双尺寸颗粒SiC/Al复合材料的无压渗透制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高增强体含量SiC/Al复合材料具有高的力学性能和好的热学性能,作为一种新材料具有很大的发展潜力,而探求低成本的制造工艺是该材料当前研究的热点。与诸多制造工艺相比,SiC预成形坯无压渗透工艺具有近净成形能力强、设备投入少等优点,因而成为一种极具经济竞争力的制备技术。本文首先研究了SiC粉体氧化条件下的液态铝合金无压渗透现象及其机理。而为了获得高增强体含量的SiC/Al复合材料,作者采用双尺寸颗粒的SiC粉体进行配比后低温自氧化烧结,并首次采用Fe(NO_3)_3·9H_2O作为造孔剂制备SiC预成形坯,在氮气气氛中将自制液态铝合金无压渗入SiC预成形坯内,成功制备出不同增强体粒度及含量的SiC/Al复合材料。应用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)等测试手段对复合材料进行成分、结构与形貌分析,并研究SiC粒度配比和造孔剂的添加量对复合材料力学和热学性能的影响。
     在1000℃低温烧结时,SiC自身发生氧化反应,Fe(NO_3)_3因受热分解而去除;SiC粉体由其自身缓慢氧化产生的SiO_2膜、水玻璃的硬化作用形成硅酸凝胶以及Fe(NO_3)_3·9H_2O的分解形成的Fe_2O_3的共同作用而聚合在一起,形成SiC陶瓷骨架。SiC粉体间的本征孔隙和Fe(NO_3)_3去除后留下的孔隙一起构成一个三维相互连通的、开放的孔隙网络;Fe(NO_3)_3去除在SiC预成型坯中留下的孔隙分布均匀,没有偏聚现象。SiC预成型坯在烧结过程中产生2~2.5%左右的线膨胀,膨胀量随Fe(NO_3)_3含量的增加而增大,通过调整Fe(NO_3)_3含量,能获得不同孔隙率的SiC预成形坯,对于85μm+28μm和46μm+14μm粒度的SiC配比的双尺寸SiC预成型坯,均能获得35~46%的孔隙率;预成型坯的抗压强度随着造孔剂含量的增加而增大,当硝酸铁含量在10%时,其抗压强度高达180MPa。
     在助渗剂镁的作用下,液态铝合金与SiC表面的SiO_2膜生成MgO和MgAl_2O_4,且液态铝合金中的基体Al与Fe(NO_3)_3热分解后形成的Fe_2O_3发生铝热反应,放出反应热,使熔渗前沿温度升高,有效改善了SiC与Al液之间的润湿性,诱发Al液自发向SiC粉体间隙中渗透。在900℃的氮气气氛中,液态铝合金能无压渗入SiC预成形坯内颗粒间的孔隙,获得接近全致密的SiC/Al复合材料。液态铝无压渗入后,SiC预成形坯无任何形状和尺寸的变化,易于实现近净成形。
     SiC/Al复合材料的断裂方式以脆性断裂为主。其裂纹走向主要沿着SiC-Al分界面、SiC与SiC间较脆弱的烧结颈扩展。延性的金属在裂纹扩展过程中产生少量的塑性变形后被撕裂。铝基体中引入高体积分数的SiC增强体后强度显著提高,抗弯强度均在300MPa以上,最高达381MPa。其抗弯强度并不随着造孔剂Fe(NO_3)_3添加量的增加单调增加,而表现出先增后减的趋势。且粗颗粒配比预成型坯渗透得到的复合材料强度略高于细颗粒配比。但总体上,对高增强体含量SiC/Al复合材料,其强度随增强体含量改变而波动的幅度不大。
     当SiC预成型坯中的孔隙率从35%增加到46%时,85μm+28μm双尺寸SiC颗粒增强Al-Mg-Si复合材料的导热系数从116W·m~(-1)·K~(-1)增至131W·m~(-1)·K~(-1),而46μm+14μm双尺寸SiC颗粒增强Al-Mg-Si复合材料的导热系数从114W·m~(-1)·K~(-1)增至132 W·m~(-1)·K~(-1)。总体来说在相同体积含量下粗颗粒SiC增强铝基复合材料的导热率比细颗粒略高。
SiC/Al composites reinforced with high volume fraction of SiC powders have excellent mechanical and thermal properties. Nowadays, seeking for low cost manufacture processes for SiC/Al composites have attracted considerable attention from material researchers. In comparison with other preparation methods, pressureless infiltration process is the most economical one because it is a near-net-shape process with relatively less requirement for equipments. In this paper, a concise pressureless infiltration process for the making of SiC/Al composites was investigated. And in order to obtain SiC/Al composites reinforced with high volume fraction, double size distribution SiC powers with different size ratios were used to prepare the SiC preforms by self-oxidation bonding at low temperature, and Ferric Nitrate crystal was used for the first time in prepare the SiC preforms as pore-forming agents. Liquid aluminum alloy spontaneous infiltration into the SiC preforms which were putted in the crucible furnace filled with nitrogen gas. SiC/Al composites with different SiC particle sizes and different SiC volume fractions were successfully achieved by pressureless infiltrating process. The composition, micro-structure and micro-morphology of SiC/Al composites were analyzed by optical microscope (OM), scan electron microscope (SEM), energy dispersion spectrometer (EDS) and X-Ray diffraction (XRD). The effects of SiC particle size and SiC volume content on the mechanical and thermal properties of the composites were also examined.
