.
    [30]Scott M.D, Nicholas G.W, et al. Preparation characterization and scanned conductancemicroscopy studies of DNA-templated one-dimensional copper nanostructures [J]. Langmuir,2010,26(3):2068
    [31]Li Z, Chung S.W, Nam J.M, et al. Living templates for the hierarchical assembly of goldnanoparticles [J]. Angew Chem Int Ed.,2003,42(20):2306-2309.
    [32]Mark S.S, Bergkvist M, Yang X, et al. Self-assembly of dendrimer-encapsulatednanoparticle arrays using2-D microbial S-layer protein biotemplates [J]. Biomacromolecules.,2006,27(6):1884-1897.
    [33]Masayoshi Y, Kengo S, Noboru Y, et al. Nano-sized PdO loaded SnO2nanoparticles byreverse micelle method for highly sensitive CO gas sensor [J]. Sens Actuators B,2009,136(1):99-104.
    [34] Chen Z, Zhan P, Wang Z.L, et al. Two-and three-dimensional ordered structures ofhollow silver spheres prepared by colloidal crystal templating [J]. Adv Mater,2004,16(5):417-422.
    [35]宋吉明,张胜义,史洪伟等.液-液界面软模板法制备纳米硒[J].同济大学学报:医学版,2006,27(2):74-77.
    [36]Paine A. J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight inpoly(N-vinylpyrrolidone)-stabilized reactions [J]. Macromolecules,1990,23(12):3104–3109.
    [37]Yassar A, Roncali J, Garnier F. Aqueous Suspension of Conducting Material fromPolypyrrole-Coated Submicronic Latex Particles [J]. Polym. Commun.,1987,28(4):103-104.
    [38]Kim B.J., Oh S.G., Han M.G., Im S.S. Preparation of PANI-coated Poly(styrene-co-styrene sulfonate) Nanoparticles [J]. Polymer,2002,43(1):111-116.
    [39]Li G, Yang X, Wang B, et al. Monodisperse temperature-responsive hollow polymermicrospheres: Synthesis, characterization and biological application [J]. Polymer,2008,49(16),3436–3443.
    [40]Liu T, DeSimone J.M, Roberts G.W. Kinetics of the precipitation polymerization of acrylicacid in supercritical carbon dioxide: The locus of polymerization [J]. Chem. Eng. Sci.,2006,61(10):3129-3139.
    [41]Richards J.J, Weigandt K.M, Pozzo D.C. Aqueous dispersions of colloidalpoly(3-hexylthiophene) gel particles with high internal porosity [J]. J. Colloid Interface Sci.,2011,364(2):341-350.
    [42]Liu T, Garner P, DeSimone J. M, et al. Particle formation in precipitation polymerization:continuous precipitation polymerization of acrylic acid in supercritical carbon dioxide.Macromolecules,2006,39(19):6489-6494.
    [43]Bai F, Huang B, Yang X, et al. Synthesis of monodisperse poly(methacrylic acid)microspheres by distillation–precipitation polymerization. Euro. Polym. J.,2007,43(9):3923–3932.
    [44]Chen C.N, Zhu C.L, Chen Z.Y, et a1. Preparation and Characterization of the CdS/PSACore-shell”Egg”[J]. In. org. Chem. Commun.,2004,7(3):322-326.
    [45]Yang J.X, Fang Y, Hu D.D, et a1. CuS-poly(N-isopropylacryl-amide-co-acrylic Acid)Composite Microspheres with Patterned Surface Structures: Preparation and Characterization[J]. Chin. Sci. Bull.,2004,49(19):2026-2032.
    [46]Bai C.L, Fang Y, Zhang Y, et a1. Synthesis of Novel Metal Sulfide-polymer CompositeMicrospheres Exhibiting Patterned Surface Structures [J]. Langmuir,2004,20(1):263-265.
    [47]Zhang K, Zheng L, Zhang X, et al. Silica-PMMA core-shell and hollow nanospheres [J].Colloids Surf. A: Physicochem. Eng. Aspects,2006,277(1):145–150.
    [48]Sertchook H, Avnir D. Submicron Silica/Polystyrene Composite Particles Prepared by aOne-Step Sol Gel Process [J]. Chem. Mater.,2003,15(8):1690–1694.
    [49] Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersionpolymerization in polar media:1. Silica nanoparticles encapsulated by polystyrene [J]. J.Colloid Interface Sci.,1998,197(2):293-308.
