南海北部海底浅部沉积物声学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底浅部沉积物声学特性直接影响海洋声学环境,影响对海底面、海底浅表层沉积物及其下伏地质体和人工构筑物的声波探测效果。同时,通过声学特性进而了解沉积物其它特性,为海底声学分类、沉积学研究、海洋土工学研究和海底工程环境条件评价等提供基础资料。南海北部海域,海洋、地质乃至水声环境均非常典型,一直为诸学科的研究热点海区。而且在军事上又十分重要。对其海底沉积物声学特性进行研究具有重要意义。论文综合应用沉积物取样测试、钻孔测井和海底声学剖面探测等方面资料,对南海北部海底浅部沉积物声学特性进行了系统研究。
     采集、测试分析了南海北部不同海区近百个站位海底沉积物物理性质和密度、声速等声学性质。特别是应用“弯曲元”剪切波换能器和共振柱首次获得陆架和陆坡区数个沉积物样品的剪切波速度、压缩波和剪切波衰减的可信数据,二种测量方法测得的剪切波速度具很好的可比性,填补了中国海区这方面的空白。
     根据实测和收集到的数百组数据的全区和分区的统计分析,沉积物声速、密度等声学性质与孔隙度、平均粒径及含水量等之间具有较好的相关性,但相关程度各不相同,且各海区间有差异,其中又以与孔隙度相关性最好。可用孔隙度较有效地预报声速,讨论了可用于预报的经验公式。统计分析同时表明,沉积物声阻抗变化主要决定于密度,并获得了本区从密度预报声阻抗的经验关系。
     基于实测和预报的数值,研究了本区海底表层沉积物密度、现场声速、声速比、声阻抗比分布。它们呈有规律的区域变化,并与水深、沉积物类型等有密切关系。主要表现为近岸河口海湾区细颗粒沉积物为高含水量、高孔隙度、低密度、低声速,且有声速比小于1的低声速海底出现;外陆架残留沉积物则主要以低含水量、低孔隙度、高密度、高声速、高声速比为特征;而中、下大陆坡和深海盆的细颗粒、半深海一深海沉积物又以高含水量、高孔隙度、低密度和低声速为特征,且一般呈声速比小于1的低声速海底,但与同为细颗粒的近岸沉积物有显著差异:海底沉积物声学性质的上述平面分布特征主要是沉积环境和沉积作用过程影响的结果。
     根据典型站位柱状岩芯声学性质测试数据分析,不同沉积地貌单元间沉积物声学性质的垂向变化存在明显差异。从陆架到陆坡、深海盆,声速垂向梯度有规律地从大变小,站位间垂向变化的差异性也明显变小。对钻井资料研究表明,沉积物密度、声速、声阻抗等声学性质的垂向变化主要受古沉积环境及沉积后沉积物被改造、埋藏后压实与固结等作用过程的影响。对海进海退变化频繁的陆架区,数十米深度范围内的声学性质垂向变化宏观上主要受海平面升降等沉积环境变化的影响,密度、声速、声阻抗均与CaCO_3含量具负相关性;而沉积环境相对稳定的中、下陆坡和深海盆区,沉积物压实作用对声学性质影响加大,密度、声速、声阻抗与CaCO_3含量出现一定的正相关性。声学性质的垂向变化一定程度上反映了古环境的变化。
     综合海底声学地层剖面和钻孔、取样资料,根据获得的海底浅部地层结构剖面,分析了本区从珠江口近海到深海盆剖面的海底浅部沉积地层结构和各层的声反射特征,研究了空间展布变化和各层沉积物声学性质。陆架区由于频繁的海进海退变化的影响,海底呈明显的分层结构,但层厚度、声反射特征和沉积物声学特性等在平面和垂向上均出现很大变化。陆坡和深海盆区,很多海底声反射界面可是浊流、CaCO_3含量变化等原因造成,平静沉积区的反射结构以平行、亚平行为主,厚度随下伏地形起伏而变化,而滑坡等沉积物搬运作用强烈区,则反射结构以杂乱为主,也可呈无反射的“透明体”,层厚度变化显著,特别是在陆坡的陡坡区。分类研究了区内浅地层剖面测量揭示的海底最上部沉积层的回声反射特征及其区域分布,分析了九类特征区的沉积学特征及沉积物声学性质,反映出海底回声反射特征与一定的沉积环境、沉积作用过程和海底沉积物声学性质相联系。对分区海底沉积地层剖面结构和回声反射特征的研究可为海底地声建模提供十分重要的基础资料。
Acoustic characteristics of seabed sediments are basic to underwater acoustic environment and to explorations of sea bottom, surficial and sub-bottom sediments and underlying geologic bodies and man-made obstructions. Meanwhile, they can be used to infer other properties of seabed such as physical-mechanical properties, which provides important information for seafloor acoustic classifications, sedimentation, marine geotechnics, submarine engineering condition evaluations, etc. Northern South China Sea, with a typical oceanographic, geological and underwater acoustic environment, is an area of general interest. It is significant to carry out systemic research on the acoustic characteristics of its seabed sediments based on comprehensive analysis of sediment sampling and testing, borehole logging and sub-bottom acoustic profiling data.
     Seabed sediment samples from up to 100m stations in the Northern South China Sea were recovered and tested for physical and acoustic properties such as (saturated bulk) density and sound velocity. Particularly, several samples were measured for shear wave velocity and attenuation coefficients of compressional and shear wave by bender transducers and resonant column techniques and credible results were gained for the first time in this area.
     The statistical correlation between seabed sediment acoustic and physical properties shows that both sound velocity and density has a significant correlation with porosity, mean grain size and water content, but with different correlation coefficients for different property parameters and physiographic provinces. Porosity is the parameter showing the highest significant correlation with sound velocity and density, and can be used to predict sound velocity with appropriate equations discussed. A detailed examination also reveals that variations in acoustic impedance are almost entirely controlled by changes in density and equations predicting impedance from density are presented.
