磁场环境下聚合物介质的表面击穿与伽玛线辐射的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物材料以其优异的机电性能被广泛的应用于各种电力、电子设备中,而在选择绝缘材料时必须要考虑设备的运行环境。宇宙空间及核电站中存在的各种高能放射线会改变绝缘材料的电气性能。实际运行中,除辐射之外聚合物材料还会经常应用在强磁场环境下,磁场对其电气性能的影响不容忽视。所以研究强磁场环境下聚合物材料表面绝缘击穿和放射线辐射量的影响具有理论意义和实用价值。
     试验采用经60Co放射源照射的聚萘二甲酸丁二醇酯(PBN)和聚对苯二甲酸丁二醇酯(PBT)作为试样,辐射率为10 kGy/h,辐射量达到100 kGy和1000 kGy。试验中设置磁场与电场正交,磁通密度为249 mT,使得E×B与材料表面的相对角是0,90,180,270和360度。
     本文主要研究了磁场环境下聚合物介质的表面击穿与伽玛线辐射对绝缘击穿时间和放电量的影响。结果表明:相对角为180度时,PBN和PBT的击穿时间均出现极小值而放电量均出现极大值;相对角为0/360,90/270度时,PBN和PBT的击穿时间均有所增长而放电量均有所下降;随辐射量的增加,PBN的击穿时间延长,放电量减少,而PBT的趋势相反。比较相同条件下的放电痕迹可发现, PBT放电痕迹的面积明显大于PBN;随辐射量的增加,PBN放电痕迹的面积减小,而PBT放电痕迹的面积增大;当相对角为90/270度时,PBN、PBT放电痕迹均有明显弯曲;相对角为180度时PBN放电痕迹的面积小于其0/360度时放电痕迹的面积,而PBT呈现相反的趋势。本文从材料化学结构的角度(PBN和PBT主链上苯环数量不同)进一步探讨了辐射环境下聚合物材料绝缘性能的变化机理,推测分子主链上的苯环数量对辐射反应结果(交联占优或降解占优)有较大的影响。
Polymers are widely used as insulating materials because of their excellent dielectric properties. The selection of the proper polymer dielectric for a desired application depends on the operating conditions. The polymer insulations used in space power and nuclear power station are exposed to kinds of radiations which can change their electrical performance. Polymers inevitably operate under radiation with combined environments such as magnetic field. Therefore, it is necessary to investigate the dielectric properties of the polymers under these conditions.
     Polybutylene naphthalate (PBN) and polybutylene terphthalate (PBT) are employed as experimental samples. The samples were radiated in air up to 100 kGy and then up to 1000 kGy by using a 60Co gamma source. The magnetic flux density (MFD) was 249 mT. The electric field was perpendicular to the magnetic field, which made relative angles between the sample surface and the direction of E×B as 0, 90, 180, 270 and 360 degree respectively.
     This paper investigates effects of magnetic fields on surface breakdown of gamma-ray radiated polymer dielectrics. Obtained results indicated that the time to tracking failure of both PBN and PBT showed a minimum value and the amount of cumulative charges showed a peak value when the relative angle was 180 degree. The time to tracking failure of both PBN and PBT delayed and the amount of cumulative charges decreased when relative angles were 0/360 and 90/270 degree. The carbonized area was smaller at 180 degree than that at 0/360 degree for PBN whereas the tendency was opposite for PBT. With the increasing of the total dose of the radiation, the time to tracking failure increased for PBN but decreased for PBT; the amount of cumulative charges decreased for PBN but increased for PBT; the carbonized area decreased for PBN but increased for PBT. Comparing the molecular formulas of PBN and PBT, it is suggested that the amount of phenyl in the main chain plays a key role in determining the types of the radiation reactions in which one is crosslinking reaction and the other is degradation reaction.