    [50]Cui T, Zhang J, Wang J, et al. CdS-nanoparticle/polymer composite shells grown on silicananospheres by atom transfer radical polymerization [J]. Adv. Funct. Mater.,2005,15(3):481–486.
    [51]Xu X, Asher S.A, Synthesis and Utilization of Monodisperse Hollow Polymeric Particlesin Photonic Crystals [J]. J. Am. Chem. Soc.,2004,126(25):7940–7945.
    [52]Caruso F. Nanoengineering of Particle Surfaces [J]. Adv. Mater.,2001,13(1):11–22.
    [53]Wang Y, Caruso F. Template Synthesis of Stimuli-Responsive Nanoporous Polymer-BasedSpheres via Sequential Assembly [J]. Chem. Mater.,2006,18:4089–4100.
    [54]Kamata K, Lu Y, Xia Y.N. Synthesis and characterization of monodispersed core/shellspherical colloids with movable cores [J]. J Am Chem Soc,2003,125(9):2384-2385.
    [55] Li Y, Huang Y, Yan L, et al. Synthesis and magnetic properties of ordered barium ferritenanowire arrays in AAO template [J]. Appl. Surf. Sci.,2011,257(21):8974-8980.
    [56]Tasalt na N, ztürka S, K l nc N, et al. Fabrication of Pd–Fe nanowires with a high aspectratio by AAO template-assisted electrodeposition [J]. J. Alloys Compd.,2011,509(9):3894-3898.
    [57] Liang H.J, Angelini T.E, Braun P.V, et al. Roles of anionic and cationic templatecomponents in biomineralization of CdS nanorods using self-assembled DNA-membranecomplexes [J]. J. Am. Chem. Soc.,2004,126(43):14157-1465.
    [58]Xin H.J, Woolley A.T. DNA-templated nanotube localization [J]. J. Am. Chem. Soc.,2003,125(29):8710-8711.
    [59]Behrens S, Wu J, Habicht W, et al. Silver nanoparticle and nanowire formation bymicrotubule templates [J]. Chem Mater,2004,16(16):3085-3090.
    [60]熊雪良,陈坚,陈冉冉等.生物模板法制备纳米Ni粒子的研究[J].矿冶工程,2008,28(3):95-98.
    [61]金关泰.高分子化学的理论和应用进展[M].北京:中国石化出版社,1995:102,166,228.
    [62]Lowe J.S, Chowdhry B.Z, Pasronage J.R, et al. The preparation and physicochemicalproperties of poly(N-ethylacrylamide) microgels [J]. Polymer,1998,39(5):1207-1212.
    [63]Gao J, Wu C. Modified structural model for predicting particle size in the microemulsionand emulsion polymerization of styrene under microwave irradiation [J]. Langmuir,2005,21(2):782-785.
    [64]Kuckling D, VO C.D, Wohlrab S.E. Preparation of nanogels with temperature-responsivecore and PH-responsive arms by photo-cross-linking [J]. Langmuir,2002,18(11):4263-4269.
    [65]Kim J.W, Choi H.S. Surface Crosslinking of High-Density Polyethylene Beads in aModified Plasma Reactor [J]. J. Appl. Polym. Sci.,2002,83(13):2921-2929.
    [66]Akiyoshi K, Kobayashi S, Shichibe S, et al. Self assembled hydrogel nanoparticle ofcholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization ofinsulin [J]. J. controlled release,1998,54(3),313-320.
    [67]Yu S, Yao P, Jiang M, Zhang G. Nanogels Prepared by Self-Assembly of OppositelyCharged Globular Proteins [J]. Biopolymers2006,83(2),148-158.
    [68]张旭锋,吴文辉.疏水缔合和静电作用调控P(DTAB-co-AM)与蠕虫状胶束自组装网络[J].高分子学报,2009,9:879-885.
    [69]Akala E.O, Kopeckova P, Kopecek J. Novel pH-sensitive hydrogels with adjustableswelling kinetics [J]. Biomaterials,1998,19(11):1037-1047.
    [70]Strong L.E, West J.L. Thermally responsive polymer–nanoparticle composites forbiomedical applications [J]. WIREs Nanomedicine and Nanobiotechnology,2011,3(3):307-317.