     On the basis of measured and predicted acoustic property data, the distributions of density, in situ sound velocity, sound velocity ratio (ratio of the seafloor sediment sound velocity to the water sound velocity overlying the seafloor) and acoustic impedance ratio of the seafloor sediments were mapped. These properties show regional change from the coastal area to deep sea basin and directly related with water depth, sediment types and other factors. Fine sediments in inshore areas such as estuaries are characterized by high water content, high porosity, low density and low sound velocity, with low velocity seafloor (sound velocity ratio<1) in some locations. Seafloor sediments on the outer shelf, mainly relict sediments, show low water content, low porosity, high density and high velocity and velocity ratio. Fine hemi-pelagic and pelagic sediments, located from middle-lower slope to deep sea basin, are high water content, high porosity, low density and low velocity, generally showing low velocity seafloor, but different from fine sediments of inshore areas. It is turned out that acoustic property distributions of seafloor sediments are mainly controlled by depo-environment and sedimentation processes.
     Based upon data analysis of core acoustic properties, there are obvious differences between different provinces over the property variation configuration with depth below seafloor. Both sound velocity gradient and difference between cores become smaller from continental shelf to slope and deep sea basin. According to borehole sample analysis, it was concluded that vertical variations of all density, velocity and impedance of seabed sediments are influenced mainly by paleo-environment as well as remoulding and compaction after deposition. On the continental shelf, with frequent transgressions and regressions, vertical variations of sediment acoustic properties within teens of meters blow seafloor are controlled mainly by sea-level change. All density, velocity and impedance share a negative correlation with CaCO_3 content. On the other hand, on the middle-lower slope and in deep sea basin, with a comparative stable depo-environment, compaction processes have a greater influence on sediment acoustical properties. All density, sound velocity and impedance share a positive correlation with CaCO_3 content. Variation of sediment acoustic properties with depth below seafloor contains within it a paleo-environment signal.
     A longitudinal sub-bottom structure profile is presented from Pearl River Mouth to deep sea basin in a approximate southeastern direction based upon acoustic profiling, borehole drilling and coring data. Reflection configuration, sequence distribution and sediment acoustic properties within each sequence were studied in detail. Sub-bottom on the continental shelf shares a good layering structure due to frequent transgressions and regressions, but all sequence thickness, reflection pattern and sediment acoustical characters show a great change. In the slope and deep sea basin areas, many sub-bottom reflectors caused by turbidity current deposits and CaCO_3 content fluctuations. Quite pelagic sedimentation is characterized by parallel-subparallel reflection configuration and changeable sequence thickness with underlying topography. In the area with strong mass-wasting processes such as slumping and sliding, reflection pattern appears chaos, distorted or reflection-free and its sequence thickness varies greatly, particularly on the steep slope. Furthermore a study on seabed echo-character and its distribution revealed by sub-bottom profiling was carried out. Nine echo-character types, together with their sedimentation and sediment acoustic properties, were mapped and analyzed. It is turned out that echo-character can be related to depo-environment, sedimentation processes and sediment acoustic properties. Research on sub-bottom structure profile and echo-character is of great value in seabed geoacoustic modeling
引文
1. White J. E. Seismic Waves: Radiation, Transmission, and Attenuation. New York: McGraw-Hill, 1965
    