     SiC powders were heated and oxidized synchronously,and Ferric Nitrate crystals were decompounded at 1000℃. A layer of SiO_2 was formed on the surface of SiC, the hardened of Sodium Silicate between SiC powders, and Fe_2O_3 was formed by the thermal decomposition of Ferric Nitrate, which bonded SiC powders together to form a ceramic skeleton, the sites occupied by Ferric Nitrate turned into pores and Fe_2O_3 when Ferric Nitrate decompounded in high temperature. Three dimensional co-continuous net-works of pores distributed uniform in the preform which was formed through the combination of original intervals among SiC powders and pores formed by Ferric Nitrate decompounded. The oxidation of SiC powders and the decomposition of Ferric Nitrate led to a 2~2.5% linear expansion to form a SiC perform, and this expansion increased slowly with the increase of Ferric Nitrate content. SiC preforms with different volume of porosity were obtained by modulating Ferric Nitrate content. SiC preforms with 35~46% porosity were obtained using 85μm +28μm SiC powders and 46μm +14μm SiC powders. The compressive strength of SiC preform increased with the increase of Ferric Nitrate content, and the compressive strength reached 180 MPa when the content of Ferric Nitrate was 10% in weight.
     With the aid of magnesium, Liquid aluminum alloy reacted with SiO_2 film on the surface of SiC powders to form MgO and MgAl_2O_4, which gave out heat and raised the temperature on the infiltration front to promote the wettability for SiC-Al system, and the pressureless infiltration of liquid aluminum into the intervals among SiC powders. Compact SiC/Al composites were fabricated by pressureless infiltration of liquid aluminum alloy into porous SiC preforms at 900℃in nitrogen gas. Preforms had no change in shape and dimension after infiltration, thus near-net-shape composites were easily achieved.
     Brittle rupture was mostly observed in SiC/Al composites. Cracks spreaded along the interface between SiC and Al matrix, traversed across the sintering necks among SiC particles. When Cracks spreaded through the sample, tough metal matrix was teared away with some observations of plastic deformation. The strength of Aluminum alloy was improved remarkably as high volume SiC particles added in. The flexure strength of the composites were all over 300MPa, the highest one reached 381MPa. The flexure strength did not increased monotonously with the increasing Ferric Nitrate content but first increased and then reduced slowly, and the flexure strength of SiC/Al composites based on coarse powders was slightly higher than that based on fine powders. In fact, the flexure strength of SiC/Al composites has little change with different Ferric Nitrate content.
     As the porosity of SiC preform changed from 35% to 46%, the thermal conductivity (TC) of SiC(85μm+28μm)/Al-Mg-Si composites varied from 116 to 131 W·m~(-1)·K~(-1), and the TC of SiC(46μm+14μm)/Al-Mg-Si composites varied from 114 to 132 W·m~(-1)·K~(-1). In the case of same filler volume content, the TC of SiC/Al composites based on coarse powders was slightly higher than that based on fine powders.