    [71]Temtem M, Mano J.F, Ricardo A.A. Green synthesis of a temperature sensitive hydrogel[J]. Green Chem.,2007,9(1):75–79.
    [72]Rachel C., Michael G, Frank W,et a1. Porous Coral-like TiO2Structures Produced byTemplating Polymer Gels [J]. Langmuir,1998,14(22):6333-6336.
    [73]Schattka J.H, Shchukin D.G, Rachel A.C. Photocatalytic Activities of Porous Titania andTitania/Zirconia Structures Formed by Using a Polymer Gel Templating Technique [J].Chem.Mater.,2002,14(12):5103-5108.
    [74]Shchukin D.G, Schattka J.H, Caruso R.A. Photocatalytic Properties of Porous Metal OxideNetworks Formed by Nanoparticle Infiltration in a Polymer Gel Template [J]. J. Phys. Chem.B.,2003,107(4):952-957.
    [75]Jin R.H, Yuan J.J. Fabrication of Silver Porous Frameworks Using Poly(ethyleneimine)Hydrogel as a Soft Sacrificial Template [J]. J. Mater. Chem.,2005,15(2):4513-4517.
    [76]Watanabe J, Akashi M. Novel Biomineralization for Hydrogels: ElectrophoresisApproach Accelerates Hydroxyapatite Formation in Hydrogels [J]. Biomacromolecules,2006,7(11):3008-3011.
    [77]Zhang J.G, Xu S.Q, Kumacheva E. Polymer Microgels: Reactors for Semiconductor,Metal and Magnetic Nanoparticles [J]. J. Am. Chem. Soc.,2004,126(25):7908-7914.
    [78]Zhang J.G, Coombs N, Kumacheva E, et a1. A New Approach to Hybrid Polymer-metaland Polymer-semieonduetor Particles [J]. Adv. Mater.,2002,14(23):1756-1759.
    [79]Kuang M, Wang D.Y, Gao M.Y, et a1. A bio-inspired Route to FabricateSubmicrometer-sized Particles with Unusual Shapes-mineralization of Calcium Carbonatewithin Hydrogel Spheres [J]. Chem. Mater.,2005,17(3):656-660.
    [80]Fang Y, Bai C.L, Zhang Y. Preparation of Metal Sulfide-polymer Composite Microsphereswith Patterned Surface Structures [J]. Chem. Commun.,2004,7(4):804-805.
    [81]Bai C.L, Fang Y, Zhang Y, et a1. Synthesis of Novel Metal Sulfide-polymer CompositeMicrospheres Exhibiting Patterned Surface Structures [J]. Langmuir.,2004,20(1):263-265.
    [82]Zhang Y, Fang Y, Wang S, et a1. Preparation of spherical Nanostructured Poly(methacrylicacid)/PbS Composites by a Microgel Template Method [J]. J. Colloid Interface Sei.,2004,272(2):321-325.
    [83]吴华涛,张颖,宁向莉等.核-壳结构P(AM-co-MAA)-W-Ag复合微球的制备[J].物理化学学报.2008,24(4):646-652.
    [1]Heap, A.D., Dickens, G.R., Stewart, L.K. Late Holocene sediment in Nara Inlet, centralGreat Barrier Reef platform, Australia: sediment accumulation on the middle shelf of atropical mixed clastic/carbonate system [J]. Mar. Geol.,2001,176(1):39-54.
    [2]Weiner, S., Addadi, L. J. Design strategies in mineralized biological materials [J]. Mater.Chem.,1997,7(5):689-702.
    [3]Meldrum, F.C. Calcium carbonate in biomineralisation and biomimetic chemistry [J]. Int.Mater. Rev.,2003,48(3):187-224.
    [4]Flaten, E. M.; Seiersten, M.; Andreassen, J. P. Polymorphism and morphology of calciumcarbonate precipitated in mixed solvents of ethylene glycol and water [J]. J. Cryst. Growth,2009,311(13):3533-3538.
    [5]Faatz M, Grohn F, Wegner G. Amorphous Calcium Carbonate: Synthesis and PotentialIntermediate in Biomineralization [J]. Adv. Mater.,2004,16(12):996-1000.
    [6]Jack K.S., Vizcarra T.G., Trau M. Characterization and Surface Properties ofAmino-Acid-Modified Carbonate-Containing Hydroxyapatite Particles [J]. Langmuir,2007,23(24),12233-12242.
