川西新场地区须家河组砂岩全岩化学组成的成岩意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文选取川西凹陷新场构造须家河组砂岩储层为研究对象,以中石化分公司勘探开发研究院设立的《孝-新-合地区须家河组砂岩沉积期后水-岩相互作用机制研究》项目为依托,尝试通过研究区部分砂岩样品的化学全分析结果,结合铸体薄片、扫描电镜、阴极发光、X衍射定量分析等多种基础手段,讨论了研究区须家河组砂岩储层中的重要成岩现象及其在化学组成上的表现。主要取得了以下认识:
     根据岩心描述和薄片分析认为,富岩屑砂岩是最主要的岩石类型,次生孔隙是主要的储集空间类型。碳酸盐是最为主要的自生矿物,高岭石仅分布在须4段。须4段较须2段具有较高的方解石胶结物及自生伊利石含量,而须2段自生石英含量、绿泥石含量、白云石胶结物含量则显著高于须4段。长石的溶解作用是须家河组砂岩储层质量改善的重要因素,局部的高溶解地层间隔是我们研究的主要目标。
     根据方解石胶结物的δ13C值及石英的包裹体温度认为,须4段砂岩在成岩过程中存在一定数量的有机碳的参与。
     根据全岩化学认为,须2段较高的SiO2含量和须4段Al2O3含量略高显示出须2段砂岩具有更高的成分成熟度,须4段SiO2多存在于富铝矿物中;须4段较高的MgO和CaO含量以及其与碳酸盐矿物(方解石和白云石之和)之间显著的正相关性说明须4段砂岩具有更高的碳酸盐矿物,须2段钙镁含量的相关系数(R2)高达0.89,揭示出了须2段的MgO主要存在于白云石中;砂岩中的钾主要存在于伊利石和钾长石中,须2段具有较高的K2O含量,因而K2O含量与伊利石、钾长石之和显示出良好的正相关性;不同的矿物具有不同的K/Al摩尔比值,其中钾长石中为1/1,伊利石中的K/Al摩尔比变化在1/3~1/4之间,而高岭石、钠长石和绿泥石则几乎不含钾。因此,砂岩中富铝矿物含量的变化会导致钾、铝相对丰度的变化,这是本论文利用砂岩化学成分进行埋藏成岩过程中长石溶解和次生孔隙形成机制研究的重要理论依据。本研究在计算K/Al摩尔比率时从Al2O3的总含量中减去Na2O,以修正斜长石的影响;须4段砂岩的K2O/(Al2O3-Na2O)指数较低,基本上都在1/4以下,显示出缺乏钾长石的富钾矿物组合特征。须2段砂岩以具有较高的K2O/(Al2O3-Na2O)指数为主要特征,多数样品都分布在1/1到1/3之间,少数样品分布在1/3到1/4之间,反映了钾长石、伊利石等富钾矿物的组合特征;高次生孔隙发育带主要出现在须4段顶部、紧靠须5段泥岩的部分,砂岩具有很低的K2O/Al2O3指数,显示在较早成岩阶段经历过较强酸性流体的作用和铝硅酸盐的溶解,并造成地层中H+的储备。在这个低钾带中,也只限于这个低钾带中,K2O/Al2O3指数与孔隙度强烈的正相关性,显示砂岩遭受强烈溶解、钾长石消失。
Based on the task of“The Post-Sedimentational Water-Rock Interaction of Xujiahe Formation gas reservoir of Xiao-Xing-He Gas Field, West Sichuan Depression”and by analyzing the whole rock chemical composition of the deep Xujiahe Formation gas reservoir of Xingchang Gas Field, West Sichuan Depression , combining the Optical microscopy, XRD, CLM, SEM analyses on core samples from three wells, This thesis presents how the Chemical composition indicates the Chemical diagenesis of Xujiahe sandstone. this thesis gives some conclusions in the following:
     1) Based on the description of well cores, the identification of the thin section and the grain size analysis, we got the lithologies of the research area. As a result, we found that abundance of lithic sandstone occupies the absolutely superiority. Carbonate is the most major authigenic minerals, kaolinite only to be found in Xu4. Xu4 contains higher calcite cements and authigenic illite content than that of in Xu2. However, authigenic quartz content, chlorite, dolomite cement content in Xu2 was significantly higher than Xu4. Dissolution of feldspar is the most important factor to improve the Reservoir quality of Xujiahe sandstone, local stratigraphic interval of high dissolved is the main objective of our study.