引文
[1]刘君武.高增强体含量的SiC/Al复合材料无压渗透法制备及性能研究.博士学位论文,合肥:合肥工业大学, 2007.
    [2]李俊,钱翰城.铸造金属基颗粒复合材料[J].机械, 1996, 23(3): 44~46.
    [3]宋伟.金属基复合材料的发展与应用[J].铸造设备研究, 2004, 5: 48~50.
    [4]杜寿全.美国复合材料工业展望[J].纤维复合材料, 2000, 17(2): 48~49.
    [5]吴树森.日本金属基复合材料的研究与应用[J].兵器材料科学与工程, 1999, 22(2): 15~18.
    [6]吴人洁.金属基复合材料的发展现状与应用前景[J].航空制造技术,第十三届国际复合材料学术会议专辑: 19~21.
    [7]吴人洁.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报, 2000, 17(1): 1~4.
    [8]黄强,顾明元.电子封装材料的研究现状[J].材料导报, 2000, 14(9): 28~32.
    [9] W. R. Hoover. Fabrication of Particulates Reinforced Metal Composites. Proceedings of an International Conference, 1990: 115.
    [10]严有为,魏伯康,林汉同.反应铸造工艺及原位( in-situ)颗粒增强金属基复合材料[J].铸造, 1997, 11: 1~3.
    [11]胡永平,唐启玲,潘复生等.金属基复合材料的应用现状[J].铝加工, 1998, 21(6): 49~53.
    [12]欧阳柳章,罗承萍,隋贤栋,等. SiCP/Al复合材料的制造及新动向[J].铸造, 2000, 49(1): 17~20.
    [13]崔朝英. SiCP/Al复合材料的制备方法及研究动向[J].沈阳电力高等专科学校学报, 2002, 4(3): 53~55.
    [14] Y. Cui, L. Geng, A. K. Yao. A new advance in the development of high performance SiCP/Al composite [J]. J. Marer. Sci, 1997, 13: 227.
    [15]崔岩,耿林,姚忠凯. SiCp/6061Al复合材料的界面优化与控制[J].中国有色金属学报, 1997, 7(4): 159~162.
    [16]喻学斌,张国定,吴人洁.真空压渗铸造铝基电子封装复合材料研究[J].铸造,1994, 11: 912.
    [17] Q. Zhang, G. H. Wu,G. Q. Chen, et al. The thermal expansion and mechanical properties of high reinforcement content SiCp/Al composites fabricated by squeeze casting technology [J]. Composites: Part A, 2003, 34:1023~1027.
    [18]于家康,周尧和.混杂2D-C/Al电子封装复合材料的设计与制备[J].中国有色金属学报, 2000, 10(S1): 1~5.
    [19]熊德赣,刘希从,赵询,等.铝碳化硅复合材料T/R组件封装外壳的研制[J].电子元件与材料, 2003, 22(2): 17~19.
    [20] X. F. Gu, L. M. Zhang, M. J. Yang,et al. Fabrication by SPS and thermophysical properties of high volume n fraction SiCP/Al matrix composites [J]. Key Engineering Materials, 2006, 313: 171~176.
    [21]石锋,钱端芬,张志萍. SiCp/Al复合材料的应用及无压渗透法制备[J].硅酸盐通报, 2004, 2: 60~65.
    [22]石锋,钱端芬. Lanxide TM法制备SiCP/Al复合材料[J].陶瓷工程, 2000, 34(4): 5~9.
    [23]桂满昌,王殿斌.颗粒增强铝基复合材料的制备及应用[J].材料导报, 1996, 10(3): 65~71.
    [24]喻学斌,吴人洁.金属基电子封装复合材料的研究现状及发展[J].材料导报, 1994, 8(3): 64~66.
    [25]郝元恺.非连续物增强轻金属复合材料研究现状及展望[J].材料导报, 1994, 8(5): 67~71.
    [26] M. Hunt. Progress in powder metal composites [J]. Sample Journal, 1990 26(1): 33~36.
    [27]吴锦波,马小春.铸造法制金属基复合材料研究进展[J].材料科学与工程, 1996,14(2): 15~18.