    [8]Wei W, Ma G.H, Hu G. Preparation of Hierarchical Hollow CaCO3Particles and theApplication as Anticancer Drug Carrier [J]. J. Am. Chem. Soc.,2008,130(47):15808-15810.
    [9]Li Q, Dong L.J, Xiong C.X. Solvent-free Fluids Based on Rhombohedral Nanoparticles ofCalcium Carbonate [J]. J. Am. Chem. Soc.,2009,131(26):9148-9149.
    [10]Gao, Y. X., Yu, S. H., Jiang J. et al. Block-copolymer-controlled growth of CaCO3microrings [J]. J. Phys.Chem. B,2006,110(13):6432-6436.
    [11]Naka, K. Effect of dendrimers on the crystallization of calcium carbonate in aqueoussolution [J]. Top. Curr. Chem.,2003,228:141-158.
    [12]Wucher, B., Yue, W., Kulak, A. N. Designer Crystals: Single Crystals with ComplexMorphologies [J]. Chem. Mater.,2007,19(5):1111-1119.
    [13]Li, C., Qi, L.M. Bioinspired Fabrication of3D Ordered Macroporous Single Crystals ofCalcite from a Transient Amorphous Phase [J]. Angew. Chem., Int. Ed.,2008,47(13):2388-2393.
    [14]Loste, E., Diaz-Marti, E., Zarbakhsh, A., et al. Study of calcium carbonate precipitationunder a series of fatty acid Langmuir monolayers using brewster angle microscopy [J].Langmuir,2003,19(7),2830-2837.
    [15]Shen, Q., Wang, L. C., Huang, Y. P., et al. Oriented Aggregation and Novel PhaseTransformation of Vaterite Controlled by the Synergistic Effect of Calcium Dodecyl Sulfateand n-Pentanol [J]. J. Phys. Chem. B,2006,110(46):23148-23153.
    [16]Tugulu, S., Harms, M., Fricke, M., et al. Polymer brushes as ionotropic matrices for thedirected fabrication of microstructured calcite thin films [J]. Angew. Chem., Int. Ed.,2006,45(44):7458-7461.
    [17]Kuang M, Wang D.Y, Gao M.Y, et al. A Bio-inspired Route to FabricateSubmicrometer-Sized Particles with Unusual Shapes-Mineralization of Calcium Carbonatewithin Hydrogel Spheres [J]. Chem. Mater.,2005,17(3):656–660.
    [18]C lfen H. Precipitation of carbonates: recent progress in controlled production of complexshapes [J]. Curr. Opin. Colloid Interface Sci.,2003,8(1):23-31.
    [19]Watanabe J.J, Akashi M. Novel Biomineralization for Hydrogels: ElectrophoresisApproach Accelerates Hydroxyapatite Formation in Hydrogels [J]. Biomacromolecules,2006,7(11),3008-3011.
    [20]Liu G, Zhao D.C, Tomsia A.P., et al. Three-Dimensional Biomimetic Mineralization ofDense Hydrogel Templates [J]. J. Am. Chem. Soc.,2009,131(29):9937-9939.
    [21]Mann, S. The Chemistry of Form [J]. Angew. Chem., Int. Ed.,2000,39(19):3392-3406.
    [22]Dujardin, E., Mann, S. Bio-inspired materials chemistry [J]. Ad. Mater.,2002,4(11),461-474.
    [23]Kabanov A.V, Vinogradov S.V. Nanogels as Pharmaceutical Carriers: Finite Networks ofInfinite Capabilities [J]. Angew. Chem. Int. Ed.,2009,48(30):5418-5429.
    [24] Zhu T, Ho R.K. Preparation of amino-modified active carbon cartridges and their use inthe extraction of quercetin from Oldenlandia diffusa [J]. J. Pharm. Biomed. Anal.,2011,56(4):713-720.
    [25]Olivaa J, Garde-Cerdánb T, Martínez-Gil A.M. Fungicide effects on ammonium andamino acids of Monastrell grapes [J]. Food Chem.,2011,129(4):1676-1680.
    [26] Eea K.Y., Zhao J., Rehmanc A, et al. Glycosylation, amino acid analysis and kineticproperties of a major Kunitz-type trypsin inhibitor from Acacia victoriae Bentham seeds [J].Food Chem.,2011,129(3):1224-1227.