     2) According to theδ13C values of calcite cement and the homogenization temperature of fluid inclusion in quartz cements, the diagenetic process of Xu4 sandstone involves higher degrees of organic carbon participation.
     3) 3)According to whole-rock chemistry, Xu2 contains higher SiO2 content and Xu4 contains higher Al2O3 content, suggestes Xu2 sandstone has a higher compositional maturity, and SiO2 present in Xu4 may exists mainly in the Al-rich minerals; the fact that MgO and CaO enriched in Xu4 is relative to the higher content of carbonate minerals, which shows a significant positive correlation between them, the related coefficient (R2) between calcium and magnesium in Xu2 up to 0.89, revealed the MgO mainly in dolomite; With the exception of kaolin and albite, the major aluminium-bearing minerals in sandstones (K-feldspar, mica and illite) also contain significant potassium, causing a strong positive correlation between potassium and aluminium. However, the K/Al molar ratio in K-feldspar is 1/1, but varies between 1/3 and 1/4 in illite.So,Variations in the abundance of these minerals cause the differences in the total potassium and aluminium content of the sandstones. This is the key theoretical point used in this thesis to investigate the chemical composition relative to the feldspar dissolution and secondary porosity formation mechanism. However, alumina content is relatively high in samples with higher plagioclase contents. Therefore, aluminium in plagioclase(albite), corresponding to the molar Na2O, is subtracted from the total Al2O3 content in the calculation of K/Al molar ratio, and this modied ratio has been used instead. The bulk K/Al molar ratios in the Xu4 sandstones basically below 1/4 shows a lack of potassium-rich feldspar mineral. However, the K/Al molar ratios are relatively high in the Xu2 sandstones, where K/Al molar ratios vary between 1/1 and 1/3. might be related to higher amounts of K-feldspar and authigenic illite.; the top of Xu4, close to X5 mudstone, with high secondary porosity , shows sandstone with low K2O/Al2O3 index, In low K zone, The K2O/Al2O3 index shows a good positive correlation with porosity, indicating the sandstone subjected to strong feldspar dissolution.
引文
[1] Al-Aasm, I.S., 1980, Mineralogical and geochemical differentiation of ... northeast Iraq: Journal of the Geological Society of Iraq, 13: 349-378.
    [2] Andri S. , 2001, Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0℃to 350℃. Chemical Geology, 172: 225–250.
    [3] B. P. Roser and R. J. Korsch. 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratios. Journal of Geology, 94(5):635-650
    [4] Bauer A., Velde B., Gaupp R., 2000, Experimental constraints on illite crystal morphology. Clay Minerals, 35:587~597.
    [5] Bazin, B., Brosse, E., Sommer, F. 1997. Chemistry of oil-field brines in relation to diagenesis of reservoirs; 1, Use of mineral stability fields to reconstruct in situ water composition; example of the Mahakam Basin. Marine and Petroleum Geology, 14(5):481– 495.
    [6] Berger G., Lacharpagne J.C., Vedle B., Beaufort D., and Lanson B., 1997, Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12: 23~35.
    [7] Bhatia, M. R., 1983, Plate tectonics and geochemical composition of sandstones, Journal of Geology, 91(6):611-627
    [8] Bjorlykke, K., 1983, Diagenetic reactions in sandstones, in A. Parker, and BW Sellwood, eds., Sediment diagenesis: Reading, UK, Reidel Publication Company, p. 169-213.
    [9] Brimhall G. H., Dietrich W. E. 1987.Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis.Geochimica et Cosmochimica Acta, 51(3):567-587
    [10] Chuhan F. A., Bj?rlykke K., Lowrey C., 2000. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and north Viking Graben, offshore Norway. Marine and Petroleum Geology, 17: 673~689.
    [11] Ehrenberg,S.N., 1997. Influence of depositional sand quality and diagenesison porosity and permeability: examples from Brent Groupreservoirs, northern North Sea. Journal of Sedimentary Research, 67,197-211
    [12] Fedo C. M., Nesbitt H. W., Young G.M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.Geology. 23: 921-924
    [13] Foscolos, AE & Powell, TG 1980 Mineralogical and geochemical transformation of clays during catagenesis and their relation to oil generation. In Facts and principles of world petroleum occurrence (ed. AD Miall), pp. 153-172.
    [14] Fran?a A B, Araújo L M, Maynard J B, Potter P E. 2003, Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America. AAPG Bulletin, 87(7): 1073–1082.
