红树林湿地低分子量有机酸及其对重金属生物有效性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国城市化和工业化以及海洋生物养殖加剧了重金属的陆海迁移,导致其对沿海生态环境尤其是处于海陆交错带的红树林生态系统的污染。沿海河口区域的一些工业、生活污水,养殖污水,等通过排污管道向红树林湿地排放,使得红树林成为海岸的“污水处理场所”。城市化和工业化加剧了重金属的陆海迁移,导致其对沿海生态环境尤其是处于海陆交错带的红树林生态系统的污染。
     低分子量有机酸在土壤中大量存在,并在时空上影响着成土的过程,如土壤养分的供应,重金属的转移和固定,矿物的风化等起着重要的作用。在土壤溶液中,低分子量有机酸的羧基部分解离,导致其表现出弱酸性。低分子量有机酸作为配合体通过络合作用提高了土壤溶液中溶解性阳离子如铁,铝的总量。溶解性低分子量有机酸和其络合的金属离子容易从土壤孔隙中运移,并通过强烈的鳌合作用,提高的金属离子如(铜,铁)的淋溶作用。低分子量有机酸通过羧基和羟基与金属离子的调节作用而吸附在土壤矿物表面。低分子量有机酸强烈的协同作用通过解离和还原反应使矿物质与其表面的吸附作用提高了矿物质的溶解和风化作用。国内外对不同植物根系分泌的有机酸与土壤中重金属的相互作用开展了大量的研究,众多研究结论认为根系分泌的有机酸主要是通过影响重金属离子在根-土界面上的吸附-解吸、配位-解离等反应来影响金属离子在根-土界面上的化学行为。目前国内外植物根系与重金属相互作用的研究多集中于陆地森林生态系统与农田生态系统,对于陆海交错带红树林生态系统这一生态敏感区域的研究还鲜见报道。
     本文以福建漳江口红树林为研究对象,通过野外定位观测和室内盆栽实验,在研究红树植物根系分泌的低分子量有机酸,红树林沉积物中低分子量有机酸以及红树根际重金属形态的基础上,着重探讨红树植物在胁迫条件下根系分泌低分子量有机酸响应及机制,低分子量有机酸对重金属污染治理的作用,植物-沉积物界面重金属的形态转化,这对进一步拓展我河口湿地重金属污染研究,深入分析红树植物对河口区域重金属污染的治理有所裨益,为河口区域重金属迁移转化的生物地球化学过程提供重要基础资料,并对我国河口区域重金属污染的治理,红树林生态系统的保护有一定的指导意义。本文主要得出以下结论:
     1.用改进的高效液相色谱法,分析10种低分子量有机酸:草酸,酒石酸,甲酸,L-苹果酸,乳酸,乙酸,顺丁烯二酸,柠檬酸,丁酸,反丁烯二酸等低分子量有机酸,色谱条件为:Agilent 1100型高效液相色谱及其色谱工作站,AgilentZORBAX Extend-C_(18)(250 mm×4.6 mm I.D.,5μ)色谱柱。柱温为25±2℃,进样量为50μl,pH为2.5的93%的25 mM的KH_2PO_4和7%的甲醇作为流动相,DAD检测波长为210 nm时,流速为1.0 ml·min~(-1),能有效的分离检测。红树植物秋茄,白骨壤,桐花树的根系分泌的低分子量有机酸主要以一元羧酸为主。植物种类的不同其分泌的低分子量有机酸种类与总量都有所不同。室内栽培红树植物秋茄、白骨壤、和桐花树幼苗根系分泌的低分子量有机酸主要为草酸,柠檬酸,乳酸,苹果酸,乙酸、丁酸,酒石酸。秋茄植物根系分泌物中柠檬酸含量最高为9.004μmol g~(-1)root DW,而白骨壤根系分泌物中酒石酸含量(3.760μmol g~(-1)rootDVV)在三者之中最高,达到3.760μmol g~(-1)root DW,桐花树根系分泌物中则有较多的乙酸。
     2.红树林不同树种组成影响了沉积物中的低分子量有机酸的组成与含量。而沉积物不同区域的低分子量有机酸分布也不相同。在秋茄,白骨壤与桐花树林地中不同区域的低分子量有机酸的含量分布均表现为:根际>林内>林外光滩。其中,秋茄根际、林内和光滩低分子量有机酸总含量分别为269.45μM、201.47μM、157.93μM;白骨壤根际、林内和光滩低分子量有机酸总含量分别为310.96μM、214.57μM、139.51μM;桐花树根际、林内和光滩低分子量有机酸总含量分别为251.44μM、161.20μM、103.33μM。在林地内与林外土壤溶液的低分子量有机酸中甲酸、乙酸、乳酸等一元羧酸为主要成分,而三元羧酸如柠檬酸含量并不高。而在根际土壤溶液中,苹果酸,柠檬酸,丁酸含量比林内与林外光滩高。白骨壤林内低分子量有机酸总含量为214.57μM,高于秋茄(201.47μM)和桐花树(161.20μM)林内的含量。林地表层沉积物中低分子量有机酸中一元酸的比例明显高于二元和三元酸。在秋茄林地中,根际的一元羧酸总和约为二元和三元羧酸的2倍。林外光滩与林内沉积物中都表现出相同的趋势。土壤中低分子量有机酸的含量受土壤的物理化学性质影响,如土壤粒径机械组成,水分含量,电荷分布,有机质含量,pH值等均对有机酸的含量造成影响。红树林沉积物的有机质含量比较高(5-8%),林内有机质含量大于林外。林内沉积物略成酸性,pH值在林内介于6.51-6.76之间。沉积物的机械组成以粉粒为主,占了总体粒径组成的70%以上。在红树林林内林外表层沉积物中低分子量有机酸的含量沉积物中含水量,有机质,pH值以及可溶性盐均呈显著相关,其与有机质的相关性最大。
     3.红树植物大量分泌有机酸作为主动适应性反应机制适应磷胁迫,这对红树林在沉积物中获取营养有重要的意义。在缺磷状态下,红树植物秋茄,白骨壤桐花树的根系分泌的低分子量有机酸的总量显著提高。正常供磷时,秋茄根系分泌物中主要检测出的低分子量有机酸为:甲酸,乙酸,丁酸,顺丁烯二酸,乳酸,苹果酸,L-酒石酸,草酸,柠檬酸。在P胁迫7天时,乙酸,丁酸,苹果酸,草酸与柠檬酸的含量都显著高于正常供磷水平。在缺磷状态下,二元羧酸与三元羧酸的分泌量明显增大,其中以柠檬酸的分泌量最大达到35.680μmolg~(-1)DW root。磷胁迫时总分泌的有机酸量为正常的8倍。磷胁迫下白骨壤根系分泌物中的低分子量有机酸主要为甲酸,乙酸,丁酸,苹果酸,L-酒石酸,草酸,柠檬酸。丁酸,苹果酸与柠檬酸的含量都显著(P<0.05)高于正常供磷水平。甲酸,乙酸分泌量与正常供磷水平相比,无显著性差异。而苹果酸为主要根系分泌的低分子量有机酸,含量为正常供磷水平的18.9倍。桐花树根系在正常供磷下分泌的低分子量有机酸主要为:甲酸,丁酸,乳酸,苹果酸,L-酒石酸,草酸,柠檬酸。磷胁迫下,丁酸,草酸,L-酒石酸,柠檬酸的含量显著(P<0.05)高于正常的供磷水平。L-酒石酸在磷胁迫下分泌量为正常的2.3倍。磷胁迫14天时,三种红树秋茄、白骨壤和桐花树分泌的种类和总量都有所减少,总的有机酸分泌大约为缺磷7天时的70%,桐花树中乳酸未能检测到。
     4.采用盆栽实验,探讨了低分子量有机酸对红树植物的毒性,对沉积物溶液中重金属浓度的影响,及其对红树植物修复重金属的作用。研究结果表明低分子量有机酸对红树植物的毒性小,在沉积物中施加有机酸能有效的提高重金属的植物固定。与低分子量有机酸相比,乙二胺四乙酸(ethylenediamine tetraaceticacid,EDTA)对秋茄幼苗毒性大于低分子量有机酸。三种低分子量有机酸草酸,柠檬酸,五倍子酸在施加量浓度小于150 mmol kg~(-1)时对秋茄生长的生物量没有显著的影响(P>0.5)。三种低分子量有机酸草酸,柠檬酸,五倍子酸施加量为150 mmol kg~(-1),EDTA施加量为50 mmol kg~(-1)时,秋茄的生物量分别减少5%,36%,38%和43%。施加草酸,柠檬酸,五倍子酸和EDTA显著提高了植物体内的重金属含量。除草酸外,EDTA,柠檬酸,五倍子酸显著(P<0.05)提高了秋茄茎中Cu,Zn和Cd的含量。EDTA与柠檬酸对茎中的Pb含量影响显著(P<0.05),秋茄根系表现出对重金属的富集性。EDTA与柠檬酸,五倍子酸,草酸相比,其促进了Cd由根向茎的转移。施用低分子量有机酸与EDTA提高了土壤溶液中的重金属浓度。并且随着时间逐渐减少,在施用七天时土壤溶液中Cu的浓度在EDTA,柠檬酸,五倍子酸,草酸中的浓度分别为为62.36,33.48,15.73和16.64mg l~(-1)。
     5.采用根箱法应用于室内红树植物根际研究,分离根际与全土区域,探讨在红树植物根系作用下重金属在根际微域的生态行为。实验结果表明:镉胁迫改变根系分泌的低分子量有机酸含量与种类。10 ppm Cd胁迫下秋茄根系分泌的低分子量有机酸含量达到最大为39.0457μmol g~(-1)DW roots。反丁烯二酸则只有在20 ppm Cd的处理中出现,在根系分泌的低分子量有机酸中,甲酸,乳酸,柠檬酸,苹果酸占主要部分,在对照处理中分别占总的低分子量有机酸的8.11%,18.52%,68.28%和2.31%。随着Cd胁迫浓度的升高,在10 ppm Cd胁迫下根系分泌的低分子量有机酸中甲酸,乳酸,柠檬酸,苹果酸比例分别为8.28%,6.57%,79.26和3.74%,而在Cd处理浓度为50 ppm时其比例分别为8.81%,2.55%,18.31%和59.65%。根系影响下,根际区域更为酸化,根际区域的土壤的pH值比非根际土壤的低0.2-0.5。对照的土壤溶液的pH值比Cd胁迫处理的高,距离根系不同距离的沉积物中其变化范围为6.43-6.54。水溶性有机碳的含量随着Cd处理浓度的增加而增大,其变化范围为17.52到27.72 mM。根系分泌的低分子量有机酸改变了根际Cd的形态。碳酸盐结合态Cd随着Cd施加浓度的升高而降低(对照的13%下降到50 ppm处理中的7%),而交换态Cd在各个处理的中的变化趋势与此相反,对照中占6%上升到50 ppm Cd处理占39%。pH对Cd形态的改变并不显著,而红树植物秋茄根系分泌有机酸对根际重金属有效性产生显著影响(P<0.05),根系分泌物可能通过络合Cd,改变根际区域溶解性有机碳含量等改变了Cd生物有效性。