    [27]DeLuca S, Dorr B, Meiler J. Design of Native-like Proteins through anExposure-Dependent Environment Potential [J]. Biochemistry,2011,50(40):8521–8528.
    [28]Masuyama, A, Shindoh, A., Ono, D., et al. Preparation and Surface Active Properties ofTerminal Amide Type of Alcohol Ethoxylates [J]. J. Am. Oil Chem. Soc.,1989,66(6),834–837.
    [29]Barrera, D. A., Zylstra, E, Lansbury, P. T, et al. Synthesis and RGD peptide modificationof a new biodegradable copolymer: poly(lactic acid-co-lysine)[J]. J. Am. Chem. Soc.,1993,115(23),11010-11011.
    [30]Liu, Q., Hedberg, E. L., Liu, Z. W., et al. Preparation of macroporous poly(2-hydroxyethylmethacrylate) hydrogels by enhanced phase separation [J]. Biomaterials,2000,21(21):2163–2169.
    [31]Xu, H., Deng, Y. H., Chen, D. W., et al. Esterase-catalyzed dePEGylation of pH-sensitivevesicles modified with cleavable PEG-lipid derivatives [J]. J. Controlled Release2008,130(3):238–245.
    [32]Wang, K., Dong, H. Q., Wen, H. Y., et al. Novel vesicles self-assembled from amphiphilicstar-armed PEG/polypeptide hybrid copolymers for drug delivery [J]. Macromol. Biosci.2011,11(1):65–71.
    [33]Bajpai, A. K., Shukla, S. K., Bhanu, S, et al. Responsive polymers in controlled drugdelivery [J]. Prog. Polym. Sci.2008,33(11):1088–1118.
    [34]Xun,W., Wu,D.Q., Li, Z. Y., et al. Peptide-Functionalized Thermo-Sensitive Hydrogels forSustained Drug Delivery [J]. Macromol. Biosci.,2009,9(12),1219–1226.
    [35]Lyon, L. A., Meng, Z. Y., Singh, N.,et al. Thermoresponsive microgel-based materials[J].Chem. Soc. Rev.,2009,38(4):865–874.
    [36]Quan, C. Y., Chang, C., Wei, H., et al. Dual targeting of a thermosensitive nanogelconjugated with transferrin and RGD-containing peptide for effective cell uptake and drugrelease [J]. Nanotechnology,2009,20(33):335101-335110.
    [37]Cheng, C., Wei, H., Shi, B. X., et al. Biotinylated thermoresponsive micelleself-assembled from double-hydrophilic block copolymer for drug delivery and tumor target[J]. Biomaterials2008,29(4):497–505.
    [38]Wu, D. Q., Li, Z. Y., Li, C., et al. Porphyrin and galactosyl conjugated micelles fortargeting photodynamic therapy [J]. Pharm. Res.2010,27(1):187–199.
    [39]Gu L, Park J.H, Duong K.H, et al. Magnetic luminescent porous silicon microparticles forlocalized delivery of molecular drug payloads [J]. Small,2010,6(22):2546–2552.
    [40]Jahren S.L, Butler M.F, Adams S, et al. Swelling and Viscoelastic Characterisation ofpH-Responsive Chitosan Hydrogels for Targeted Drug Delivery [J]. Macromol. Chem. Phys.,2010,211(6):644-650.
    [41]Liu C.H, Gan X.X, Chen Y.Q. A novel pH-sensitive hydrogels for potential colon-specifcdrug delivery: Characterization and in vitro release studies [J]. Starch/Starke,2011,63,503–511.
    [42]Yin X, Hoffman A.S, Stayton P.S. Poly(n-isopropy-lacrylamide-co-propylacrylic acid)copolymers that respond sharply to temperature and Ph [J]. Biomacromolecules,2006,7(5):1381-1385.
    [43]Ulijn R.V. Enzyme-responsive materials: a new class of smart biomaterials [J]. J MaterChem,2006,16(23):2217-2225.
    [44]Lu J, Choi E, Tamanoi F, et al. Light-activated nanoimpeller-controlled drug release incancer cells [J]. Small2008,4(4):421–426.
    [45]Van S.M, Barillaro V, Thi T.D, et al. Ordered mesoporous silica material SBA-15: abroad-spectrum formulation platform for poorly soluble drugs [J]. J Pharm Sci,2009,98(8):2648–2658.