    [28] Y. Wu. Interaction mechanisms between ceramic particles and atomized metallic proplets [J]. Metallurgical and Materials Transactions A, 1992, 23: 2923~2928.
    [29]平延磊,贾成厂,曲选辉等. SiCP/Al复合材料的研究方法现状[J].粉末冶金技术, 2005, 23(4): 296~300.
    [30] D. M. Jacobson, A. J. W. Ogilvy, A. Leatham. A new light weight electronic packaging technology based on spray formed silicon aluminium [J]. 2000 International Symposium on Advanced Packaging Materials, 2000: 295~299.
    [31]刘兴江,崔华,张济山.雾化沉积SiCP/2014复合材料的时效[J].金属热处理, 1997, 4: 28~29.
    [32]甘永学.铸造铝基复合材料的研究的进展[J].轻金属加工技术, 1994, 20(12): 6~12.
    [33] M. Hunt. Electronic packaging [J]. Materials Engineering, 1991, 108(1): 24.
    [34] S. P. Dhandapani, J. T. Burke. A new infiltration for fabrication of metal matrix composites [J]. Sampe Quarterly, 1989, 34: 817~821.
    [35]严红革,陈振华.反应合成原位(In-Situ)复合材料制备技术进展[J].材料科学与工程, 1997, 15(1): 6~10.
    [36]程秀兰,潘复生.金属基复合材料的反应合成技术[J].材料导报, 1995, 9(5): 61~66.
    [37] A. W. Urquhart.Novel reinforced ceramics and metals: A review of Lanxide's composite technologies [J]. Materials Science and Engineering, 1991, 144 (1-2): 75~82.
    [38] M. K. Aghajanian1, M. A. Rocazella1, J. T. Burke1, et al. The fabrication of metal matrix composites by a pressureless infiltration technique [J]. Journal of Materials Science, 1991, 26(2): 447~454.
    [39] X. M. Xi, X. F. Yang. Spontaneous infiltration of aluminum-silicon alloy into silicon carbide performs in air [J]. Journal of American Ceramic Society, 1996, 79(1): 102~108.
    [40] S. Elomari, R. Boukhili, C. S. Marchi, et al.Thermal expansion response of pressure infiltrated SiC/Al metal-matrix composites [J]. Journal of Materials Science, 1997, 32(8): 2131~2140.
    [41] B. S. Murty, S. K. Thankur,B. K. Dhindaw.On the infiltration behavior of Al, Al-Li and Mg metals through SiCP bed [J]. Metallurgical and Materials Transactions A, 2000, 31(1): 319~325.
    [42] E. Candan, H. V. Atkinson, H. Jones. Effect of magnesium alloying additions on infiltration threshold pressure and structure of SiC powder compacts infiltrated by aluminum-based melts [J]. Journal of Materials Science, 1997, 32: 289~294.
    [43] Y. Niohiba, G. Ohira. Modeling of infiltration of molten metal in fibrous perform preform by centrifugal force[J].Acta Materials, 1999, 47(3): 841~852.
    [44]郝远,陈体军,马颖. SiCP/ZA27复合材料的制备及其力学性能[J].特种铸造及有色合金, 1997, 2: 25~28.
    [45] M. Y. Gu, Z. Mei, Y. P. Jin, et al. Structure and amorphization of the oxide on the silicon carbide surface in a SiCP/Al composite [J]. Scripta Materialia, 1999, 40(9): 985~991.
    [46] J. Hashim, L. Looney, M. S. J. Hashmi. The enhancement of wettability of SiC particles in cast aluminum matrix composites [J]. Journal of Materials Processing Technology, 2001, 119(1-3): 329~335.
    [47] Y. H. Seo, C. G. Kang. The effect of applied pressure on particle-dispersion characteristics and mechanical properties in melt-stirring squeeze cast SiCP/Al composite [J]. Journal of materials processing technology, 1995, 55: 370~379.
    [48]任德亮,齐海波,丁占来等. SiCp/Al复合材料搅拌铸造制备工艺的研究[J].铸造技术, 1999, (2):41~43.
    [49]刘兴江,曹丽云,王建中.脉冲电场作用下SiCp/2014颗粒增强铝基复合材料的制备[J].轻合金加工技术, 2002, 30(4): 45~47.