    2. Hampton L. Physics of Sound in Marine Sediment. New York: Plenum Press, 1974
    
    3. Kuperman W. A. Bottom-interacting Ocean Acoustics. New York: Plenum Press, 1980
    
    4. Akal T. and Berkson M. Ocean Seismo-Acoustics. New York: Plenum Press, 1986
    
    5. Lara-Saenz R. et al. Acoustic and Ocean Bottom. Madrid, 1987
    
    6. Bourbie T. 0., Coussy 0. and Zinsner B. Acoustics of Porous Media. Houston: Gulf.1987
    
    7. Stoll R. D. Sediment Acoustics. New York: Springer-Verlay, 1989,
    
    8. Hamilton E. L. Geoacoustic Modeling of the Sea Floor. J. Acoust. Soc. Am. 1980,68: 1313-1340
    
    9. Biot M. A. Theory of Elastic Waves in a Fluid-Saturated Porous Solid, I. Low Frequency Range. J. Acoust. Soc. Am. 1956, 28: 168-178
    
    10. Biot M. A. Theory of Elastic Waves in a Fluid-Saturated Porous Solid, II. Higher Frequency Range. J. Acoust. Soc. Am. 1956, 28:179-191
    
    11. Stoll R. D. and Bryan G. M. Wave Attenuation in Saturated Sediments. J. Acoust. Soc. Am. 1970, 47: 1440-1447
    
    12. Stoll R. D. Acoustic Waves in Ocean Sediments. Geophysics, 1977, 42: 715-725
    
    13. Stoll R. D. Experimental Studies of Attenuation in Sediments. J. Acoust. Soc. Am. 1979,66: 1152-1160
    
    14. Stoll R. D. Theoretical Aspects of Attenuation in Sediments. J. Acoust. Soc. Am. 1980,68: 1341-1350
    
    15. Stoll R. D. and Kan T. K. Reflection of Acoustic Waves at a Water-Sediment Interface. J. Acoust. Soc. Am. 1981, 70: 149-156
    