    [15] Gluyas J. and Coleman, M.,1992.Material flux and porosity changes during sediment diagenesis: Nature,v. 356 p.52-54
    [16] Higgs K., Zwingmann H., Reyes A., Funnell R. 2007. Diagenesis,porosity evolution, and petroleumem placement in tight gas reservoirs, Taranaki Basion, Newzealand. Journal of Sedimentary Research, 77:1003–1025
    [17] Higgs K., Zwingmann H., Reyes A., Funnell R. 2007. Diagenesis,porosity evolution, and petroleumem placement in tight gas reservoirs, Taranaki Basion, Newzealand. Journal of Sedimentary Research, 77:1003–1025
    [18] J. Barry Maynard, Renzo Valloni, and Ho-shing Yu. 1982,Composition of modern deep-sea sands from arc-related basins (in Trench-Forearc geology; sedimentation and tectonics on modern and ancient active plate margins, conference, Leggett,).Special Publication - Geological Society of London, 10 :551-561
    [19] J. Hower, EV Eslinger, ME However and EA Perry, Mechanism of burial metamorphism of aragillaceous sediment: 1. Mineralogical and chemical evidence, Geol. Soc. Am. Bull. 87 (1976), pp. 725–737.
    [20] K. L. Milliken, L. E. Mack, and L. S. Land.Elemental mobility in sandstones during burial; whole-rock chemical and isotopic data, Frio Formation, South Texas。Journal of Sedimentary Research, Oct 1994; 64: 788 - 796.
    [21] Kiminami K., Fujii K. 2007. The relationship between major element concentration and grain size within sandstones from four turbidite sequences in Japan. Sedimentary Geology.195:203–215
    [22] KNUT BJ?RLYKKE., 1974, Geochemical and mineralogical influence of Ordovician Island Arcs on epicontinental clastic sedimentation. A study of Lower Palaeozoic sedimentation in the Oslo Region, Norway:Sedimentology Volume 21 Issue 2, Pages 251 - 272
    [23] Lanson, B. D. , Beaufort, G. , Berger, A. ,et al. , 2002. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones:a review. Clay Minerals, 37:1–22.
    [24] M. J. Pearson.Quantitative clay mineralogical analyses from the bulk chemistry of sedimentary rocks.Clays and Clay Minerals, Dec 1978; 26: 423 - 433.
    [25] Manning, D. A. C., 1997, Acetate and propionate in landfill leachate: implications for recognition of microbiological influences on the composition of waters in sedimentary systems. Geology, 25: 279~281
    [26] Millikes, K. L., Mack, L.E. 1990. Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande province, South Texas:Sedimentary Geology. 68:187-199
    [27] Murphy J. B. 2000. Tectonic influence on sedimentation along the southern flank of the late PaleozoicMagdalen basin in the Canadian Appalachians: Geochemical and isotopic constraints on the Horton Group in the St. Marys basin, Nova Scotia. Geological Society of America Bulletin.112: 997-1011
    [28] Nesbitt H. W, Young G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature.299: 715-717
    [29] Percival, C. J., 1983, The Firestone Sill ganister, Namurian, Northern England-the A2 horizon of a podzol or podzolic palaeosol. Sedimentary Geology, 36: 41~49
    [30] Primmer, T.J., Kerr, S.A. and Myers, K.J., 1990. Feasibility of in situ elemental analysis in mudrock evaluation. In: Geological Applications of Wireline LogsHurst, A., Lovell, M.A. and Morton, A.C., Editors, 1990. Spec. Publ. Geol. Soc. London No. 48, pp. 195–203.
    [31] Ronald K S, Pittman E D. Secondary Porosity Revisited: The Chemistry of Feldspar Dissolution by Carboxylic. Acids and Anions. AAPG, 1990, 74: 1795–1808
    [32] Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 and K2O/Na2O ratio.J. Geol. 94: 635–650
    [33] S. N. Ehrenberg and E.Siring. 1992.Use of bulk chemical analyses in stratigraphic correlations of sandstones; an example from the Statfjord Nord Field, Norwegian continental shelf.Journal of Sedimentary Research. 62: 318-330.
    [34] Storvoll, V. , Bj?rlykke, K. , Karlsen, D. et al. , 2002. Porosity preservation in reservoir sandstones due to grain-coating illite:a study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway. Marine and Petroleum Geology, 19:767–781.
    [35] Surdam R C, Boese S W, Crossey L J. 1984,The chemistry of secondary porosity. AAPG Memoir, 37: 127–149
    [36] Surdam R C, Crossey L J, Hagen E S, Heasler H P. 1989,Organic–inorganic and sandstone diagenesis. AAPG Bulletin, 73: 1–23
    [37] Surdam, R. C., L. J. Crossey, 1987, Integrated diagenetic modeling; a process-oriented approach for clastic systems: Annual Review of Earth and Planetary Sciences, v.15, p.141-170.