    [50]裴清祥,郑伯欧,卢震.金属半固态铸造成型技术[J].冶金设备, 1996, 4: 21~25.
    [51] M. I. Pech-Canul, R. N. Katz, M. M. Makhlouf. Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys [J]. Journal of Materials Processing Technology, 2000, 108(1): 68~77.
    [52] K. B. Lee, H. S. Sim, S. H. Kim, K. H. Han, et al. Fabrication and characteristics of AA6061/SiCP composites by pressureless infiltration technique [J]. Journal of Materials Science, 2001, 36(13): 3179~3188.
    [53] L. Hozer, J. R. Lee, Y. M. Chiang. Reaction-infiltrated, net shape SiC composites [J]. Materials science and engineering A, 1995, 195(22): 131~143.
    [54] L. Hozer, Y. M. Chiang. Reactive-infiltration processing of SiC-metal and SiC-intermetallic composites [J] . Journal of Materials Research, 1996, 11(9): 2346~2357.
    [55] X. M. Xi, L. M. Xiao, X. F. Yang. The mechanism of spontaneous infiltration of Al-Si alloy into SiC perform in air [J]. Journal of Materials Research, 1996, 11(4): 1037~1044.
    [56]任淑彬,何新波,曲选惠等.电子封装用高体积分数SiCP/Al复合材料的制备[J].北京科技大学学报, 2006, 28(5): 444~447.
    [57] Z. P. Luo, Y. G. Song, S. Q. Zhang. A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method [J]. Script Materials, 2001, 45(10): 1183~1189.
    [58] J. F. Liang, J. K. Yu, Y. Q. Quan.Thermophysical properties of aluminum Infiltrated Silicon Carbide for Electronic Packaging [J]. Materials Science Forum, 2005, 475~479.
    [59] K. Schwartzwalder, H. Arthur, V. Somers, et al.Method of Making porous ceramic articles [P].US Pat,№3090094,1963-05-21.
    [60]朱新文,江东亮.有机泡沫浸渍工艺:一种经济实用的多孔陶瓷制备工艺[J].硅酸盐通报, 2000, 19(3): 45~51
    [61] Washboume, Colin. Catalyst Carriers [P]. US Pat,№3972834, 1976-08-03.
    [62] E. Sundermann, J. Viedt. Method of manufacturing ceramic foam bodies [P]. US Pat,№3745201, 1973-07-10.
    [63]吴皆正,易石阳,欧阳琨.可控微米级多孔陶瓷的研制[J].硅酸盐通报, 1993, 12(3): 4~9.
    [64] O. Lyckfeldt, J. M. F Ferreia. Processing of Porous Ceramics by Starch Consolidation [J]. Journal of Europe Ceramic Society, 1998, 18: 131~140.
    [65] D. M. Liu.Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic [J]. Journal of Materials Science Letters, 1996, 15(5): 419~421.
    [66] B. D. Flinn, R. K. Bordia, A. Zimmermann, et al. Evolution of defect size and strength of porous alumina during sintering [J]. Journal of Europe Ceramic Society, 2000, 20(14-15): 2561~2568.
    [67]徐振平,郭敏.一种孔径分布能控制的多孔陶瓷[J].现代技术陶瓷,1996,17(3): 49~51.
    [68]孙宏伟,谢灼利,郑冲.微孔α-A12O3陶瓷膜管的制备与性能[J].无机材料学报, 1998, 13(5): 698~702.
    [69]张华民,王志群.无机分离膜的研究现状与发展前景:Ⅰ.无机分离膜的制备与表征[J].无机材料学报, 1993, 8(1): 4~5.
    [70]朱承翔,路庆华.从(SCIENCE)和(NATURE)文献看多孔材料制备的最新动态[J].化工新型材料, 2000, 29(1): 22~25.
    [71] Y. Ohzawa, H. Hoshino, M. Fujikawa. Preparation of high-temperature filter by pressure-pulsed chemical vapour infiltration of SiC into carbonized paper-fibre preforms [J]. Journal of Materials Science, 1998, 33(21): 5259~5264.