     6.野外秋茄林地沉积物中重金属含量分布规律为:根际沉积物>非根际沉积物。野外红树林湿地中秋茄幼苗根系分泌的低分子量主要为:甲酸,丁酸,柠檬酸,苹果酸和乳酸,不同沉积物结构对秋茄根系分泌的低分子量有机酸有一定的影响,表现为在泥质滩涂与砂质滩涂中,秋茄幼苗根系分泌的柠檬酸,苹果酸和乳酸含量均存在显著性差异(P<0.05)。沉积物中重金属的赋存形态主要铁锰氧化物结合态重金属为主,非根际沉积物中的铁锰氧化物结合态重金属含量>根际沉积物,根际沉积物的可交换态与碳酸盐结合态重金属含量>非根际沉积物。低分子量有机酸对重金属可溶解态的提取效率表现为:柠檬酸>混合酸>苹果酸>乳酸。秋茄根系分泌低分子量有机酸,特别是柠檬酸对促进了重金属的溶解,秋茄通过根系分泌的低分子量有机酸改变重金属的形态,影响重金属的生物有效性。
Advances in science and technology have enabled humans to exploit natural resources to a great extent,generating unprecedented disturbances in global elemental cycles.Mangrove ecosystems,important intertidal estuarine wetlands along the coastlines of tropical and subtropical regions,are frequently exposed to contamination of heavy metal due to high degree of industrialization and urbanization.Port development,mariculture,and rapid economic development all have resulted in a strong risk of heavy metal contamination in the coastal environment.Consequently,accumulated pollutants are of concern relative to both human and coastal ecosystem exposure and potential impact.Mangrove ecosystems,although possessing great ecological and commercial value,have in many parts of the world traditionally been considered wastelands and widely used as sites where effluents are discharged and solid wastes are dumped,including metallic anthropogenic wastes.Mangrove sediment,being anaerobic,rich organic carbon,reduced and rich in sulphide,favor the retention and accumulation of heavy metals.Sediments can therefore also act as a source of heavy metals, when triggered by changes in abiotic conditions such as pH,redox potential and salinity.Storms and human activities such as clearing and dredging can remobilize metals and facilitate transport from mangroves to coastal waters. Metals may also be transported to estuarine waters when accumulated by mangroves and concentrated in exported leaf debris,which is an important food source for higher organisms in estuarine food chains.Mangrove wetland as a buffer in the estuary therefore acts as a sink and source of heavy metal in the coastline ecosystem.
     Organic acids have been hypothesized to perform many functions in soil including root nutrient acquisition,mineral weathering,microbial chemotaxis and metal detoxification.However,their role in most of these processes remains unproven due to a lack of fundamental understanding about the reactions of organic acids in soil.After release from the root,however,organic acids can suffer from a number of fates such as sorption,biodegradation and metal complexation,making their behavior difficult to predict.
     This dissertation focused on methods for analyzing low molecular weight organic acids(LMWOAs)in root exudates and soil solutions,root responses LMWOAs to phosphorus deficiency and heavy metals stress,and variation in LMWOAs between forest types.Effect of LMWOAs on phytoextraction of heavy metals and metals species changes in rhizosphere were studied.
     Major conclusions were summarized as follows:
     1.An improved reversed-phase liquid chromatographic(RPLC)method for the analysis of LMWOAs in plant root exudates and soil solutions.Agilent 1100 reversed-phase column liquid chromatography was used for the separation and quantification of 10 LMWOAs(formic,acetic,malic,butyric,lactic,fumaric, maleic,citric,L-tartaric oxilic)in mangrove root exudates and soil solution.A mobile phase of 93%25 mM KH_2PO_4 at pH 2.5 and 7%methanol at a flow-rate of 1 ml min~(-1)resolved all 10 acids on a Agilent ZORBAX Extend-C_(18)(250 mm×4.6 mm I.D.,5μ)column.DAD output at 210 nm was used for the quantification of LMWOAs.Different plants have different root exudates both in quantity and quality.In mangrove Kandelia candel,Avicennia marina,and Aegiceras corniculatum root exudates,monocarboxylic acids were dominated in LMWOAs.Oxalic,citric,lactic,malic,acetic,butyric and tartaric acids was found in three mangrove species.In K.Candel,citric acid concentration(9.004μmol g~(-1)root DW)was highest in the root exudates LMWOAs.While In A. marina and A.corniculatum the highest concentration of LMWOAs were tartaric(3.760μmol g~(-1)root DW)and acetic(4.213μmol g~(-1)root DW)acids respectively.