    [1]Barreca D, Gasparotto A, Maccato C, et al. Columnar CeO2nanostructures for sensorapplication [J]. Nanotechnology,2007,18(12):125502-125507.
    [2]Yuan Q, Duan H.H, Li L.L, et al. Controlled synthesis and assembly of ceria-basednanomaterials [J]. J. Colloid Interface Sci.,2009,335(2):151–167.
    [3]Trovarelli A. Catalytic Properties of Ceria and CeO2-Containing Materials [J], A. Catal. Rev.Sci. Eng.,1996,38(4):439-520.
    [4]Liang X, Xiao J.J, Chen B.H, et al. Catalytically Stable and Active CeO2MesoporousSpheres [J], Inorg. Chem.,2010,49(18):8188–8190.
    [5]Ka par J., Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis[J], Catal. Today,1999,50(2):285-298.
    [6] Li R.X., Yabe S., Yamashita M., et al. Synthesis and UV-shielding properties of ZnO-andCaO-doped CeO2via soft solution chemical process [J], Solid State Ionics,2002,151(1-4):235-241.
    [7] Zhao Z.K, Lin X.L, Jin R.H, et al. High catalytic activity in CO PROX reaction of lowcobalt-oxide loading catalysts supported on nano-particulate CeO2–ZrO2oxides [J], CatalCommun,2011,12:1448-1451.
    [8]Liao L., Mai H.X., Yuan Q., et al. Single CeO2Nanowire Gas Sensor Supported with PtNanocrystals: Gas Sensitivity, Surface Bond States, and Chemical Mechanism [J], J. Phys.Chem. C,2008,112(24):9061–9065.
    [9]Xuana Y.L, Hua J, Lva Y, et al. Development of sensitive carbon disulfde sensor by usingits cataluminescence on nanosized-CeO2[J], Sens. Actuators, B,2009,136(1):218-223.
    [10]Izu N, Shin W, Matsubara I, et al. Development of Resistive Oxygen Sensors Based onCerium Oxide Thick Film [J], J. Electroceram.,2004,13(1-3):703–706.
    [11]Guzman, J., Carrettin, S., Corma, A. Spectroscopic Evidence for the Supply of ReactiveOxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2[J], J.Am. Chem. Soc.2005,127(10):3286-3287.
    [12]Cui R. R., Lu W. C., Zhang L. M., et al. Template-Free Synthesis and Self-Assembly ofCeO2Nanospheres Fabricated with Foursquare Nanoflakes [J], J. Phys.Chem. C,2009,113(52):21520-21525.
    [13]Gonzalez-Rovira L., Sanchez-Amaya J. M., Lopez-Haro M., et al. Single-Step Process ToPrepare CeO2Nanotubes with Improved Catalytic Activity [J], Nano Lett.,2009,9(4):1395–1400.
    [14]Zhang Y.J, Cheng T, Hu Q.X, et al. Study of the preparation and properties of CeO2single/multiwall hollow microspheres [J]. J. Mater. Res.,2007,22(6):1472-1478.
    [15] Wang S.R, Zhang J, Jiang J.Q, et al. Porous ceria hollow microspheres: Synthesis andcharacterization [J]. Microporous Mesoporous Mater.,2009,123(1-3):349–353.
    [16]Li X.Z, Chen F, Lu X.W, et al. Layer-by-layer synthesis of hollow spherical CeO2templated by carbon spheres [J]. J Porous Mater,2010,17(3):297–303.
    [17]Tredici I.G., Yaghmaie F, Irving M, et al. Solution Deposition of MicropatternedNanocrystalline Metal Oxide Films Through Hydrogels [J]. J. Am. Ceram. Soc.,2011,94(10):1–4.
    [18] Yamaguchi I, Watanabe M, Shinagawa T, et al. Preparation of Core/Shell and HollowNanostructures of Cerium Oxide by Electrodeposition on a Polystyrene Sphere Template [J].Appl Mater Inter,2009,1(15):1070–1075.
    [19]Liu G, Zhao D C, Tomsia A P, et al. Three-Dimensional Biomimetic Mineralization ofDense Hydrogel Templates [J]. J. Am. Chem. Soc.2009,131(29):9937–9939.
    [20]Watanabe, J., Akashi, M. Novel Biomineralization for Hydrogels: ElectrophoresisApproach Accelerates Hydroxyapatite Formation in Hydrogels [J]. Biomacromolecules,2006,7(11):3008–3011.