引文
[1] G. Chen and A. E. Davies, Influence of Radiation Environment on Space Charge Formation in Gamma-Irradiated LDPE, IEEE Trans. Dielect. Electr. Insul., 1999, 6(6): 882-887
    [2] B. Blodgett Robert and G. Fisher Robert, Insulations and Jackets for Control and Power Cables in Thermal Reactor Nuclear Generating Stations, IEEE Trans. Power Appartus and Systems, 1969, 88 (5): 529-541
    [3] A. Kumar, Effect of Nuclear Radiation on Microstrip and Dielectric Antennas in Space, Electr. Insul. Dielectr. Phenomena Conf., 1989, (89): 192-197
    [4] I. Kuriyama, N. Hayakawa and Y. Nakase, Radiation Resistance of Cable Insulating Materials for Nuclear Power Generating Stations, IEEE Trans. Electr. Insul., 1978, 13(3): 164-171
    [5] L. Yu and Q. S. Hu, Design and Simulation of Interior Permanent Magnetic Brushless DC Motor, Int. Conf. Electr. Machines and Systems, 2005, 1: 493-496
    [6] T. Obara, Energetic Electron Behavior in the Outer Radiation Zone during the Space Weather Month, Advances in Space Research, 2003, 31(4): 1021-1026
    [7] B. X. Du and X. J. Zhang, Discharge Energy and Dielectric Breakdown of Gamma-Ray Irradiated Polybutylene Naphthalate, IEEE Int. Solid Dielectr. Conf., 2004, 2: 947-950
    [8] B. X. Du, Discharge Energy and DC Tracking Resistance of Organic Insulating Material, IEEE Trans. Dielectr. Electr. Insul., 2001, 8: 897-901
    [9] H. M. Li, R. A. Fouracre, M. J. Given et al., The Effects on Polyetheretherketone and Polyethersulfone of Electron andγIrradiation, IEEE Trans. Dielectr. Electr. Insul., 1999, 6(3): 295-303
    [10]陈文,危害一百年:前苏联切尔诺贝利核电站大爆炸,山东:山东消防,2000,6:8-14
    [11] Eric P. Loewen and Donald Schutz, Nuclear Energy and the Implications of the UN World Summit on Sustainable Development, Nuclear News, 2003, 46(3): 67-72
    [12] J. W. Haffner, Radiation and Shielding in Space, New York: Academic Press, 1967, 25-27
    [13]冀克俭,张银生,张淑芳等,聚氯乙烯薄膜X射线致发降解XPS研究,辐射研究与辐射工艺学报,1991,9(l0):61-63
    [14]胡文军,张凯,陈晓丽等,中子辐照对硅橡胶泡沫材料性能的影响,橡胶工业,1996,48(5):266-268
    [15]汤蓓琳,梶加名子,吉沢岩等,聚乙烯泡沫塑料的辐射效应,辐射研究与辐射工艺学报,199l,9(4):246-251
    [16]罗世凯,钟志京,傅依备等,气氛对γ射线辐照氟橡胶降解产物影响,材料导报,2001,15(4):67-72
    [17] T. Kamosawa, N. Yoshimura and M. Nishida,Influence of Ultraviolet Rays on Tracking Deterioration of Epoxy Resin, Trans. IEEJ., 1988, 108-A(9): 397-404
    [18] R. O. Bolt and J. G. Carroll, Radiation Effects on Organic Materials, New York: Academic, 1963, 34-36
    [19] V. Adamec, Temporary Changes in Electrical Properties of Polymer Dielectrics Due to Ionizing Radiation, J. Polymer Sci. Pt. A-2, 1968, 6: 1241-1253
    [20]石拓,金荣福,高分子材料老化的可靠性分析,合肥工业大学学报,1989,12(3):83-88
    [21]石拓,金荣福,石砧,论高分子材料的加速老化,高分子材料科学与工程,1990,(5):9-12
    [22] E. L. Brancato and J. G. Allard, Effects of Electron Irradiation on the Electrical Properties of Mylar, AIEE Conf., 1957, 705-708