     2.Low-molecular weight organic acids found in soils and soil solutions comprise mainly aliphatic mono-,di- and tricarboxylic acids.In soil solutions isolated from mangrove sediments we observed LMWOAs concentrations showed as following:rhizopshere>sediments with plants>bare beach.In K. Candel the total LMWOAs concentrations in rhizopshere,sediments with plants,bare beach soil solutions were 269.45,201.47 and 157.93μM respectively.In A.marina the total LMWOAs concentrations in rhizopshere, sediments with plants,bare beach soil solutions were 310.96,214.57 and 139.51μM respectively.In A.comiculatum the total LMWOAs concentrations in rhizopshere,sediments with plants,bare beach soil solutions were 251.44, 161.20,103.33μM respectively.In bulk soil solutions monocarboxylic acids concentrations were higher than di-and tricarboxylic acids.In rhizosphere soil solution malic,citric and butyric acids were in dominant.The total LMWOAs concentrations in three stands showed the trends A.marina(214.57μM)>K. Candel(201.47μM)>A.comiculatum(161.20μM).Soil chemical and physical properties such as soil texture,water contents,electric charge distribution, organic contents,pH would influence the LMWOAs concentrations in soil solutions.The high organic maters content(5-8%)in mangrove sediments was significantly related to LMWOAs concentrations.
     3.Phosphorus(P)is critically needed to improve soil fertility in many parts of the world.Mangrove root can excrete organic acids to adapt P stress.Low molecular organic acids exudation from the roots of mangrove seedlings under P stress increased significantly(P<0.05).Low molecular weight di- and tricarboxylic acids were found dominantly in root exudates..After 7 days,in P stress treatments,acetic,butyric,malic,oxalic and citric exudation from the roots of K.Candel showed significantly higher than control treatments.Root exudated citric acid was 35.680 uMg~(-1)DW root,and the total concentration of LMWOAs showed 8 folds than control.Formic,acetic,butyric,tartaric,oxalic and citric were identified in root exudates under P stress treatments.Butyric, malic and citric acids were significantly higher than control,but for acetic and formic acids there were no significant differences compare with control treatments.Malic acid was 18.9 folds than that in control treatment.Butyric, oxalic,tartaric and citric acids concentrations were found significantly(P<0.05) higher than control treatments in A.comiculatum root exudates under P stress conditions.Tartaric acid were found 2.3 folds than that in control treatments. At 14 days,three mangrove species root exudates LMWOAs concentrations were decreased under P stress.And total LMWOAs concentrations were about 70%of those at 7 days under P stress.Lactic was not identified in the root exudates of A.comiculatum.
     4.Pot experiments were conducted to study the low molecular weight organic acids(LMWOAs)and EDTA assistant of the mobility and phytoextraction of heavy metals by mangrove Kandelia candel.The object was to investigate whether LMWOAs(citric,oxalic and gallic acid)existed in mangrove roots exudate would have same enhancing functions as synthetic chelate EDTA on phytoextration.The results showed:citric,oxalic and gallic acid showed less toxic to K.candel seedlings as comparing to EDTA. Compare with control,the biomass production decrease 43%when supplied with EDTA in concentration of 50 mmol kg~(-1).Supply oxalic,citric,galic acids and EDTA can enhance metals concentration in plants.Except for oxalic acid, citric,galic acids and EDTA significantly increased the concentration of metals in shoots of K.Candel.EDTA increased Cd to transport from root to shoot.The roots of K.Candel accumulated more heavy metals.Except for lead,citric and gallic acid significantly(P<0.01)enhanced the Cu,Zn and Cd concentration in shoots of K.candel.LMWOAs and EDTA addition led to elevate soil solution concentrations of Cu,Pb,Zn and Cd in 7 days after chelates were addition. Copper concentration in soil solutions which supply with EDTA,citric,gallic and oxalic acids were reached 62.36,33.48,15.73 to 16.64 mgl~(-1),respectively. EDTA enhanced Cd transported from roots to shoots.However,LMWOAs did not show this aspect.After 2 months grown in contaminated sediments,with or without chemical chelates addition,K.candel roots accumulated more than 6-fold total Cu,Pb,Zn and Cd concentrations than those in sediments. Mangrove may be concern as phytostabilization more than phytoextraction for remediation heavy metal pollutants in tropical and subtropical estuary wetland.
     5.Changes in both LMWOAs and Cd bioavailability,directly or indirectly related to the Cd stress were studied in the laboratory.A rhizobox technique was used for Cd species changes rhizoshpere in increasing Cd concentration stress conditions(0,5,10,20,30,40 and 50 ppm).K.candel seedlings which grown in the rhizoboxes were selected to examine their root exudates.The results showed that both quantity and quality of LMWOAs in root exudates changed after Cd supply.The total concentration of LMWOAs was 39.0457μmol g~(-1)DW roots in treatment with 10 ppm Cd.Monocarboxylic acids(formic, acetic,lactic,butyric and oxalic acids),and di- and tricarbonxylic acids(maleic, fumaric,citric and L-tartaric acids)were found in root exudates.Citric,lactic and acetic acids being dominant took up 76.85%-97.87%of the total LMWOAs in root exudations.Fumaric acid was only found where mangroves were growing on 20ppm Cd.Formic,lactic,citric and malic acids being dominant in root exudates and account for 8.11%,18.52%,68.28%and 2.31%of total LMWOAs in control,respectively.With the Cd stress increasing,the ratio of these acids increased,and in 50 ppm Cd treatments reached at 8.81%,2.55%, 18.31%and 59.65%respectively.Root exudates reduced pH by 0.2-0.5 pH units in the rhizosphere compare to the bulk soil.The range of pH was 6.43 to 6.54 in the sediments.The dissolved carbon ranged from 17.52 to 27.72 mM. The proportion of exchangeable Cd and Cd bound to carbonate had a positive correlation to total LMWOAs in the rhizosphere soil.Root exudates induced changes in soil Cd species under control conditions,consisting of lower exchangeable Cd compared with increasing stress.Results indicate that the measurement of LMWOAs may be included as early biomarkers in a plant bioassay to assess the phytotoxicity of Cd-contaminated soils on mangrove plants.
     6.In fields,muddy sediment accumulated more heavy metal than sandy sediment.Heavy metal concentrations in rhizosediment were higher than those in sediment.Heavy metals concentrations distribution in K.Candel sediments following the order:rhizosediment>bulk sediments.Formic,butyric, malic,citric and lactic acids were found and quantified in the root exudates, with citric and lactic acids being predominant.Total amount of LMWOAs in the sandy site was higher than that for the muddy site.Furthermore,different sediment characteristics were significant influence the amounts of malic,citric and lactic acids(P<0.05).The percentage of exchangeable and bound to carbonates fraction heavy metal extracted by LMWOAs followed the pattern: Citric acid>Mixture acid>Malic acid>Lactic acid>Acetic acid.This indicated root exudates LMWOAs caused positive effects on metal bioavailability
引文
[1]Jones D L.Organic acids in the rhizosphere-a critical review[J].Plant and Soil,1998;205:25-44.
