内疏水型复合中空微球的制备与药物缓释性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于药物缓释技术在现代医药中具重要作用,其应用越来越广泛。无机中空微球由于其特有的内部空腔和多孔结构,良好的稳定性,表面易于修饰改性等特点,使其在药物缓释领域具有良好的应用前景。为了得到载药量大,生物相容性好,结构稳定,并具有良好的缓释效果的新型药物载体,本论文制备了多种具有内部疏水、外部亲水结构的复合无机氧化物中空微球,并考察了其药物缓释性能。
     1.制备了内疏水SiO2/TiO2复合中空微球。以碳酸钙微球为模板,制备了SiO2中空微球;然后采用十八烷基三甲氧基硅烷对SiO2中空微球进行疏水改性(SiO2-C18),接着在SiO2-C18表而吸附一层卵磷脂(SiO2-C18-PC)进行亲水转换,最后在SiO2-C18-PC表面包覆一层完整的二氧化钛得到SiO2-C18-PC/TiO2中空微球(记为内疏水SiO2/TiO2复合中空微球),得到内疏水、外亲水SiO2/TiO2复合中空微球。电镜和氮气吸附/脱附结果表明它具有完整的空腔结构和多孔的壳层结构,而且孔径分布良好。以脂溶性药物布洛芬为对象,考察了SiO2-C18-PC/TiO2的药物缓释效果,结果表明:由于中空材料内部空腔表面键合有疏水长链,它对脂溶性药物有一定的浓缩、萃取作用,因此,载药量增大;同时,疏水作用也降低了药物的释放速率,使其具有良好的缓释效果。
     2.制备了内疏水SiO2/Fe3O4复合中空微球。通过在SiO2-C18-PC表面包覆一层完整的Fe3O4壳层,得到SiO2-C18-PC/Fe3O4中空微球(记为内疏水SiO2/Fe3O4复合中空微球),不仅可以使外表面的亲水层得到了进一步的固化,而且还让材料具有磁性。以脂溶性药物布洛芬为对象,分别考察了SiO2-C18-PC/Fe3O4的药物缓释性能,实验结果证明:磁性复合材料SiO2-C18-PC/Fe3O4有良好的药物缓释性能。
     3.为深入探讨不同的转换剂及无机包覆层对缓释性能的影响,制备了SiO2-C18-C18/SiO2中空微球,分别采用卵磷脂、CTAB和硅烷偶联剂(C18)作为亲水转化剂对SiO2-C18表面进行了亲水转化,考察了不同的转换剂对无机层包覆效果的影响,结果表明以C18作为亲水转化剂具有较好的转换和包覆效果。
Recently, drug slow releasing technology has become to be a important role in the modern medicine. But it is always difficult to control the release of drug. Inorganic hollow microspheres drug slow-release has a lot of field application prospect due to its unique internal cavity and porous structure, good stability, and the surface is easy to modify modification. In order to obtain the new drug carrier which have a big drug loading, good biocompatibility, stability analysis of structures and good slow-release effect. Therefore, hollow microspheres with hydrophobic inner surface and hydrophilic surface are synthesized. And the magnetic targeted materials are also synthesized in this paper. Herein, their drug release behaviors have been investigated.
     1. Prepared the SiO2-C18-PC/TiO2hollow spheres. Using calcium carbonate microspheres as templates, prepared SiO2hollow microspheres. SiO2hollow spheres were modified by18alkyl methylerichlorosilane (SiO2-C18), Then the surface of the SiO2-C18adsorb a layer of lecithin(SiO2-C18-PC), Finally the surface of SiO2-C18-PC coating a layer of complete titanium dioxide (SiO2-C18-PC/TiO2), achieve its external surface close water conversion. Electron microscopy and nitrogen adsorption/desorption results show that it has a complete cavity structure and porous shell structure, and have a good hole size distribution. Using fat-soluble ibuprofen (IBU) as a model drug, the investigation of drug release rates of the SiO2-C18-PC/TiO2shows that SiO2-C18-PC/TiO2have a good drug slow-release effect due to introduction of hydrophobic groups, as they have certain adsorption reaction with the hydrophobic drug, which let the release rate slower.