    [23] B. X. Du, A.Suzuki and S.Kobayashi, Effects of Gamma-rays Irradiation on Tracking Resistance of Organic Insulating Materials, Trans. IEEJ., 1996, 116-A(5): 461-467
    [24] F. J. Campbell, Radiation Effects on the Electrical Properties of Solid Insulation, Engineering Dielectrics, vol. IIA. ASTM Publication STP-783, Maryland, 1983
    [25] S. E. Harrison, A Study of Gamma Ray Photoconductivity in Organic Dielectric Materials, Rep. SCDC-2580, 1962, 71-75
    [26] M. Van de Voorde and C. Restat, Selection Guide to Organic Materials for Nuclear Engineering, Eur. Org. Nucl. Res., Geneva, Switzerland, 1972: 139-143
    [27] J. C. Paul, Effect of Cross Magnetic Field on Solid, Liquid, Gaseous and Biological Dielectrics, Proc. 1998 Int. Sym. Electr. Insul. Materials, 1998, 381-385
    [28] J. C. Paul, Conductivity and Breakdown of Solid Dielectrics under the Influence of Electric and Magnetic Field, Proc. 2001 Int. Sym. Electr. Insul. Materials, 2001, 557-561
    [29] A. E. D. Heylen, Electrical Ionization and Breakdown of Gases in a Crossed Magnetic Field, IEE Proc. A, 1980, 127: 221-244
    [30] R. Korzekwa, F. M. Lehr, H. G. Krompholz etal., Inhibiting Surface Flashover for Space Conditions Using Magnetic Fields, IEEE Trans. Plasma Sci., 1989, 17(4): 612-615
    [31] R. Korzekwa, F. M. Lehr, H. G. Krompholz etal., Influence of Magnetic Fields on Dielectric Surface Flashover, IEEE Trans. Electron Devices, 1991, 38(4): 745-749
    [32] F. Hegeler, H. Krompholz, L. L. Hatfield etal., Insulator Surface Flashover with UV and Plasma Background and External Magnetic Field, Annual Report Conf. Electr. Insul. Dielectr. Phenomena, 1995, 171-174
    [33] B. X. Du, Effects of Relative Angle between Magnetic Field and Electric Field on Insulation Breakdown of Contaminated Printed Wring Board, Jour. Japan Institute of Electronic Packaging, 2000, 3(2): 148-152
    [34]范震冈,磁场对酚醛环氧树脂的影响,[硕士学位论文],天津:天津大学,1986
    [35]袁晓燕,恒定磁场对环氧树脂酸酐固化物结构与电绝缘性能的影响,[硕士学位论文],天津:天津大学,1988
    [36]陈超强,张孝军,空芯电抗器磁场对周围设施影响的测试研究,高电压技术,2001,27(3):19-21
    [37]吴季兰,戚生初,辐射化学,原子能出版社,1991,14-17
    [38] H. M. Banford and R. A. Fouracre, Nuclear Technology and Ageing, IEEE Elect. Insul. Mag., 1999, 15(5): 19-17
    [39] A. J. Swallow, Radiaton Chemistry of Organic Compounds, New York: Pergamon Press, 1960, 149-150
    [40] S. H. Pinner, Irradiation of Polymerisation Products, Rept. Progr. Appl. Chem., 1958, 43: 463-476
    [41]辐射化学的应用,刘玉铭等译,上海科学技术文献出版社,1980,236-240
    [42] J. G. Carroll and R. O. Bolt, C. A. Tilling, Radiaton Effects on Organic Materrals, New York: Academic Press, 1963, 289-348
    [43] A. J.斯沃罗,辐射化学导论,陈文琇,贾海顺,包华影译,原子能出版社,1985,86-87
    [44]王善琦,高分子化学原理,北京航天航空大学出版社,1993
    [45] C. D. Wagner, Chemical Synthesis by Ionizing Radiation, Advan.Radiation Chemistry, 1969, 1: 199-244
    [46] B. X. Du, Temperature Effects of Surface Discharge Characteristics of Epoxy Resin Laminate, Trans. IEEJ., 2002, 122-A(4): 415-420