    [38] Sutton S. J., Land L. S. 1996.Postdepositional chemical alteration of Ouachita shales GSA Bulletin.108(8):978–991
    [39] Taylor K G., Gawthorpe R. L., Curtis C. D., Marshall J. D., and Awwiller D. N., 2000, Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado. Journal of Sedimentary Research, 70(2): 360~372
    [40] Thyne G. D., Bjrlykke K., Harrison W. J., 1996, A conceptual model for diagenetic mass transfer during deep burial. AAPG Annual Convention, Program with Abstracts, 5: A140.
    [41] Van Keer, I., Muchez, P. and Viaene W., 1998, Clay mineralogical variations and evolutions in sandstone sequences near a coal seam and shales in the Westphalian of the Campine Basin (NE Belgium). Clay Minerals, 33: 159~169
    [42] Van P.C., Kamp d., Leake B.E., Senior A. 1976.The petrography and geochemistry of some Californian arkoses with application to identifying gneisses of metasedimentary origin. Journal of Geolog.84(2):195-212
    [43]杜业波,季汉成,朱筱敏.2006.川西前陆盆地上三叠统须家河组成岩相研究[J].吉林大学学报(地球科学版).36(3):358-3645
    [44]胡明毅,李士祥,魏国齐等,川西前陆盆地上三叠统须家河组沉积体系及演化特征。石油天然气学报,2008,30(5):5-11.
    [45]黄思静,毛晓冬,张萌,等. 2005.孝泉-新场-合兴场地区须家河组储层砂岩成岩作用机理研究.成都理工大学档案馆
    [46]黄思静,杨俊杰,张文正,黄月明,刘桂霞.不同温度条件下乙酸对长石溶蚀过程的实验研究.沉积学报, 1995, 13(1): 7–17.
    [47]黄思静,张萌,武文慧等,2009,孝-新-合地区须家河组砂岩沉积期后水-岩相互作用机制研究,成都理工大学,中国石化股份公司油气西南分公司勘探开发研究院,内部资料
    [48]刘宝珺, 1980.沉积岩石学.北京:地质出版社.
    [49]刘金华张世奇孙耀庭等,川西前陆盆地上三叠统须家河组地层的划分对比及沉积演化。JOURNAL OF STRAT IGRAPHY,2007,31(2):190-196.
    [50]刘树根,赵锡奎,罗志立等,龙门山造山带-川西前陆盆地系统构造事件研究。成都理工学院学报,2001,28(3):221-230.
    [51]罗啸泉,曹烈,杨旭明,等,,川西坳陷上三叠统油气运移特征。天然气工业,2004,24(8):4~7
    [52]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析.沉积学报, 1994, 12(3): 65–75.
    [53]王道永。龙门山中段中生代前陆盆地的构造演化史。成都理工学院学报,1994,21(3):20-28.
    [54]吴朝容.2005.致密碎屑岩气藏裂缝性储层预测方法—以川西坳陷新场气田须二段为例.成都理工大学博士学位论文
    [55]杨俊杰,黄月明,张文正,刘佳霞,黄思静.乙酸对长石砂岩溶蚀作用的实验模拟.石油勘探与开发,1995,22(4): 82–86.
    [56]杨威,魏国齐,李跃纲,段勇,金惠,沈珏红,施振生,张林.2008.川西地区须家河组二段成岩作用及其对储层发育的影响[J].天然气地球科学.19(2):188-192
    [57]叶军,2001,川西新场851井深部气藏形成机制研究——X851井高产工业气流的发现及其意义.天然气工业,21(4):16~20
    [58]张金亮,常象春,王世谦,2002,四川盆地上三叠统深盆气藏研究.石油学报,23(3):27~33
    [59]张鼐,田作基,吴胜华,等.2008.川西须家河组储层成岩演化[J].岩石学报, ,24(9):2179-2184
    [60]中国地层典编委会,2000,中国地层典—三叠系,北京:地质出版社,107
    [61]中石化西南分公司勘探开发研究院,2003,川西上三叠统须家河组天然气成矿规律及富集带预测。内部资料
    [62]钟玉梅. 2008.川西坳陷中段须家河组须四段砂岩储集特征[J].石油天然气学报.30(6):218-220
    [63]朱如凯,赵霞,刘柳红等,2009.四川盆地须家河组沉积体系与有利储集层分布。石油勘探与开发, 36(1):46-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700