    16. Stoll R. D. Marine Sediment Acoustics. J. Acoust. Soc. Am. 1985, 77: 1789-1799
    
    17. Stoll R. D. Stress-Induced Anisotropy in Sediment Acoustics. J. Acoust. Soc. Am. 1989,85:702-708
    
    18. Stoll R. D., Bryan G. M., Mithal R et al. Field Experiments to Study Seafloor Seismo-Acoustic Response. J. Acoust. Soc. Am. 1991, 89: 2232-2240
    19. Badiey M. et al. From Geology to Geoacoustics-Evaluation of Biot-Stoll Sound Speed and Attenuation for Shallow water Acoustics. J. Acoust. Soc. Am. 1998, 103: 309-320
    20. Plona J. Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultranic Frequency. Appl. Phys. Lett. 1980, 36: 259-261
    21.吴世明.土介质中的波.北京:科学出版社,1996
    22.刘银斌,李幼铭.Biot介质中的波传播述评.地球物理学进展,1992,7(3):32-40
    23.诸国桢.流体饱和介质中的声波.应用声学,1994,13 (4):1-6
    24. Buckingham M. J. Theory of Acoustic Attenuation, Dispersion, and Pulse Propagation in Unconsolidated Granular Materials Including Marine Sediments. J. Acoust. Soc. Am. 1997, 102: 2579-2596
    25. Buckingham M. J. Theory of Compressional and Shear Waves in Fluidlike Marine Sediments. J. Acoust. Soc. Am. 1998, 103: 288-299
    26. Buckingham M. J. Wave Propagation, Stress Relation, and Grain-to-Grain Shearing in Saturated, Unconsolidated Marine Sediments. J. Acoust. Soc. Am. 2000, 108: 2796-2815
    27. Hovem J. M., Richardson M. D. and Stoll R. D. Shear Waves in Marine Sediments. Klemer Academic Publishers, 1991,
    28. Inderbitzen A. L. Deep-sea Sediments-Physical and Mechanical Properties. New York: Plenum Press, 1974
    29. Baldwin K. C., Celikkol B. and Silva A. J. Marine Sediment Acoustic Measurement System. Ocean Engineering, 1981, 8(5): 481-488
    30. Bennell J. D. and Smith D. T. A review of Laboratory Shear wave Techniques and Attenuation Measurements with Particular reference to the Resonant Column". in Shear Waves in Marine Sediments, edited by Hovem J. M., Richardson M. D. and Stoll R. D. 1991, 83-93
    31. Hamilton E. L. Prediction of In-situ Acoustic and Elastic Properties of Marine Sediments. Geophysics, 1972, 36(2): 266-284
    32. Hamilton E. L. Prediction of Deep-Sea Sediment Properties: State of the Art. in Deep-sea Sediments-Physical and Mechanical Properties, edited by Inderbitzen A. L. 1974, 1-43
    33. Tucholke B. E. and Shirley D. J. Comparison of Laboratory and In-situ Compressional Wave Velocity Measurements on Sediment Cores from the Western North Atlantic. J. Geophys. Res. 1979, 84: 687-695
    34. Shirley D. J. and Anderson A. L. In-situ Measurement of Marine Sediment Acoustical Properties During Coring in Deep Water. IEEE Trans. Geosci. Electron. 1975, GE-13 (4): 163-169
    35. Shirley D. J. Method for Measuring In-situ Acoustic Impedance of Marine Sediments, J. Acoust. Soc. Am. 1977, 62:1028-1032
    36. Fu S. S., Wikens R. H. and Frazer L. N. Acoustic Lance: New In-situ Seafloor Velocity Profiles. J. Acoust. Soc. Am. 1996, 99:234-241
    37. Frazer L. N. and Fu Shung-Sheng. Seabed Sediment Attenuation Profiles from a Movable Sub-bottom Acoustic Array. J. Acoust. Soc. Am. 1999,106:120-129
    38. Bowles F. A. Observations on Attenuation and Shear-wave Velocity in Fine-grained, Marine Sediments. J. Acoust. Soc. Am. 1997,101:3385-97
    39. Hamilton E. L. and Bachman R.T. Sound Velocity and Related Properties of Marine Sediments. J. Acoustic, Soc. Am. 1982, 72:1891-1904
    40. Johnson T. C., Hamilton E. L. and Berger W. H. Physical Properties of Calcareous Ooze: Control by Dissolution at Depth. Marine Geology, 1977, 24:259-277