    [2]Fox T R.The influence of low-molecular-weight organic acids on properties and processes in forest soils.In:McFee W W,Kelly J M.Eds.,Carbon Forms and Functions in Forest Soils.Soil Science Society of America,Madison,1995.
    [3]Strobel B W.Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review[J].Geoderma,2001,99:169-198.
    [4]Smith R M,Martell A E,Motekaitis R J.Critically selected stability constants of metal complexes,NIST standard reference database 46 version 5.0[M].National Institute of Standards and Technology,Gaithersburg,1998.
    [5]Griffiths R P,Baham J E,Caldwell B A.Soil solution chemistry of ectomycorrhizal mats in forest soil[J].Soil Biology and Biochemistry,1994,26:331-337.
    [6]Strobel B W.Influence of vegetation on low-molecularweight carboxylic acids in soil solution-A review[J].Geoderma,2001,99:169-198.
    [7]Ohta K,Ogawa H,Mizuno T.Abiological formation of formic acid on rocks in nature [J].Applied Geochemistry,2000 15:91-95.
    [8]莫淑勋.土壤中有机酸的产生、转化及对土壤肥力的某些影响[J].土壤学进展,1986,4:1-10.
    [9]丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤,2005,37(3):243-250.
    [10]Patrick A W van Hees,Jones D L,Georg J,et al.Organic acid concentrations in soil solution:effects of young coniferous trees and ectomycorrhizal fungi[J].Soil Biology and Biochemistry,2005,37:771-776.
    [11]Ahonen-Jonnarth U,van Hees P A W,Lundstrom U S,et al.Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L.seedlings exposed to elevated concentrations of aluminium and heavy metals[J].New Phytologist,2000,146:557-567.
    [12]Dakora F D,Philips D A.Root exudates as mediators of mineral acquisition in low-nutrient environments[J].Plant and Soil,2002,248:35-47.
    [13] Casarin V, Plassard C, Souche G, et. al. Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil [J]. Agronomie, 2003, 23: 461-469.
    [14] Samuels A L, Fernando M, Glass A D M. Immunofluorescent localization of plasma membrane HC-ATPase in barley roots and effects of K nutrition [J]. Plant Physiology, 1992, 99: 1509-1514.
    [15] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527-560.
    [16] Chaney R L. Metal speciation and interaction among elements affect trace element transfer in agricultural and environmental food-chains [M]. Kramer J R, Allen H E. Metal speciation, theory, analysis, and application. Chelsa: Lew is Publishers, 1998, 219-260.
    [17] Jiao X Z, Li L , Cheng Y C, et al. The effect of cationic surfactant cetyltrimethyl ammonium chloride OH K~+ up take by excised wheat roots [J]. Acta Phytophysiologica Sinica, 1980, 6 (3): 315-322.
    [18] Liao M, Huang C Y. Effects of organic acids on the toxicity of cadmium during ryegrass growth [J]. Journal of Applied Ecology, 2002,13(1): 109-112.
    [19] Cobbett C S, Goldsbrough P B. Mechanisms of metal resistance: phytochelatins and metallothioneins [M] Terry N, Banuelos G. Phytoremediation of Contaminated Soil and Water. Boca Raton: Lewis Publishers, 2000, 247-269.
    [20] Rauser W E. Structure and function of metal chelators produced by plants [J]. Cell Biochemistry and Biophysics, 1999, 31:19-48.
    [21] Marschner H. Mineral nutrition of higher plants [M]. London: Academic Press, 1995: 65-69.
    [22] Zhang Y X, Chai T Y. Research advances on the mechanisms of heavy metal tolerance in plants [J]. Acta Botanica Sinica, 1999, 41 (5): 453-457.
    [23] Kramer U, Cotter-Howells J D, Charnock J M, et al. Free histidine as a metal chelator in plants that accumulate nickel [J]. Nature, 1996, 379: 635-638.
    [24] Polle A, Schutzendubel A. Heavy metal signaling in plants: linking cellular and organismic responses [J].Topics in Current Genetics, 2003, 4:187-215.
    [25] Kersten W J, Brooks R R, Reeves R D, et al. Nature of nickel comp lexes in Psychotria douarrei and other nickel-accumulating plants [J]. Phytochemistry, 1980, 19: 1963-1965.
    [26]Pelosi P,Fiorentini R,Galoppini C.On the nature of nickel compounds in Alyssum bertolonii Desv.[J].Agricultural and Biological Chemistry,1976,40:1641.
    [27]Krmer U,Pickering I J,Prince R C,et al.Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiology,2000,122:1343-1353.
    [28]Salt D E,Prince R C,Backer A J M,et al.Zinc ligands in themetal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy[J].Environmental Science Technology,1999,33:713-717.
    [29]Inskeep W P,Comfort S D.Thermodynamic prediction for the effect of root exudates on metal speciation in the rhizosphere[J].Journal of Plant Nutrition,1986,9(327):567-586.
    [30]Heim A,Brunner I,Frey B,et al.Root exudation,organic acids,and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics [J].Journal of Plant Nutrition and Soil Science,2001,164:519-526.
    [31]Jones D L,Kochian LV.Aluminum-organic acid interacttionsin acid soils.I.Effect of root-derived organic-acids on the kinetics of Al dissolution[J].Plant and Soil,1996,182:221-224.
    [32]Hue N V,Craddock G R,Adams F.Effect of organic acids on aluminium toxicity in subsoils[J].Soil Science Society of America Journal,1986,50:28-34.
    [33]Pohlman A A,McColl J G.Soluble organics from forest litter and their role in metal dissolution[J].Soil Science Society of America Journal,1988,52:265-271.
    [34]Drever J I,Stillings L L.The role of organic acids in mineral weathering[J].Colloid Surface A,1997,120:167-181.
    [35]Gerke J.Aluminum and iron Ⅲ.Species in the soil solution including organic complexes with citrate and humic substances[J].Zeitschrift fur Pflanzenernahrung und Bodenkund,1997,160:427-432.
    [36]Evanko C R,Dzombak D A.Influence of structural features on sorption of NOM-analogue organic acids to goethite[J].Environmental Science Technolology,1998,32:2846-2855.
    [37]Fox T R,Comerfold N B,McFee W W.Phosphorus and aluminum release from a spodic horizon mediated by organic acids[J].Soil Science Society of America Journal,1990,54:1763-1767.
    [38]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用[J].应用生态学报,1999,10(3):379-382
    [39]Johnson J F,Allan D L,Vance C P,et al.Root carbon dioxide fixation by phosphorus-deficient Lupinus albus:Contribution to organic-acid exudation by proteoid roots[J].Plant Physioloy,1996,112:19-30
    [40]Jones D L,Darrah P R,Kochian L V.Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J].Plant and Soil,1996,180:57-66
    [41]Tolra R P,Poschenrieder C,Bareelo J.Zinc hyperaccumulation in T.caerulescens ⅡInfluence on organic acids[J].Journal of Plant Nutrition,1996,19:1541-1550.
    [42]Jauregui M A,Reisenauer H M.Dissolution of oxides of managanese and iron exudates components[J].Soil Science Society of America Journal,1982,46:314-317
    [43]Ohwaki Y,Sugahara K.Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea(Cicer arietinum L.)[J].Plant and Soil,1997,189:49-55
    [44]张福锁.土壤与植物营养研究新动态(第1卷)[M].北京:北京农业大学出版社,1992.
    [45]Olofsdotter M,Jensen L B,Courtois B.Improving crop competitive ability using allelopathy-an example from rice[J].Plant Breed,2002,121:1-9
    [46]李寿田,周健民,王火焰,等.植物化感作用机理的研究进展[J].农村生态环境,2001,17(4):52-55.