     2. Prepared the SiO2-C18-PC/Fe3O4hollow spheres. Using SiO2-C18-PC as templates, coating a layer of complete Fe3O4shell in different way. It was not only can make the close water appearance get further solidify, but also let it with magnetic ability which has a good application prospect in the field of targeted drug release. Using fat-soluble ibuprofen(IBU) as a model, the investigation of drug release rates of the SiO2-C18-PC/Fe3O4shown that the modified SiO2-C18-PC/Fe3O4exhibit lower release rate due to the hydrophobic effect.
     3. For further study the effect of the selective modification on drug release, SiO2-C18-C18/SiO2hollow spheres have been synthesized. Using different kinds of amphoteric molecules(PC、CTAB、C18) as the hydrophilic convert agent, the investigation of the experimental results show that use C18as the convert agent, have a wonderful transformation effect and inorganic layer coated effect.
引文
[1]Allen T M, Cullis P R. Drug Delivery Systems:Entering the Mainstream [J]. Science, 2004,303(5665):1818-1822.
    [2]Zhu Y F, Shi J L, Li Y S, et al. Storage and Release of Ibuprofen Drug Molecules in Hollow Mesoporous Silica Spheres with Modified Pore Surface[J]. Microporous Mesoporous Mater, 2005,85(1-2):75-81.
    [3]Zhu Y F, Shi J L, Chen HG, et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property [J].2005,84(1-3):218-222.
    [4]He QJ, Shi J L, Chen F, Zhu M, et al. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles[J]. Biomaterials.2010, 31(12):3335-3346.
    [5]Tsai SM, Li M J.A novel process to prepare a hollow silica sphere via chitosan-polyacrylic acid (CS-PAA) template. Journal of Non-Crystalline Solids[J].2006, 352(26-27):2829-2833.
    [6]Li ZZ, Xu S A, Wen L X, et al. Controlled release of avermectin from porous hollow silica nanoparticles:Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release,2006, 111(1-2):81-88.
    [7]乐园,陈建峰,汪文川.空心微球型纳米结构材料的制备及应用进展[J].化工进展,2004.23(6):295-298.
    [8]Yao L F, Shi Y, Jin S R, et al. The preparation of TiO2/SiO2 composite hollow spheres with hydrophobic inner surface and their application in controlled release[J]. Materials Research Bulletin,2010,45(10):1351-1356.
    [9]姚礼峰,石燕,温丽丽等TiO2/SiO2复合中空微球的选择性改性与药物缓释性能研究[J].无机材料学报,2010,25(2):201-205.
    [10]Zhu Y F, Shi J L, A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J]. Microporous and Mesoporous Materials,2007,103(1-3):243-249.
    [11]P. Hubert Mutin, Vincent Lafond, Aurelian F. et al. Selective surface modification of SiO2-TiO2 supports with phosphonic acids[J]. Chem. Mater.,2004, 16(26):5670-5675.
    [12]Majeti N.V Ravi Kumar. A review of chitin and chitosan applications[J]. Reactive and Functional Polymers,2000,46(1):1-27.
    [13]Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles[J]. Cur.Med.Chem. CNS. Agents.,2002,2(3):241-249.
    [14]张宁.口服缓控释制剂技术发展的新动向[J].国外医学:药学分册,2000,27(4):239-243.
    [15]王建华,陈慧云,杨永.口服缓/控释药物制剂技术研究进展[J].药学专论,2005,14(8)14-15.
    [16]Cochran J K. Ceramic hollow spheres and their applications[J]. Current Opinion in Solid State & Materials Science.1998,3(12):474-479.
    [17]Harris R, Panos I, Acosta N, et al. Preparation and characterization of chitosan microspheres for controlled release of tramadol[J]. Journal of Controlled Release,2008,132 (3):76-77.
    [18]LeCorre P, LeGuevello P, Gajan V, et al. Preparationand characterization of bupivacaine-loaded polylactide and polylactide-co-glycolide microspheres[J]. Int. J. Pharm., 1994,107(1):41-49.