    41. Kominz M., Heath G. R. and Moore T. C. Bulk density of Pelagic sediments from the Equatorial Pacific Estimated from Carbonate Content, Age, and Subbottom Depth. Journal of Sedimentary Petrology, 1977,47(4): 1593-1597
    42. Mayer L. A. Deep Sea Carbonates: Acoustic, Physical, and Stratigraphic Properties. Journal of Sedimentary Petrology, 1979, 49(3): 819-836
    43. Mayer L A. Deep-Sea Carbonates: Physical Property Relationships and the Origin of High-frequency Acoustic Reflectors. Marine Geology, 1980, 38:165-18
    44. Sanko P. and Lair C. Core Analysis and Bottom Photographs. in Marine Geophysical Survey Program 65-67 Western North Pacific Ocean and South China Sea, U. S. Naval Oceanographic Office, SP 97-15-5, Area 15, 1969, Vol. 5,(译文“中国南海的岩心分析和海底照片”刊于国家海洋局海洋科技情报所《海洋科技资料》,1975年第3期)
    45.周志愚等.南海、黄海海底声速垂直分布的测量结果.海洋学报,1983,5(5):543-552
    46.梁元博、卢博.某海区陆架低声速底质的声学物理参数.热带海洋,1983,2(3):191-199
    47.梁元博、卢博.珠江口大陆架底质的声学特性初探.南海海洋科学集刊,1989,8:101-109
    48.唐永禄.南海三海区海底沉积物物理性质及声学特性.海洋技术,1991,10(1):81-91
    49.李粹中、梁元博、卢博.浙江北部海港开发区沉积物的压缩波声速和物理力学特性研究.浙江地质,1991,9(2):58-44
    50.中国科学院南沙综合科学考察队.南沙海域声光场研究论文集.北京:海洋出版社,1996
    51.卢博、李赶先、黄韶健.南海海底钙质土声学物理性质及其工程地质意义.中国 科学(D辑),1998,28(6):518-522
    52. Chen min-pen, Shieh Y. T. and Chyan J.M. Acoustic and Physical properties of surface sediments in Northern Taiwan Strait. Acta Oceanographica Taiwanica,1988, 21:92-118
    53.陈民本等.台湾东北外海黑潮转向区之沉积构造及沉积环境.自《台湾海峡及邻近海域海洋科学讨论会论文集》,北京:海洋出版社,1995,111-137
    54.梁元博、卢博.海洋沉积物力学性质影响声速的物理机制.海洋学报,1985,7(1):111-119
    55.陈龙珠,吴世明.海底沉积物结构影响声速的理论探讨.海洋学报,1988,10(3):368-373
    56.唐应吾.沉积物中的流阻和结构因子.声学学报,1994,19(3):203-207
    57. Anderson R. S. Statistical Correlation of Physical Properties and Sound Velocity in Sediments". in Physics of Sound in Marine Sediment, edited by Loyd Hampton. New York: Plenum Press, 1974, 481-518
    58. Bachman R. T. Acoustic and Physical Property Relationships in Marine Sediment. J. Acoustic, Soc. Am. 1985, 78:616-621
    59.卢博.海底浅层沉积物声速与物理性质.科学通报,1994,39(5):54-57
    60.卢博,梁元博.中国东南沿海海洋沉积物声速与物理参数的统计相关.中国科学(B辑),1994,24(5):556-560
    61.卢博.浙江北仑港海陆相沉积物物理力学与声学参数的对比研究.海洋通报,1991,10(5):37-44
    62.卢博等.南沙海域浅层沉积物声速与物理参数的相关关系.自《南沙海域声光场研究论文集》.北京:海洋出版社,1996,9-22
    63.卢博,梁元博.海洋沉积物声速与其物理力学参数的相关性.热带海洋,1991,10(3).96-100
    64. Zhou Zhiyu, Meng Jinsheng. Marine Geotechnology, 1988, 7:211-219
    65.唐永禄.海底沉积物孔隙度与声速的关系.海洋学报,1998,20(6):39-43
    66. Hamilton E. L. Variations of Density and Porosity with Depth in Deep-sea Sediments, Journal of Sedimentary Petrology, 1976, 46(2): 280-300
    67. Hamilton E. L. Sound Attenuation as a Function of Depth in the Sea Floor. J. Acoust. Soc. Am. 1976, 59:528-535
    68. Hamilton E. L. Shear Wave Velocity versus Depth in Marine sediments: A Review. Geophysics, 1976, 41:985-996
    69. Hamilton E. L. Sound Velocity Gradients in Marine Sediments. J. Acoust. Soc. Am. 1979, 65:909-922
    70. Hamilton E. L. Vp/Vs and Poisson's Ratios in Marine Sediments and Rocks. J. Acoust. Soc. Am. 1979, 66:1093-1101
    71. Hamilton E. L. Sound Velocity as a Function of Depth in Marine Sediments, J. Acoust. Soco Am. 1985, 78:1384-55
    72. Houtz R. E. Results and Methods Used to Determine the Acoustic Properties of the Southeast Asia Margins. in Bottom-interacting Ocean Acoustics, edited by Kuperman W. A. et al. New York: Plenum Press, 1980, 99-109
    73. Kibblewhite A. C. Attenuation of Sound in Marine Sediments: A Review with Emphasis on New low-frequency Data. J. Acoust. Soc. Am. 1989, 86:716-738
    74. Chapman D. M. F. and Ellis D. D. Propagation Loss Modeling on the Scotian Shelf: The Geo-acoustic Model. in Bottom-interacting Ocean Acoustics, edited by Kuperman W. A. et al. New York: Plenum Press, 1980, 525-539