    [47] B. X. Du, A. Suzuki and K. Kishi, Effects of Atmospheric Pressure on Tracking Failure of Organic Insulating Materials, Trans. IEEJ., 1995, 115-A(12): 1284-1293
    [48] B. X. Du and S. Kobayashi, Effects of Magnetic Field on Surface Dielectric Breakdown of Contaminated Print Wiring Board, Trans IEEJ., 2003, 123(6): 562-568
    [49] B. X. Du, Surface Breakdown of Printed Circuit Board under Magnetic Field, 2003 Annual Report Conf. Electr. Insul. Dielectr. Phenomena, 2003, 285-288
    [50]杜伯学,马力,绝缘试样的漏电痕迹劣化与环境因素的影响,高电压技术,2005,31(1):12-13
    [51]杜伯学,有机绝缘耐电痕性的评定与发展,高电压技术,2005,31(5):10-13
    [52]赵智大,高电压技术,北京:中国电力出版社,1999,12-13
    [53]朱德恒,严璋,高电压绝缘,北京:清华大学出版社,1992,1-6
    [54]中野义映编,张乔根译,高电压技术,北京:科学出版社,2004,120-127
    [55]李克友,高分子合成原理及工艺学,科学出版社,1999,13-15
    [56] B. X. Du, Y. Liu and H. J. Liu, Pattern Analysis on DC Breakdown Phenomenon of Polyethylene Films, Transactions of Tianjin University, 2006, 12(5): 325-329
    [57]王大为,张明利,钱国正,计算机在皮肤外扩张面积测算中的应用,中华整形烧伤外科杂志,1995,11:165-166
    [58] G. F. Brobmann and J. Huber, Effects of Different Shaped Tissue Expanders on Transluminal Pressure, Oxygen Tension, Histopathologic Changes, and Skin Expansion in Pigs, Plast Reconstr. Surg., 1985, 76: 731-736
    [59] R. E. Shively, Skin Expander Volume Estimator, Plast Reconstr. Surg., 1986, 77: 482-483
    [60] V. I. Vedeneyev, L. V. Gurvich, Ye. L. Frankevich etal., Bond Energies Ionization Potentials and Electron Affinities, London, 1966
    [61] R. L. Plataman, Super Excited States of Molecules and the Primary Action of Ionizing Radiation, Radiation Research, 1962, 17(3): 419-425
    [62] B. X. Du, Wavelet Analysis of Scintillation Discharge Current on DC Tracking Resistance of Gamma-ray Irradiation Polyethylene and Polycarbonate, Radioisotopes, 2001, 50(1): 1-11
    [63] B. X. Du and S. Kobayashi, Environmental Factors Affecting DC Resistance to Tracking of Polyethylene, IEEE Trans. Dielect. Electr. Insul., 2003, 10(2): 271-277
    [64] B. X. Du, Effects of Atmospheric Pressure on DC Resistance to Tracking of Polymer Insulating Materials, IEEE Trans. Dielectr. Electr. Insul., 2000, 12(6): 366-373
    [65] G. R. Freeman, Radiolysis of Aliphatic and Alicyclic Hydrocarbons, Radiat. Res. Rev., 1968, 1: 35-39
    [66] B. X. Du and Obayashi, Effects of Gamma-Ray Irradiation on Discharge Characteristics of Organic Insulating Materials, Radioisotopes, 2002, 51(1): 1-9
    [67] B. X. Du, Surface Breakdown of Printed Circuit Board under DC Magnetic Field, Int. Sym. Electr. Insul. Materials, 2005, 2: 308-311
    [68] J. C. Paul, Breakdown and Pre-breakdown Characteristics of Mixed Liquid Dielectrics and the Effect of Magnetic Field on Them, IEEE Int. Conf. Proper. Appl. Dielectr. Materials, 1994, 1: 75-78
    [69]黄玮,傅依备,许云书,聚合物辐射老化降解效应研究进展,核技术,2002,25(l):65-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700