    [19]Ghaderi R, Struesson C, Carlfors J. Effect of preparative parameters on the characteristics of poly(D,L-lactideco-glocolide) microspheres made by the double emulsion method[J]. Int. J. Pharm.,1996,141(6):205-216.
    [20]Mogi T, Ohtake N, Yoshida M, et al. Sustained release of 17β-estradiol from poly(lactide-co-glycocide) microspheres in vitro and in vivo[J]. Colloid Surface B,2000, 17(3):153-165.
    [21]Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis[J]. Tuberculosis, 2005,85 (4):227-234.
    [22]Souto E B, Muller R H. SLN and NLC for topical delivery of ketoconazole[J]. Journal Microencapsulation,2005,22 (5):501-510.
    [23]Souto E B, Wissing S A, Barbosa C M, et al. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery[J]. Int. J. Pharm., 2004, 278 (1):71-77.
    [24]Bhalekar M R, Pokharkar V, Madgulkar A, et al. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery[J]. AAPS Pharm. Sci.Tech., 2009,10(1):289-296.
    [25]Panga X, Cui F, Tian J, et al. Preparation and characterization of magnetic solid lipid nanoparticles loaded with ibuprofen[J]. Asian J. Pharm. Sci.,2009,4 (2):132-137.
    [26]Yang L, P. Alexandridis, Physicochemical aspects of drug delivery and release from polymer-based colloids[J]. Current Opinion in Colloid and Interface Science,2000, 5(1-2):132-143.
    [27]C. Allen, D. Maysinger, A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids Surfaces B,1999,16(1-4):3-27.
    [28]Jeong B, Bae Y H, Kim S W. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers[J].Journal of controlled release,2000,63(1-2):155-163.
    [29]Allen C, Han J, Yu Y, et al. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone[J] J Control Rel.,2000,63(3):275-286.
    [30]Hu Y, Jiang X Q, Yang C Z. Prepration and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles [J].Biomaterials,2003,24 (13):2395-2404.
    [31]KimIn S, Jeong Y, Cho C S, et al.Core-shell type polymeric nanoparticles composed of poly(L-lacticacid) and poly(N-isopropylacrylamide) [J].Int. J. Pharm.,2000,211(1-2):1-8.
    [32]杨卓理,杨可伟,李馨儒等.两性霉素B的聚乙二醇--聚乳酸胶束的制备及其体外释动力学[J].中国药学杂志,2007,42(7):519-523.
    [33]Sonke S. Dendrimers as versatile platform in drug delivery applications.European Journal of Pharmaceutics and Biopharmaceutics [J].2009,71(3):445-462.
    [34]Omathanu P, Jayant K, Parag K, et al. Effects of Branching Architecture and Linker on the Activity of Hyperbranched Polymer-Drug Conjugates.Bioconjugate Chem [J].2009,20(5): 842-846.
    [35]Khandare J, Kolhe P, Pillai O, et al. Synthesis, Cellular Transport, and Activity of Polyamidoamine Dendrimer-Methylprednisolone Conjugates.Bioconjugate Chem [J].2005, 17(2):330-337.
    [36]Minglu M, Yiyun C, Zhenhua X, et al. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. European Journal of Medicinal Chemistry [J].2007,42 (1):93-98.
    [37]Mahesh L P, Min Z, Oleh T, et al. Internally Cationic Polyamidoamine PAMAM-OH Dendrimers for siRNA Delivery:Effect of the Degree of Quaternization and Cancer Targeting.Biomacromolecules [J].2009,10(2):258-266.
    [38]Cao S W,Zhu Y J.Hierarchically nanostructureda-Fe2O3 hollow spheres:preparation, growth mechanism,photocatalytic property,and application in water treatment[J].J. Phys.Chem.C.,2008,112(16):6253-6257.
    [39]Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers.Int J Pharm [J].2003,252(1/2):263-266.
    [40]Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Delivery Rev [J]. 2005,57(15):2215-2237.