    [72] L. S. Hong, H. T. Lai. Pore structure modification of porous support by PPCVD: A technique to Reduce permeability loss [J]. Journal of Chinese Instition of Chemistry and Engineering, 1999, 30(3): 189~197.
    [73] P. Greil, T. Lifka, A. Kaindl. Biomorphic cenular silicon carbide ceranlics from wood: I. Processing and microstructure [J]. Journal of Europe Ceramic Society, 1998, 18(14): 1961~1973.
    [74] S. W. Sofie, F. Dogan. Freeze Casting of Aqueous Alumina Slurries with Glycerol [J]. Journal of American Ceramic Society, 2001, 84(7): 1459~1464.
    [75] O. O. Omatete, M. A. Janney, R. A. Strehlow. Gelcasting-a new ceramic forming process [J]. American Ceramic Society bulletin, 1991, 70(10): 1641~1650.
    [76] J. H. She, Z. Y. Deng, J. Daniel-Doni, et al. Oxidation bonding of porous silicon carbide ceramics [J]. Journal of Materials Science, 2002, 37(17): 3615~3622.
    [77] S. Sen, B. K. Dhindaw, D. M. Stefanesen. Evaluation of interface stability and melt-processing techniques of Ni3A1/ SiC particulate composites [J]. Journal of Materials Science and Engineering, 1994, 174A: 207~216.
    [78] B. Schneider, A. Guette, R. Naslain, et al. A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide: Experiments at high temperatures and low total pressures [J]. Journal of Materials Science, 1998, 33(2): 535~547.
    [79] R. M. German. Powder Injection Molding [M].长沙,中南工业大学出版社, 2001.
    [80] X. Y. Shen, S. B. Ren, X. B. He, et al. Study on methods to strengthen SiC preforms for SiCP/Al composites by pressureless infiltration [J]. Journal of Alloys andCompounds, 2008, in press.
    [81]向华,曲选辉,肖平安等. SiC/Al电子封装复合材料的现状和发展[J].材料导报, 2003, 17(2): 54~57.
    [82] N M费多尔钦科.粉末冶金原理[M].北京:冶金工业出版社, 1974: 241~386.
    [83] G. Randall. Powder metallurgy processing of thermal management materials for microelectronic application [J]. The International Journal of Powder Metallurgy, 1994, 30(2): 205~211.
    [84] W. B. Johnson, B. Sonuparlak. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process [J]. Journal of Materials Research, 1993, 8(5): 1169~1173.
    [85] N. A. Trvitzky. Microstructure and mechanical properties of alumina/copper composites fabricated by different infiltration techniques [J]. Materials Letters, 1998, 36(1-4): 114~117.
    [86] K. Konopa, A. Olszówka-Myalska, M. Szafran. Ceramic-metal composites with an interpenetrating network [J]. Materials Chemistry and Physics, 2003, 81(2-3): 329~332.
    [87]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(上)[J].材料科学与工程, 1997, 15(3): 6~10.
    [88] S. Y. Oh, J. A. Cornie, K. C. Russell. Wetting of ceramic particulates with liquid aluminum alloys: partⅠ. Experimental techniques [J]. Metallurgical Transactions A, 1989, 20(3): 527~532.
    [89] S. Y. Oh, J. A. Cornie, K. C. Russell. Wetting of ceramic particulates with liquid aluminum alloys: partⅡ. Study of wettability [J]. Metallurgical Transactions A, 1989, 20(3): 533~541.
    [90] R. Warren, C. H. Andersson. Silicon carbide fibres and their potential for use in composite materials. II [J]. Composites, 1984, 15(2): 101~111.
    [91] V. Laurent, D. Chatain, N. Eustathopoulos. Wettability of SiC by aluminium and Al-Si alloys [J]. Journal of Materials Science, 1987, 22(1): 244~250.
    [92] J. P. Rocher, J. M. Quenisset, R. Naslain. Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment: application to composite material casting [J]. Journal of Materials Science, 1989, 24(8): 2697~2703.
    [93] J. P. Rocher, J. M. Quenisset, R. Naslain. A new casting process for carbon (or SiC-based) fibre-aluminium matrix low-cost composite materials [J]. Journal of Materials Science Letters, 1985, 4(12): 1527~1529.