    [47]Strobel B W,Hansen H C B,Borggaard O K,et aL Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type[J].Biogeochemistry,2001,56:1-26.
    [48]Van Hees P A W,Vinogradoff S I,Edwards A C,et al.Low molecular weight organic acid adsorption in forest soils:effects on soil solution concentrations and biodegradation rates[J].Soil Biology and Biochemistry,2003,35:1015-1026.
    [49]徐仁扣,王亚云.低分子量有机酸对几种可变电荷土壤吸附氟的影响[J].环境科学学报,2003,23(3):405-407.
    [50]Teng Y,Timmer V R.Rhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils[J].Soil Science Society of America Journal,1995,59:227-233.
    [51]陈永亮.不同氮源处理对红松苗木根际pH及养分有效性的影响[J].南京林业大学学报(自然科学版),2004,28(1):42-46.
    [52]Hilter L U.Neuere erfahrungen und probleme duf dem gebiet der bodenbakteriologie und unter besonderer beru cksichtigung der grundungung und brache[J].Uber neue Erfahrungen und Probleme auf dem Gebiet der,1904,98:59-78.
    [53]Hinsinger P.How do plants acquire mineral nutrients? Chemical processes involved in the rhizosphere[J].Advance in Agronme,1998,64:225-265.
    [54]Junk A O.Dynamics of nutrient movement at the soil-root interface[M].Hidden Half.Eds.YWaisel,A Esheland U Kafkafi.Marcel Dekker,In New York.2002,587-616.
    [55]Darrah P R.The rhizosphere and plant nutrition:a quantitative approach[M].In Plant Nutrition:From Genetic Engineering to Field Practice.Ed.N J Barrow.Kluwer,Dordrecht.The Netherlands,1993,3-22.
    [56]Xian X.Effect of pH on chemical forms and plant availability of cadmium,zinc and lead in polluted soils[J].Water Air and Soil Polluttion,1989,45:265-273.
    [57]Chen N C,Chen H M.Chemical behavior of cadmium in wheat rhizosphere[J].Pedosphere,1992,2(4):363-371.
    [58]Tao S,Chen Y J,Xu F L,et al.Changes of copper speciation in maize rhizosphere soil[J].Environmental Pollution,2003,122:447-454.
    [59]Shoko I,Chisato T.Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts[J].Environmental International,2005,31:603-608.
    [60]金彩霞,周启星,孙瑞莲,等.根-土界面镉的生态化学行为与毒理效应研究进展[J].应用生态学报,2005,16(8):1553-1557.
    [61]杨仁斌,曾清如,周细红,等.根系分泌物对铅锌尾矿重金属活性的影响[J].农业环境保护,2000,19(3):152-155.
    [62]Cacador I,Vale C,Catarino F.Accumulation of Zn,Pb,Cu,Cr and Ni in sediments between roots of the Tagus Estuary salt marshes Portugal[J].Estuarine Coastal and Shelf Science,1996,42:393-403
    [63]Jung C,Maeder V,Funk F.Release of phenols from Lupinus albus L.roots exposed to Cu and their possible role in Cu detoxification[J].Plant and Soil,2003,252:301-312.
    [64]Narasimhan K,Basheer C,Bajic V B,et al.Enhancement of Plant-Microbe Interactions Using a Rhizosphere Metabolomics-Driven Approach and Its Application in the Removal of Polychlorinated Biphenyls[J].Plant.Physiology,2003,132:146-153.
    [65]Krishnamurti GSR,Cieslinski G,Huang PM,et al.Kinetics of cadmium release from soils as influenced by organic acids2implication in cadmium availability[J].Journal of Environmental Quality,1997,26:271-277.
    [66]Qian J,Adel Z,Zhu Y,et al.phytoaccumulation of trace elements by wetland plants:Ⅲ Uptake and accumulation of ten trace elements by twelve plants species[J].Journal of Environment Quality.1999,28:1448-1455.
    [67]Guivarch A,Hinsinger.P,Staunton S.Root uptake and distribution of radiocaesium from contaminated soils and the enhancement of Cs adsorption in the rhizosphere[J].Plant and Soil,1999,211:131-138.
    [68]Calba H,Firdaus,Cazevieille P,et al.The dynamics of protons,aluminum,and calcium in the rhizosphere of maize cultivated in tropical acid soils:experimental study and modeling[J].Plant and Soil,2004,260:33-46.
    [69]Chen M C,Wang M K,Chiu CY.Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest[J].Plant and Soil,2001,231:37-44.
    [70]Ma J F.Specific secretion of citric acid induced by Al stress in Cassia tora L[J].Journal of Plant Cell Physiology,1997,38:1019-1025.
    [71]Shen H.Isolation and identification of specific root exudates in elephant grass (Pennis lium L.)in response to aluminum-and iron-bound phosphates[J].Journal of Plant Nutrition,2001,24(7):1131-1144.
    [72]刘芷宇.根际研究法[M].江苏:科学技术出版社,1997.
    [73]Pronin V A.The technique for investigation of root exudates of higher plants[J].Fiziologiya-Rastenii,1973,20(1):210-214
    [74]Tang C S,et al.Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss(Hemarthria altissima)[J].Jouranl of Plant Physioloy,1982,69:155-160.
    [75]刘秀芬,马瑞霞,袁光林,等.根际区他感化学物质的分离鉴定与生物活性的研究[J].生态学报,1996,16(1):1-10.
    [76]田中民,李春俭,王晨,等.缺磷白羽扇豆排根与非排根区根尖分泌物有机酸的比较[J].植物生理学报,2000,26(4):317-322.
    [77]朱国鹏,沈宏.根系分泌物研究方法(综述)[J].亚热带植物科学,2002,31(增刊):15-21.
    [78]Bertin C,Yang X,Weston L A.The role of root exudates and allelochemicals in the rhizosphere[J].Plant and Soil,2003,256:67-83.
    [79]Masaoka Y.Dissolution of ferric phosphate by alfalfa(medicago sativa L.)root exudates[A].N.J.Barrow(Ed.)plant nutrition-from genetic engineering to field practice[C][M].Boston:Kluwer Academic Publishers,1993.79-82.
    [80] Ae N. Phosphorus uptake by pigeon pea and its role in cropping systems of Indian subcontinent [J]. Science, 1990, 248: 477-480
    
    [81] Zhang Z.L., Hong H.S., Zhou J.L., et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China [J]. Chemosphere, 2003,52:1423-1430.
    [82] Baqar R Z, Syed H. I. Factors affecting microbial degradation of polycyvlic aromatic hydrocarbon phenanthrene in the Caribbean coastal water [J]. Marrine Pollution Bulletin, 1999, 38(8): 737-742.
    [83] Mai B, Qi S, Eddy Y. et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compostitonal analysis [J]. Environmental Science and Technology, 2003, 37: 4855-4863.
    [84] Fu J, Mai B, Sheng G, et al. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview [J]. Chemosphere, 2003, 52:1411-1422.
    [85] Wolanski E. Hydrodynamics of mangrove swamps and their coastal waters [J]. Hydrobiologia, 1992, 247:141-161.
    [86] Debenay J P, Guiral D, Parra M. Ecological Factors Acting on the Microfauna in Mangrove Swamps. The Case of Foraminiferal ssemblages in French Guiana [J]. Estuarine, Coastal and Shelf Science, 2002, 55: 509-533.
    [87] Li K, Teresa W Y, Wong Y S, et al. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill [J]. Marrine Pollution Bulletin, 2002, 45: 339-347.
    [88] Silva M R, Lamotte M, Donard O F X, et al. Metal contamination in surface sediments of mangroves, lagoons and Southern Bay in Florianopolis Island [J]. Environmental Technology, 1996, 17:1035-1046.