    75. Tucholke B. E. Acoustic Environment of the Hatteras and Nares Abyssal Plains, Western North Atlantic Ocean, Determined from Velocities and Physical Properties of Sediment Cores. J. Acoust. Soc. Am. 1980, 68:1376-1390
    76. Hamilton E. L. Geoacoustic Models of the Sea Floor. in Physics of Sound in Marine Sediment edited by Hampton L. New York: Plenum Press, 1974, 181-222
    77.冯文科,薛万俊,杨达源.南海北部晚第四纪地质环境.广州:广东科技出版社,1988
    78.郑连福,陈义斌主编.南海海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993
    79.汪品先等.十五万年来的南海.上海:同济大学出版社,1995
    80.黄永祥,葛同民.珠江口盆地晚第四纪地层及环境初步研究.海洋地质与第四纪地质,1995,15(4):23-35
    81.薛万俊,郑志昌等.南海北部第四纪地层,自《中国第四纪地层与国际对比》(杨子赓,林和茂主编),北京:地质出版社,1996,76-108
    82.刘昭蜀等.南海地质.北京:科学出版社,2000
    83. Damuth J. E. Quaternary Sedimentation Processes in the South China Sea Basin as revealed by echo-character mapping and piston cores studies. In The Tectonic and Geological Evolution of Southeast Asian Seas and Islands, Part I. Geophysical Monographs 23 edited by Hayes, D. E. 1980,105-125
    84. Gaedicke C., Wang H. K. and Liang Y. Seismic Stratigraphy and Holocene sedimentation at the northern margin of the South China Sea. In Marine Geology and Geophysics of the South China Sea.-Proc Symposium on Recent Contributions to the Geological History of the South China Sea, edited by Jin X. L., Kudrass H. R. and Pautot G. Beijing: China Ocean Press, 1992, 21-37
    85. Samthein M., Pflaumann U., Wang P. X. et al. Preliminary Report on Sonne-95 Cruise "Monitor Monsoon" to the South China Sea. Reports, Geol.-Palaont. Inst. Univ. Kiel, 1994,68,
    86. Wu Shiguo, Wong H. K. and Ludmann T. Gravity-driven Sedimentation on the Northwestern Continental Slope in the South China Sea: Results from High-resolution Seismic Data and Piston Cores. Chin. J. Oceanol. Limnol. , 1999, 17(2): 155-169
    87. Ludmann T. and Wong H. K. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 1999, 311:113-138
    88. Wang Pinxian et al. Proceeding of the Ocean Drilling Program, Initial Reports, Vol.184, South China Sea, College Stations, TX, 2000
    89.邵磊等.南海陆坡高速堆积体的物质来源.中国科学(D辑),2001,31(10):828-833
    90.陈晓良,赵泉鸿,翦知湣.南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义.海洋地质与第四纪地质,2002,22(2):69-74
    91.房殿勇、王汝建等.南海ODP1148站深海相渐新统硅质成岩作用.海洋地质与第四纪地质,2002,22(2):75-79
    92.陈民本.台湾海峡南部大陆斜坡沉积物之物理性质和沉积环境.Acta Oceanographica Taiwanica,1983,14:42-63
    93.地矿部广州海洋地质调查局第二海洋地质调查大队.南海珠江口盆地海洋工程地质调查报告.1990
    94.冯志强等.南海北部地质灾害及海底工程地质条件评价.南京:河海大学出版社,1996
    95.杨位洸等.珠江口外浅海区底质物理特性评价.南海海洋科学集刊,1992,10:113-123
    96.牛作民.南海海底细粒土的工程地质性质基本特征.海洋地质与第四纪地质,1992,12(1):15-25
    97.卢博,李传荣.珠江口外海沉积物(原状样)微结构特征及其物理性质.海洋学报.2002,24(2):94-99
    98. Liang Yuanbo and Lu Bo, Acoustic Environment and Physical- Mechanical Properties of the Shelf Seabed off the Pearl River Mouth. Marine Geotechnology, 1985, 6 (4): 377-392
    99. Handing B. W., Storms M. A. et al. Proceeding of the Ocean Drilling Program, Initial Reports, Vol.124E. College Stations, TX, 1990
    100. Damuth J. E. Use of High-frequency (3.5-12kHz) Echograms in the Study of Near-Bottom Sedimentation Processes in the Deep-Sea: A Review. Marine Geology, 1980,38:51-75
    101. Damuth J. E. Migrating Sedimentation Processes in the South China Sea Basin. Geology, 1979,7:520-523
    102.谢以萱.南海北部沿岸海底地形地貌的变迁.热带地貌,1986,7(1):27-47
    103.刘以宣等.南海北部晚更新世以来的海侵与海平面变动及其对环境的影响.南海海洋科学集刊,1995,11:1-71
    104.吴培木等.台湾岛恒春西南海域声速场特性分析.海洋学报,2002,24(1):179-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700