    [94] M. K. Aghajanian, M. A. Rocazella, J. T. Burke, et al. The fabrication of metal matrix composites by pressureless infiltration technique [J]. Journal of Materials Science,1991, 26(2): 447~454.
    [95] F. Delannay, L. Froyen, A. Deruyttere. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites [J]. Journal of Materials Science, 1987, 22(1): 1~16.
    [96]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(下)[J].材料科学与工程, 1997,15(4): 27~35.
    [97] B. C. Pai, G. Ramani, R. M. Pillai, et al.Review: role of magnesium in cast aluminum alloy matrix composites [J]. Journal of Materials Science, 1996, 30(8): 1903~1911.
    [98] A. D. McLeod, C. M. Gabryel.Kinetics of the growth of spinel, MgAl2O4, on alumina particulate in aluminum alloys containing magnesium [J]. Metallurgical and Materials Transactions A, 1992, 23(4): 1279~1283.
    [99] Q. Hou, R. Mutharasan, M. Koczak. Feasibility of aluminium nitride formation in aluminum alloys [J]. Journal of Materials Science and Engineering, 1995, 195(1-2): 121~129.
    [100]范同祥,施忠良. SiC/Al复合材料界面反应程度的测定[J].材料导报, 1999, 13(4): 65~67.
    [101]张永俐. SiC-Al界面Al4C3的生成及其控制[J].材料科学与工程, 1998, 12(1): 32~35.
    [102] A. Zulfia, R. J. Hand. The production of Al-Mg alloy/SiC metal matrix composites by pressureless infiltration [J]. Journal of Materials Science, 2002, 37(5): 955~961.
    [103] A. Bardal. Wettability and interfacial reaction products in the AlSiMg surface-oxidized SiC system [J]. Materials Science and Engineering A.1992, 159(1): 119~125.
    [104] M. Rodríguez-Reyes, M. I. Pech-Canul, E. E. Parras-Medécigo, et al. Effect of Mg loss on the kinetics of pressureless infiltration in the processing of Al-Si-Mg/SiCp composites [J]. Materials Letters, 2003, 57(13-14): 2081-2089.
    [105] L. M. Xiao. Reactive infiltration in fabricating silicon carbide composites for electronic packaging. A Dissertation for Doctor Degree of Auburn University, 1998: 63~64.
    [106] Y. F. Lee, S. L. Lee, C. L. Chuang, et al. Effects of SiCP reinforcement by electroless copper plating on properties of Cu/SiCP composites [J].Powder metallurgy, 1999, 42(2): 147~152.
    [107] R. Asthana, P. K. Rohatgi. On the melt infiltration of plain and nickel-coated reinforcements with aluminium alloys [J]. Journal of Materials Science Letters, 1993, 12(6): 442-445.
    [108]张巨先,侯耀勇,高陇桥,等.非均匀成核法涂覆改性纳米SiC粉体表面研究[J].硅酸盐学报, 1998, 26(6): 762~767.
    [109] P. L. Ratnaparkhi, J. M. Howe. Characterization of a diffusion-bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy [J]. Metallurgical Materials Transactions A, 1994, 25(3): 617~627.
    [110] Z. L. Shi, J. M. Yang, J. C. Lee, et al. The interfacial characterization of oxidized SiCP/2014Al composites [J]. Materials Science and Engineering A, 2001, 303(1-2): 46~53.
    [111]陈华辉.现代复合材料[M].北京:中国物资出版社, 1998: 1~20.
    [112] J. W. Liu,Z. X. Zheng, J. M. Wang, et al. Spontaneous infiltration mechanism for SiCp/Al composites [J]. Journal of Chinese Ceramic Society, 2007, 35(10): 1137~1141.
    [113]梅志,顾明元,吴人杰.金属基复合材料界面表征及其进展[J].材料科学与工程, 1996, 14(3): 1~5.
    [114]王基才,尤显卿.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金, 2003, 20(1): 51~55.
    [115]陈建,潘复生,刘天模. Al/SiC界面结合机制的研究现状[J].轻金属,2000, 9: 52~54.