    [89] Mackey A P, Hodgkinson M C. Concentrations and spatial distribution of trace metals in mangrove sediments from the Brisbane River, Australia [J]. Environmental Pollution, 1995,90:181-186.
    [90] 张乔民、隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报,2001,16:28-36.
    [91] Chen G Z, Miao S Y, Tarn N F Y, et al. Effect of synthetic wastewater on young Kandelia candel plants growing under greenhouse conditions [J]. Hydrobiologia, 1995, 295: 263-274.
    [92] Ashworth J M, Corlett R T, Dudgeon D, et al. Hong Kong Flora and Fauna: Computing Conservation [M]. Hong Kong: World Wide Fund for Nature Hong Kong, 1993.
    [93]林鹏.中国红树林生态系[M].北京:科学出版社,1997,47-52.
    [94]Tam N F Y,Wong,Y S.Retention and distribution of heavy metals in mangrove soils receiving wastewater[J].Environmental Pollution,1996,94:283-291.
    [95]Marchand C,Lallier-Verges E,Baltzer F,et al.Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J].Marine Chemestry,2006,98:1-17.
    [96]Liu J,Yan C,Macnair M R.Distribution and Speciation of Some Metals in Mangrove Sediments from Jiulong River Estuary,People's Republic of China[J].Bulletin of Environmental Contamination and Toxicology,2006,76:815-822.
    [97]Clark M W,McConchie D,Saenger P.Hydrological controls on copper,cadmium,lead and zinc concentrations in an anthropogenically polluted mangrove ecosystem Wynnum,Brisbane[J].Journal of Coastal Research,1997,13:1050-1058.
    [98]Jones D L,Darrah P R,Kochian L V.Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J].Plant and Soil,1996,180:57-66.
    [99]Schmidt U.Enhancing phytoextraction:the effect ofchemical soil manipulation on mobility,plant accumulation,and leaching of heavy metals[J].Journal of Environmental Quality,2003,32,1939-1954.
    [100]Lin Q,Chen Y X,Chen H M,et al.Study on chemical behavior of root exudates with heavy metals[J].Plant Nutrition and Fertilizer Science,2003,9(4):425-431.
    [101]Jones D L,Dennis P G,Owen A G,et al.Organic acid behavior in soils-misconceptions and knowledge gaps[J].Plant and Soil,2003,248:31-41.
    [102]Sandnesa A,Eldhusetb T D,Wollebak G.Organic acids in root exudates and soil solutionof Norway spruce and silver birch[J].Soil Biology and Biochemistry,2005,37,259-269.
    [103]Wang Z W,Shan X Q,Zhang S Z.Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils[J].Chemosphere,2002,46:1163-1171.
    [104]陈长平.闽粤沿海几个红树林区硅藻的生态分布和6种重金属对底栖硅藻胞外产物的影响[D].厦门大学博士论文,2004.
    [105]林鹏.福建漳江口红树林湿地自然保护区综合科学考察报告[M].厦门:厦门大学出版社.2001.
    [106]Riley D,Barber S A.Bicarbonate accumulation and pH changes at the soybean root-soil interface[J].Soil Science Society America Proceeding,1969,33:905-908.
    [107]陈小勇,曾宝强,陈利华.香港汀角红树植物沉积物及双壳类动物重金属含量[J].中国环境科学,2003,23(5):480-484.
    [108]Wang Z,Shan X,Zhang S.Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils[J].Chemosphere,2002,46:1163-1171.
    [109]Hees P A W van,Andersson A M T,Lundstrom U-S.Separation of organic low molecular weight aluminium complexes in soil solution by liquid chromatography[J].Chemosphere,1996,33:1951-1966.
    [110]Fan T W M,Lane A N,Pedler J.Comprehensive analysis of organic ligands in whole root exudates using Nuclear Magnetic Resonance and Gas Chromatography Mass Spectroscopy[J].Analytical Biochemistry,1997,251:57-68.
    [111]Hees,P A W van,Dahlen J,Lundstrom,U S,et al.Determination of low molecular weight organic acids in soil solution by HPLC[J].Talanta,1999,48,173-179.
    [112]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [113]Badarudeen A,Damodaran K T,Sajan,K.Texture and geochemistry of the sediments of a tropical mangrove ecosystem,southwest coast of India[J].Environmental Geology,1996,27:164-169.
    [114]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51:844-851.
    [115]Rauret G,Lopez-Sanchez J F,Sahuquillo A.Improvement of the BCR three step sequential extraction procedure prior to the certification of the new sediment and soil reference materials[J].Journal of Environmental Monitoring,1999,1:57-61.
    [116]Certini G,Corti G,Ugolini F C.Vertical trends of oxalate concentrations in two soils under Abies alba from Tuscany Italy[J].Journal of Plant Nutrition and Soil Science,2000,163:173-177.
    [117]Zang F,Romheld V,Marschner H.Release of zincmobilizing root exudates in different plant species as affected by zinc nutritional status[J].Journal of Plant Nutrition,1991,14(7):675-686.
    [118]Cieslinski G,Rees K C J van,Szmigielska A M,et al.Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation[J].Plant and Soil,1998,203:109-117.
    [119]Giesler R,Lundstrom U,Grip H.Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation[J].European Journal of Soil Science,1996,47:395-405.
    [120]Hees P A W van,Lundstrom U S,Giesler R.Low molecular weight organic acids and their complexes in soil solution-composition,distribution and seasonal variation in three podzolized soils[J].Geoderma,2000,94:173-200.
    [121]Tao S,Lin B.Water soluble organic carbon and its measurement in soil and sediment[J].Water Research,2000,34:1751-1755.
    [122]Fox T R,Comerford N B.Low-molecular-weight organic acids in selected forest soils of the southeastern USA[J].Soil Science Society of America Journal,1990,54:1139-1144.
    [123]Krzyszowska A J,Blaylock M J,Vance G F,et al.Ion-chromatographic analysis of low molecular weight organic acids in Spodosol forest floor solutions[J].Soil Science Society of America Journal,1996,60:1565-1571.
    [124]Nardi S,Pizzeghello D,Bragazza L,et al.Low-Molecular-Weight Organic Acids and Hormone-Like Activity of Dissolved Organic Matter in Two Forest Soils in N Italy [J].Journal of Chemical Ecology,2003,29(7):1549-1564
    [125]Westergaard B,Hansen H C B,Borggaard O K.Determination of anions in soil solutions by capillary zone electrophoresis[J].Analyst,1998,123:721-724.
    [126]Hees P A W van,Lundstrom U S,Giesler R.Low molecular weight organic acids and their complexes in soil solution-composition,distribution and seasonal variation in three podzolized soils[J].Geoderma,2000,94:173-200.
    [127]McMahon P B,Chapelle F H.Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry[J].Nature,1991,349:233-235.
    [128]范航清,梁士楚.中国红树林研究与管理[M].北京:科学出版社,1995,13-20.
    [129]林鹏.中国红树林生态系[M].北京:科学出版社,1995,1-6.
    [130]陆超华.近江牡蛎作为重金属污染生物指示种的初步研究[J].台湾海峡,1994,13(1):14-20.
    [131]王文卿,林鹏.红树林生态系统重金属污染的研究[J].海洋科学,1999,3:45-48.
    [132]林鹏.海洋高等植物生态学[M].科学出版社,2006.