    [21]Dai J., Bruening M. L. Catalytic Nanoparticles Formed by Reduction of Metal Ions inMultilayered Polyelectrolyte Films [J]. Nano Lett,2002,2(5):497-501.
    [22] Mohan Y. M, Premkumar T, Lee K, et al. Fabrication of Silver Nanoparticles in HydrogelNetworks [J]. Macromol. Rapid Commun,2006,27(16):1346–1354.
    [23]Mai H.X., Sun L.D., Zhang Y.W., et al. Shape-Selective Synthesis and Oxygen StorageBehavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes [J]. J. Phys. Chem. B,2005,109(51):24380-24385.
    [24]Lai X.Y, Li J, Korgel B A., et al. General Synthesis and Gas-Sensing Properties ofMultiple-Shell Metal Oxide Hollow Microspheres [J]. Angew. Chem. Int. Ed.,2011,50(12):2738–2741.
    [25]Liu, Q., Hedberg, E. L., Liu, Z. W., et al. Preparation of macroporous poly(2-hydroxyethylmethacrylate) hydrogels by enhanced phase separation [J]. Biomaterials,2000,21(21):2163–2169.
    [26]Sansona N, Rieger J. Synthesis of nanogels/microgels by conventional and controlledradical crosslinking copolymerization [J]. Polym. Chem.,2010,1(7):965–977.
    [27]Yin X, Hoffman A.S., Stayton P.S. Poly(N-isopropylacrylamide-co-propylacrylic acid)Copolymers That Respond Sharply to Temperature and pH [J]. Biomacromolecules,2006,7(5):1381-1385.
    [28]Osada, Y., Gong, J. P. Soft and Wet Materials: Polymer Gels [J]. Ad. Mater.,1998,10(11):827-837.
    [29]C.L Bai, Fang Y, Zhang Y, et al. Synthesis of Novel Metal Sulfide Polymer CompositeMicrospheres Exhibiting Patterned Surface Structures [J]. Langmuir,2004,20(1):263-265.
    [1]Borriello1C, Masala1S, Bizzarro V, et al. Electroluminescence Properties ofPoly(3-hexylthiophene)-Cadmium Sulfide Nanoparticles Grown In Situ [J]. J. Appl. Polym.Sci.,122(6):3624-3629.
    [2]Park J, Joo J, Kwon S.G., et al. Synthese monodisperser sph rischer Nanokristalle [J].Angew. Chem.,2007,119(25):4714-4745.
    [3]Jun Y.W, Choi J.S, Cheon J. Formkontrolle von Halbleiter-und Metalloxid-Nanokristallendurch nichthydrolytische Kolloidverfahren [J]. Angew. Chem.,2006,118(21):3492-3517.
    [4]Lu W.B, Qin X.Y, Luo Y.L, et al. CdS quantum dots as a fluorescent sensing platform fornucleic acid detection [J]. Microchim Acta.,2011,175(3):355-359.
    [5]Schlamp M.C., Peng X.G., Alivisatos A. P. Improved efficiencies in light emitting diodesmade with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl.Phys.,1997,82(11):5837-5842.
    [6]Deka S., Quarta A., Lupo M. G., et al. CdSe/CdS/ZnS Double Shell Nanorods with HighPhotoluminescence Efficiency and Their Exploitation As Biolabeling Probes [J]. J. Am. Chem.Soc.,2009,131(8):2948-2958.
    [7] M. Shalom, S. Ruhle, I. Hod, et al. Energy Level Alignment in CdS Quatnum DotSensitized Solar Cells Using Molecular Dipoles [J]. J. Am. Chem. Soc.2009,131(29):9876-9877.
    [8]Pan D C, An L J, Sun Z M, et al. Synthesis of Cu-In-S Ternary Nanocrystals with TunableStructure and Composition [J]. J. Am. Chem. Soc.,2008,130(17):5620-5621.
    [9]Guo Q J, Hillhouse H W and Agrawal R. Synthesis of Cu2ZnSnS4Nanocrystals for Use inLow-Cost Photovoltaics [J]. J. Am. Chem. Soc.,2009,131(35):12554-12555.
    [10]Xu N S and Huq S E. Novel cold cathode materials and applications [J]. Mater. Sci. Eng.R,2005,48(2-5):47-189.