    [41]Vallet-regi M, Ramila A, Real R P, et al. A new property of MCM - 41:Drug delivery system [J]. Chem. Mater.,2001,13(2):308-311.
    [42]Wang S. Ordered mesoporousm a terials for drug delivery [J]. Microporous and Mesoporous Materials,2009,117(1):1-9.
    [43]Wu W, Benincasa M, Bianco A, et al. Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes[J]. Angew. Chem. Int. Ed.,2005,44(39): 6358-6362.
    [44]Song S W, Hidajak K, Kawi S. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery:Influence of Surface Properties on Matrix-Drug Interactions [J]. Langmuir, 2005,21(21):9568-9575.
    [45]Li X, Zhang L X, Dong X P, et al. Preparation of Mesoporous Calcium Doped Silica Spheres with Narrow Size Dispersion and Their Drug Loading and Degradation Behavior[J].Microporous and Mesoporous Materials,2007,102 (1-3):151-158.
    [46]Izquierdo B 1, Marit N A, Doadrio A L, et al. Release Evaluation of Drugs from Ordered Tridimensional Silica Structures[J]. Eur. J. Pharm. Sci.,2005,26:365-373.
    [47]Anderson J, Rosenholm J, Areva S, et al. Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices[J]. Chem. Mater.,2004,16(21):4160-4167.
    [48]Heikkila T, Salonen J, Tuura J, et al. Mesoporous Silica Material TUD-1 as a Drug Delivery System[J]. Int. J. Pharm.,2007,331(1):133-138.
    [49]Horcajada P, Romila A. Influence of pore size of MCM - 41 matrices on drug de livery rate [J]. Microporous and Mesoporous Materials,2004,68(1-3):105-109.
    [50]徐莹璞,王宇.缓释纳米介孔分子筛球作为难溶性药物长效缓释的研究[J].陶瓷学报,2010,31(1):5-10.
    [51]Zhang Y Z, Jiang T Y. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan[J].Journal of controlled release,2010,3(145):257-263.
    [52]Marc in het Panhuis. Vaccine delivery by carbon nanotubes[J]. Chem. Biol.,2003,10(10): 897-898.
    [53]Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery [J]. Ace.Chem. Res., 2008, 41(1):60-68.
    [54]Song YY, Bauer S, Schmuki P, et al. Amphiphillic TiO2 nanotube arrays:an actively controllable drug delivery system[J]. J. Am. Chem.Soc.,2009,131 (12):4230-4232.
    [55]McDevitt MR, Chattopadhyay D, Kappel BJ, et al.Tumor targetingwith antibody2functionalized, radiolabeled carbon nanotubes [J]. J NuclMed,2007,48 (7):1180-1189.
    [56]Li ZZ, Wen L X, Shao L et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. Journal of Controlled Release[J].2004,98(2)245-254.
    [57]Tan S, Wu Q X, Wang J. Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Microporous and Mesoporous Materials[J].2011,142(2-3)601-608.
    [58]Zhu F Y, Shi J L, Li Y S, et al. Storage and Release of Ibuprofen Drug Molecules in hollow Mesoporous silica Spheres with Modified Pore Surface [J]. Microporous Mesoporous Mater, 2005,85(1-2):75-81.
    [59]罗德福,赵康,汤玉斐等.羟基磷灰石空心微球的制备及其释药性能[J].硅酸盐通报.2010,29(3):651-656.
    [60]Fortunelli A, Monti S. Simulations of Lipid Adsorption on TiO2 Surfaces in Solution [J]. Langmuir, 2008,24(18),10145-10154.
    [61]Zhao Q, Zhang S, Tong W, et al. Polyelectrolyte Microcapsules Templated on Poly(styrene sulfonate)-Doped CaCO3 Particles for Loading and Sustained Release of Daunorubicin and Doxorubicin[J]. Eur. Polym. J 2006, 42(12):3341-3351.
    [62]Izquierdo B I, Marit N A, Doadrio A L, et al. Release Evaluation of Drugs from Ordered Tridimensional Silica Structures [J]. Eur. J. Pharm. Sci.,2005,26:365-373.