    [133]McLaughlin M.,Jand James T.R.,Effect of phosphorus supply to the surface roots of wheat on root extension and rhizosphere chemistry in an acidic subsoil[J].Plant and Soil,1991,134:73-82
    [134]夏汉平,高子勤.磷酸盐在土壤中的吸附[J].土壤通报,1992,23(6):283-287
    [135]Alongi M,Boto K G,Robertson A I.Nitrogen and Phosporus Cycles[M].Alongi Al R D M,editor.Tropical Mangrove Ecosystems.American Geophysical Union Washington D.C.1992,251-292
    [136]章永松,林咸永,罗安程,等.有机肥(物)分解产生的有机酸及其对不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):151-155
    [137]McKee K L.Interspecific variation in growth,biomass partitioning,and defensive characteristics of neotropical mangrove seedlings:response to light and nutrient availability[J].American Journal of Botony,1995,82:299-307.
    [138]Grierson P F.Organic acids in the rhizosphere of Banksia integrfolia L[J].Plant and Soil,1992,144:259-265.
    [139]Gerke J.,Beissner L.,Romer W.,The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root.Ⅰ.The basic concept and determination of soil parameters[J].Plant Nutrition and Soil Science,2000,163:207-212.
    [140]Ohwaki Y,Hirata H.Differences in carboxylic acid exudation among P-Starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipids level in roots[J].Plant Nutrition and Soil Science,1992,38(2):235-243.
    [141]陈凯,马敬,张福锁,等.磷亏缺下不同植物根系有机酸的分泌[J].中国农业大学学报,1999,4(3):58-62.
    [142]Vazquez P,Holguin G,Puente M E,et al.Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J].Bioloy Fertility of Soils,2000,30:460-468.
    [143]Carlton R G,Wetzel R G.Phosphorus flux from lake sediments effect of epipelic algal oxygen production[J].Limnoloy and Oceanography,1988,33:562-570.
    [144]Illmer P,Solubilization of hardly-soluble AIPO_4 with P solubilizing microorganism [J].Soil Biology and Biochemistry,1995,27:265-270.
    [145]Kucey R M N,Janzen H H,Leggett M E.Microbially mediated increases in plant-available phosphorus[J].Advances in agronomy,1989,42:199-228.
    [146]苏德纯,张福锁,李国学.磷-金属-有机酸三元复合体在植物磷营养中的作用[J].土壤通报,2000,31(4):159-161.
    [147]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ 有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150.
    [148]Lasat M M.Phytoextraction of toxic metals,a review of biological mechanisms[J].Journal of Environmental Quality,2002,31:109-120.
    [149]Garbisu C,Alkorta I.Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J].Bioresource Technology,2001,77:229-36.
    [150]骆永明.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2000,(2):57-59.
    [151]吴龙华,骆永明,卢蓉晖,等.铜污染土壤修复的有机调控研究Ⅱ.根际土壤铜的有机活化效应[J].土壤,2000,(2):67-70.
    [152]Wasay S A,Barrington S F,Tokunaga S.Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents[J].Environmental Technology,1998,19:369-379.
    [153]Wu L H,Luo Y M,Christie P,et al.Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy meal polluted soil[J].Chemosphere,2003,50:819-822.
    [154]Schmidt U,Enhancing phytoextraction:the effect of chemical soil manipulation on mobility,plant accumulation,and leaching of heavy metals[J].Journal of Environmental Quality,2003,32:1939-1954.
    [155]Chen H,Cutright T.EDTA and HEDTA effects on Cd,Cr,and Ni uptake by Helianthus annuus[J].Chemosphere,2001,45:21-28.
    [156]Chen Y X,Lin Q,Luo Y M,et al.The role of citric acid on the phytoremediation of heavy metal contaminated soil[J].Chemosphere,2003,50:807-811.
    [157]Vassil A D,Kapulnik Y,Raskin I,et al.The role of EDTA in lead transport and accumulation by Indian mustard[J].Plant Physiology,1998,117:447-453.
    [158]Kaszuba M,Hunt G R A.Protection against membrane damage:a H-NMR investigation of the effect of Zn~(2+)and Ca~(2+)on the permeability of phospholipid vesicles[J].Journal of Inorganic Biochemisty,1990,40:217-225.
    [159]Inaba S,Takenaka C.Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts[J].Environmental International,2005,31:603-608.
    [160]Gao Y,He J,Ling W,et al.Effects of organic acids on copper and cadmium desorption from contaminated soils[J].Environmental International,2003,29:613.
    [161] Sahi S V, Bryant N L, Sharma N C, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii [J]. Environmental Science Technology, 2002, 36: 4676-80.
    [162] Salt D E, Blaylock, M, Kumar P B A N, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants [J]. Biotechnology, 1995, 13:468-474.
    [163] Santos F S, Hernandez-Allica J, Becerril J M, et al. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens [J]. Chemosphere, 2006, 65: 43-50.
    [164] Lai H Y, Chen Z S. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis) [J]. Chemosphere, 2005,60:1062-1071.
    [165] Cooper E M, Sims J T, Cunningham S D, et al. Chelate-assisted phytoextraction of lead from contaminated soils [J]. Jouranl of Environmental Quallity, 1999, 28: 1709-1719.
    [166] Huang J W, Chen J J, Berti W R, et al. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction [J]. Environmental Science Technology, 1997, 31: 800-805.
    [167] Epstein A L, Gussman C D, Blaylock MJ, et al. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil [J]. Plant Physiology, 1999,208:87-94
    [168] Lombi E, Zhao F J, Dunham S J, et al. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction [J]. Jouranl of Environmental Quality, 2001, 30: 1919-1926.
    [169] Madrid F, Liphadzi M S, Kirkham M B. Heavy metal displacement in chelate-irrigated soil during phytoremediation [J]. Journal of Hydrology, 2003, 271: 107-119.
    [170] Hinck M L, Fergunson J, Puhaakaa J. Resistance of EDTA and DTPA to aerobic biodegradation [J]. Water Science Technology, 1997, 35: 25-31.
    [171] Satroutdinov A D, Dedyukhina E G, Chistyakova T I, et al. Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103 [J]. Environmental Science Technology, 2000, 34:1715-1720
    [172] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57: 233-66.
    [173] William T F, Johanson J B. Effect of pH on enzyme stability in soils [J]. Soil Biol ogy and Biochemisty, 1982,14: 433-437.
    [174] Ma J F, Zheng S J, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L [J]. Plant Cell Physiology, 1997, 38:1019-1025.
    [175] Grayston S J, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: the importace of root exudation and its impact on microbial activity and nutrient availability [J]. Applied Soil Ecology, 1996, 5: 29-56.
    [176] Chen M C, Wang M K, Chiu C Y. Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest [J]. Plant and Soil, 2001, 231: 37-44.
    [177] Sandnes A, Eldhuset T D, Wolleb(?)k G. Organic acids in root exudates and soil solution of Norway spruce and silver birch [J]. Soil Biology and Biochemistry, 2005, 37: 259-269.
    [178] Shen Y, Strom L, Jonsson J A, et al. Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagussylvatica L) Cambisols determined by ion chromatography using supported liquid membrane enrichment technique [J]. Soil Biology and Biochemistry, 1996, 28:1163-1169.
    [179] Polle A, Schutzendubel A. Heavy metal signaling in plants: linking cellular and organismic responses [J]. Topics in Current Genetics, 2003, 4:187-215.
    [180] Sauve S, Hendershot W, Allen H E. Solid solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter [J]. Environmental Science Technology, 2000, 34:1125-31.
    [181] Veronique S, Christian G, Francois C. Changes in water extractable metals, pH and organic carbonconcentrations at the soil-root interface of forested soils [J]. Plant and Soil, 2004, 260:1-17.
    [182] McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils [J]. Plant and Soil, 1997,188:153-159.
    [183] Shoko I, Chisato T. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts [J]. Environmental International, 2005, 31: 603-608.