    [11]Chen J, Deng S Z, Xu N S, et al. Field emission from crystalline copper sulphide nanowirearrays [J]. Appl. Phys. Lett.,2002,80(19):3620
    [12]Chen L, Xia Y D, Liang X F, et al. Nonvolatile memory devices with Cu2S and Cu-Pcbilayered films [J]. Appl. Phys. Lett.,2007,91(7):073511-073513.
    [13]Zhuang Z.B, Peng Q, Zhang BC, et al. Controllable Synthesis of Cu2S Nanocrystals andTheir Assembly into a Superlattice [J]. J Am Chem Soc,2008,130(32):10482-10483.
    [14]Li X.M, Shen H.B, Niu J.Z, Li S, et al. Columnar Self-Assembly of Cu2S HexagonalNanoplates Induced by Tin(IV) X Complexas Inorganic Surface Ligand [J]. J Am ChemSoc,2010,132(37):12778-12779.
    [15]Yu X.L, An X.Q. Controllable hydrothermal synthesis of Cu2S nanowires on the coppersubstrate [J]. Mater Lett,2010,64(3):252-254.
    [16]Zhao S.Z, Han G.Y, Li M.Y. Fabrication of copper sulfide microstructures with the bottle-and thorny rod-shape [J]. Mater Chem Phys,2010,120(2-3):431-437.
    [17]Li Z, Chen W.H, Wang H.L, et al. Large-scale synthesis and catalysis properties ofmicro-structured snowflake Cu2S from a single source Cu(II) coordination complex [J]. MaterLett,2011,65(12):1785–1787.
    [18]Arango A.C, Johnson L.R, Bliznyuk V.N, et al, Efficient Titanium Oxide/ConjugatedPolymer Photovoltaics for Solar Energy Conversion [J]. Adv. Mater.,2000,12(22):1689-1692.
    [19]Wang L., Liu Y.S, Jiang X., et al. Enhancement of Photovoltaic Characteristics Using aSuitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells [J]. J. Phys. Chem.C,2007,111(26):9538-9542.
    [20]Kundu S., Liang H. Photochemical Synthesis of Electrically Conductive CdS Nanowireson DNA Scaffolds [J]. Adv. Mater.,2008,20(4):826-831.
    [21]Xu D.S., Xu Y.J., Chen D.P., et al. Preparation and characterization of CdS nanowirearrays by dc electrodeposit in porous anodic aluminum oxide templates [J]. Chem. Phys. Lett.,2000,325(4):340-344.
    [22]Xu W, Akins D.L. Reverse micellar synthesis of CdS nanoparticles and self-assembly intoa superlattice [J]. Mater. Lett.,2004,58(21):2623-2626.
    [23]Marandi M, Taghavinia N, Zad A.I, et al. A photochemical method for controlling the sizeof CdS nanoparticles [J]. Nanotechnology,2005,16(2):334-338.
    [24]Singh V, Chauhan P. Structural and optical characterization of CdS nanoparticles preparedby chemical precipitation method [J]. J. Phys. Chem. Solids,2009,70(7)1074-1079.
    [25]Wei Q.L, Kang S.Z. Green” Synthesis of Starch Capped CdS Nanoparticles [J]. J. Mu,Colloid Surf. A,2004,247(1):125-127.
    [26]Wang H.M, Fang P.F, Chen Z, et al. Structural and optical characterization of CdSnanorods synthesized by a PVA-assisted solvothermal method [J]. J. Alloys Compd.,2008,461(1):418-422.
    [27Choi S.H, An K, Kim E.G, et al. Simple and Generalized Synthesis of SemiconductingMetal Sulfide Nanocrystals [J]. Adv. Funct. Mater.,2009,19(10):1645-1649.
    [28]梁红莲,徐慧娟,吴华涛.基于水凝胶模板法制备有机-无机复合微纳米材料的研究[J]廊坊师范学院学报(自然科学版).,2009,9(4):80-83.
    [29]Zhan J.G., Xu S.Q., Kumacheva E. Polymer Microgels: Reactors for Semiconductor,Metal and Magnetic Nanoparticles[J]. J.Am.Chem.Soc.,2004,126(25):7908-7914.
    [30]Liu G, Zhao D.C, Tomsia A.P, et al. Three-Dimensional Biomimetic Mineralization ofDense Hydrogel Templates [J]. J. Am. Chem. Soc.,2009,131(29):9937–9939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700