    [63]刘安琪,陈建峰,李雪光等.空心多孔纳米载体负载药物的药量分布研究[J].高校化学工程学报,2007.21(5):832-837.
    [64]Hassan Namazi, Saeed Jafarirad. Controlled release of linear-dendritic hybrids of carbosiloxane dendrimer: The effect of hybrid's amphiphilicity on drug-incorporation; hybrid-drug interactions and hydrolytic behavior of nanocarriers[J]. International Journal of Pharmaceutics,2011,407(1-2):167-173.
    [65]Lai C Y, Trewyn B G, Lin V S, et al. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules [J]. J. Am. Chem. Soc., 2003, 125(15):4451-4459.
    [66]Kiyofumi Katagiri, Mineo Hashizume, Jun-ichi Kikuchi, et al. Creation of asymmetric bilayer membrane on monodispersed colloidal silica particles [J]. Colloids and Surfaces B: Biointerfaces,2004,38(3-4):149-153.
    [67]M. Kasbauer, T. M. Bayer. Synthetic lecithin monolayers on hydrophobized silica supports interdigitate with the surface-attached alkyl chains under gel phase conditions[J]. Langmuir, 1999,15(7):2431-2434.
    [68]Zhang Y Z, Zhi ZZ, Jiang T Y, et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water soluble drug telmisartan [J]. Control Release, 2010,145(3): 257-263.
    [69]Michell D T,Lee S B, Martin C R. Smart nanotubes for bioseparations and bilcatalysis[J] J.Am Chem.Soc.,2002,124(40):11864-11865.
    [70]Cao Q L, Han X T, Li L.Enhancement of the efficiency of magnetic targeting for drug delivery:Development and evaluation of magnet system[J]. Journal of Magnetism and Magnetic Materials, 2011,323(15):1919-1924.
    [71]Axel J. Rosengart, Michael D. Kaminski, Haitao Chena, et al. Magnetizable implants and functionalized magnetic carriers:A novel approach for noninvasive yet targeted drug delivery[J]. Journal of Magnetism and Magnetic Materials,2005,293(1):633-638.
    [72]P.J. Cregg, Kieran Murphy, Adil Mardinoglu. Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting[J]. Applied Mathematical Modelling, 2012,36(1):1-34.
    [73]Masashige Shinkai. Functional magnetic particles for medical application[J]. Journal of bioscience and bioengineering,2002,94(6):606-613.
    [74]A. Martinez-de la Cruz, S. Obregon Alfaro. Synthesis and characterization of nanoparticles of a-Bi2Mo3O12 prepared by co-precipitation method:Langmuir adsorption parameters and photocatalytic properties with rhodamine B[J]. Solid State Sciences,2009,11(4):829-835.
    [75]Paula V. Messina, Pablo C. Schulz. Adsorption of reactive dyes on titania-silica mesoporous materials[J]. Journal of Colloid and Interface Science,2006,299(1):305-320.
    [76]Li L, Liu S X, Zhu T. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B[J]. Journal of Environmental Sciences,2010,22(8):1273-1280.
    [77]安丽娟,李兆强,徐娓等.超顺磁性高分子微球的制备与表征[J].高等学校化学学报,2005,26(2):366-369.
    [78]邹涛,郭灿雄,段雪.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工,2002,19(12):707-710.
    [79]Huang Z B, Tang Z Q, Zhang L. Morphology control and texture of Fe3O4 nanoparticle-coated polystyrene microspheres by ethylene glycol in forced hydrolysis reaction[J] Thin solid film,2005,471(1-2):105-112.
    [80]Nicolas Folliet, Claire Roiland, Sylvie Begu, et al.Investigation of the Interface in Silica-Encapsulated Liposomes by Combining Solid State NMR and First Principles Calculations[J]. J. Am. Chem. Soc.2011,133,16815-16827.
    [81]Vellore J. Mohanraj, Timothy J. Barnes, Clive A. Prestidge.Silica nanoparticle coated liposomes:A new type of hybrid nanocapsule for proteins[J]. International Journal of Pharmaceutics 392 (2010) 285-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700