    [184] Quails R G, Haines B L. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem [J]. Soil Science Society of American Jouranl, 1991,55:1112-1123.
    [185] Wang Z W, San X Q, Zhang S Z., Comparison of speciation and bioavailability of rare earth elements between wet rhizosphere soil and air-dried bulk soil [J]. Analytica Chimica Acta, 2001, 441:147-156.
    [186] Christine G, Sylvaine T, Michel A. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures [J]. Trends in analytical chemistry, 2002, 21: 451-467.
    [187] Welt M, Howard M, Gonzales W, et al. Metal Contamination of sediments and Soils of Bayou Saint John: A Potential Health Impact to Local Fishermen [J]. Environmental Geochemistry Health, 2003, 25: 387-396.
    [188] Marschner H, Romheld V. Root-induced changes in the availability of micronutrients in the rhizosphere [M]. In: Waisel, Y., Eshel, A., Kafkafi, U. (Eds.), Plant Roots, The Hidden Half, seconded. Marcel Dekker, N Y, 1996. 503-528.
    [189] Yossefu R A, Abd E F A, Hilal M H. Studies on the movement on Ni in wheat rhizosphere using rhizobox technique [J]. Egyptian Journal of Soil Science, 1997, 37: 175-187.
    [190] Harris R, Santos M C F. Heavy metal contamination and physiological variability in the Brazilian mangrove crabs, Ucides cordatus and Callinectes danoe (Crustacea: Decapoda) [J] .Marine Biology, 2000, 137: 691-703.
    [191] Tarn N F Y, Wong Y S. Retention and distribution of heavy metals in mangrove soils receiving wastewater [J]. Environmental Pollution, 1996, 94: 283-291.
    [192] Mackey A P, Hodgkinson M C. Concentrations and spatial distribution of trace metals in mangrove sediments from Brisbane River, Australia [J]. Environmental pollution, 1995, 90(2): 181-186.
    [193] Fernandes J C, Henriques F S. Biochemical physiological and structural effects of excess copper in plants [J]. Botany Review, 1991, 57: 246-266.
    [194] Licheng Z, Guijiu Z. The species and geochemical characteristics of heavy metals in the sediments of Kangjiaxi River in the Shuikaushan Mine Area, China [J] .Appllied Geochemistry, 1996,11: 217-222.
    [195] Matthijs S, Tack J van, Speybroeck D, et al. Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study [J]. Mangroves and Salt Marshes, 1999, 3: 243-249.
    [196] Lindsey H D, James M M, Hector M G. An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama [J]. Marine Pollution Bulletin, 2005, 50: 547-552.
    [197] Thomas J L, Arjan P, Huub J M. Opden Camp, Methane Emission, Sulphide Concentration and Redox Potential Profiles in Mtoni Mangrove Sediment, Tanzania, Western Indian Ocean [J] Journal of Marine Science, 2002, 1: 71-80.
    [198] Susilo A, Peter V R. The bulk hydraulic conductivity of mangrove soil perforated with animal burrows [J]. Wetlands Ecology and Management, 2005,13:123-133.
    [199] Tolhurst T J, Chapman M G. Spatial and temporal variation in the sediment properties of an intertidal mangrove forest: implications for sampling [J]. Journal of Experimental Marine Biology and Ecology, 2005, 317: 213-222.
    [200] MacFarlanea G R, Pulkownikb A, Burchettb M D. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh., biological indication potential [J]. Environmental Pollution, 2003,123:139-151.
    [201] Hurtgen M T, Lyons T W, Ingall E D, et al. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H_2S in iron sulfide transformations: examples from Effingham Inlet, Orca Basin and the Black Sea [J]. American Jouranl of Science, 1999, 299: 556-588.
    [202] Mackey A P, Hodgkinson M, Nardella R. Nutrient levels and heavy metals in mangrove sediments from the Brisbane River, Australia [J]. Marine Pollution Bulletin, 1992,24:418-420.
    [203] Schmidt U, Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals [J]. Journal of Environmental Quality, 2003, 32:1939-1954.
    [204] Marchand C, Lallier-Verges E, Baltzer F, et al. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana [J]. Marine Chemistry, 2006, 98:1-17.
    [205] Brodie M Y, Edward H L. A Spatial Analysis of the Relationship Between Mangrove (Avicennia marina var. australasica) Physiognomy and Sediment Accretion in the Hauraki Plains, New Zealand [J]. Estuarine Coast and Shelf Science, 1996,42: 231-246.
    [206] Lacerda L D, Abrao J J. Heavy metal accumulation by mangrove and salt marsh intertidal sediments [J]. Review of Brasilian Botany, 1984, 7: 49-52.
    [207] Preda M, Cox M E. Trace metal occurrence and distribution in sediments and mangroves, Pumicestone region, southeast Queensland, Australia [J]. Environmental International, 2002, 28: 433-449.
    [208] Chapman P M, Wang F. Assessing sediment contamination in estuaries [J]. EnvironmentalToxicology and Chemistry, 2001, 20: 3-22.
    [209] Jones D L. Organic acids in the rhizosphere a critical review [J]. Plant and Soil. 1998,205:25-44.
    [210] Virginie G R, Sylvain P, Armand G. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions [J]. Plant and Soil, 1998, 201: 231-239.
    [211] Fox T R, Comerford N B. Low-molecular-weight organic acids inselected forest soils of the southeastern USA[J]. Soil Science Society of American Journal, 1990, 54: 1139-1144.
    [212] Sandnesa A, Eldhusetb T D, Wollebak G. Organic acids in root exudates and soil solutionof Norway spruce and silver birch [J]. Soil Biology and Biochemistry, 2005, 37, 259-269.
    [213] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots [J]. Annual Review of Plant Physiology, 2001, 52: 527-560.
    [214] Elliott H A, Herzig L M. Oxalate extraction of Pb and Zn from polluted soils: solubility limitations [J]. Journal of Soil Contamination, 1999, 8,105-116.
    [215] Jens B, Anneliese W, Karin P. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties [J]. Aquatic Toxicology, 2005, 71(3): 249-259.
    [216] Clark M W, McConchie D, Saenger P. Hydrological controls on copper, cadmium, lead and zinc concentrations in an anthropogenically polluted mangrove ecosystem Wynnum, Brisbane [J]. Journal of Coastal Research, 1997,13:1050-1058.
    [217] McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils [J]. Plant and Soil, 1997, 188: 153-159.
    [218] Chen J S, Wang F Y, Li X D. Geographical variations of trace elements in sediments of the major rivers in eastern China [J]. Environmental Geology, 2000, 39 (12): 1334-1340.
    [219] Gambrell R P, Trace and toxic metals in wetlands-A review [J]. Journal of Environ mental Quality, 1994, 23: 883-891.
    [220] Fan T W M, Lane A N, Pedler J. Comprehensive analysis of organic ligands in whole root exudates using Nuclear Magnetic Resonance and Gas Chromatography Mass Spectroscopy [J]. Analitical Biochemistry, 1997, 251: 57-68.
    [221] Wang Z W, Shan X Q, Zhang S Z. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils [J]. Chemosphere, 2002, 46,1163-1171.
    [222] Hinsinger P, Jaillard B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass [J]. European Journal of Soil Science, 1993, 44 (3), 525-534.
    [223] Gong Z T, Zhang X P. Mangrove and Acid sulphate soils in China [J]. Acta Pedologica Sinica, 1994, 31(1): 86-94.
    [224] Wasay S A, Barrington S, Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals: Soil flushing in columns [J]. Water Air and Soil Pollution, 2001,127:301-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700