    [116] R. J. Arsenault, C. S. Pande. Interfaces in metal matrix composites [J]. Scripta Metallurgica, 1984, 18(10): 1131~1134.
    [117] J. C. Romero, R. J. Arsenault. Anomalous penetration of Al into SiC [J]. Acta Metallurgica et Materialia, 1995, 43(2):849~857.
    [118] A. P. Divecha, S. G. Fishman, S.D. Karmakar. SiC reinforced aluminium-A formable composite [J]. Journal of Metals, 1981, 33(9): 12~20.
    [119] Y. Flom, R.J. Arsenault. Interfacial bond strength in an aluminium alloy 6061-SiC composite [J]. Materials Science and Engineering, 1986, 77: 191~197.
    [120] S. R.Nutt. Defects in Silicon Carbide Whiskers [J]. Journal of the American Ceramic Society, 1984, 67(6): 428~431.
    [121] S. Li, R. J. Arsenault, P. Jena. Quantum chemical study of adhesion at the SiC/Al interface [J]. Journal of Applied Physics, 1988, 64(11): 6246~6253.
    [122] L. Cao, L. Geng, C.K. Yao, et al. Interface in silicon carbide whisker reinforced aluminium composites [J]. Scripta Metallurgica, 1989, 23(2): 227~230.
    [123] L. Geng, C.K. Yao. SiC-Al interface bonding mechanism in a squeeze casting SiCW/Al composite [J]. Journal of Materials Science Letters, 1995, 14(8): 606~608.
    [124]曹利,姚忠凯. SiCW/Al复合材料的一种界面结构[J].复合材料学报, 1990, 7(4): 67~72.
    [125] J. C. Romero, L. Wang, R. J. Arsenault. Interfacial Structure of a SiC/Al Composite [J]. Materials Science and Engineering A, 1996, 212(1): 1~5.
    [126]罗承萍,隋贤栋,欧阳柳章. SiCp/Al-Si复合材料中SiC/Al的晶体学位向关系[J].金属学报, 1999, 35(4): 343~347.
    [127]郭建,王西科,沈宁福.常规铸造工艺条件下SiCP/Al-Si复合材料中的界面反应[J].材料工程, 2003, 12: 18~22.
    [128]施忠良,刘俊友等.碳化硅颗粒增强的铝基复合材料界面微结构研究[J].电子显微学报, 2002, 21(1):52~55.
    [129] J. C. Lee, J. P. Ahn, J. H. Shim, et al. Control of the Interface in SiC/Al composites [J]. Scripta Materialia, 1999, 41(8): 895~900.
    [130] J. C. Lee, H. I. Lee, J. P. Ahn, et al. Methodology to design the interface in SiC/Al composites [J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1541~1550.
    [131]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社, 2002.
    [132]曹晓明,武建军,温鸣.先进结构材料[M].北京:化学工业出版社, 2005.
    [133] H. Liu, F. H. Samuel. Effect of covering flux on the mechanical properties of SiC particle reinforced Al-Si-Mg composites [J]. American Foundrymen's Society Transactions, 1993, 101: 739~747.
    [134] D. L. Mcdanels. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbon reinforcement [J]. Metallurgical and Materials Transactions A, 1985, 16(6): 1105~1113.
    [135] J. E. Vincet, W. K. James, M. M. Chad. Estimation of the thermal conductivity of composites [J]. Journal of Materials Science, 1999, 34: 3545~3553.
    [136] L. C. Davis, B. E. Artz. Thermal conductivity of metal-matrix composites [J]. Journal of Applied Physics, 1995, 77(10): 4954~4961.
    [137] M. Gupta, L. Lu, S. E. Ang. Effect of microstructural features on the ageing behaviour of Al-Cu/SiC metal matrix composites processed using casting and rheocasting routes [J]. Journal of Materials Science, 1997, 32(5): 1261~1268.
    [138]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社, 2006.
    [139] C. A. Steidel, R. C. Sundahl, N. Graycli. Materials science and the electronic packaging roadmap [J]. Materials Research Society Symposium Proceeding, 1995, 390: 3~8.
    [140]喇培清,许广济,丁雨田.高体积分数粒子型铝基复合材料热膨胀性能的研究[J].复合材料学报, 1998, 15(2): 6~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700