原发性肝癌中BRMS1蛋白和CAⅠ蛋白的表达及其临床病理意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究乳腺癌转移抑制因子1(Breast Cancer MetastasisSuppressor 1,BRMS1)和碳酸酐酶同工酶Ⅰ(Carbonic AnhydraseⅠ,CAI)在原发性肝癌(Primary Hepatic Carcinoma,PHC)组织中的表达情况,探讨它们之间的相互关系以及它们与原发性肝癌临床病理特征之间尤其是与侵袭转移之间的关系。
     方法收集中南大学湘雅二医院肝胆胰外科经手术切除及病理证实的原发性肝癌标本47例(术前均未进行化疗和放疗)及20例癌旁组织(距癌肿≥2cm)为对照,经10%甲醛固定后常规石蜡包埋连续切片,切片厚4μm,应用Envision~(TM)免疫组化染色法分别检测癌组织及癌旁组织的BRMS1蛋白和CAI蛋白的表达情况,并于高倍镜下评分。
     结果BRMS1蛋白和CAI蛋白在原发性肝癌的癌组织和癌旁组织均有表达,且原发性肝癌组织中BRMS1蛋白和CAI蛋白的表达阳性率和表达评分与癌旁组织相比均具有显著的统计学差异(P<0.01,P<0.05)。
     BRMS1蛋白在伴有肝内转移和癌栓形成的原发性肝癌组织中的表达阳性率及评分明显低于无肝内转移和癌栓形成的癌组织(P<0.01,P<0.05),且在结节型和弥漫型肝癌中的表达阳性率明显低于巨块型肝癌(P<0.05),差异具有统计意义;但是,BRMS1蛋白的表达与其他各临床主要病理特征之间无明显关联(P>0.05)。
     CAI蛋白在原发性肝癌组织的表达随着分化程度的降低其表达阳性率及评分逐渐升高,具有统计学意义的差异(P<0.05);但是CAI蛋白与其他各临床主要病理特征之间无明显关联(P>0.05)。
     原发性肝癌组织中BRMS1蛋白和CAI蛋白的表达评分无明显关联(r=-0.37,P>0.05)。
     结论1、BRMS1蛋白在PHC组织中的失表达在PHC的侵袭转移过程中发挥了重要的作用,但其可能对PHC的发生及生长无明显影响。
     2、CAI蛋白在PHC组织中的高表达在PHC的分化中发挥了重要作用,可能对肿瘤的生长及侵袭转移无明显影响。
     3、BRMS1蛋白和CAI蛋白在PHC组织中的表达不存在相关性,提示作为核内基因转录调控蛋白的BRMS1可能未参与CAI转录的调节。
Objective To investigate the expression of Breast Cancer Metastasis Suppressor 1(BRMS1) protein and Carbonic Anhydrase I(CA I) protein in Primary Hepatic Carcinoma(PHC),and to explore the relationships of themselves and the correlation between them and the clinicopathological characteristics of PHC.
     Methods The specimens from 47 patients with Primary Hepatic Carcinoma(PHC) and 20 corresponding paraneoplastic hepatic tissues were fixed in 10%formalin and routinely embedded in paraffin.The specimens were continuously sliced into 4μm-thick sections.Envision~(TM) immunohistochemistry was performed to detect the expressions of BRMS1 protein and CA I protein with monoclonal antibodies and scored them under high-power microscopy.
     Results In the 47 Primary Hepatic Carcinoma(PHC) cases,there are significantly statistical distinctions in the expressive positive rate and the expressive scores of BRMS1 and CA I protein between cancer tissues and paraneoplastic tissues(P<0.01,P<0.05)
     The cancer tissues with intrahepatic metastasis and tumor thrombosis have significantly lower expressive positive rate and expressive scores of BRMS1 protein than the others(P<0.01,P<0.05),and also there is a sinificantly lower positive rate in nodular and diffuse PHC than massive ones(P<0.05).But we haven't found the relatioships between BRMS1 and other main clinicopathological characteristics of PHC(P>0.05).
     There is no correlation between the expression of CA I protein and clinicopathological characteristics of PHC,except that the expressive positive rate and the expressive scores of PHC significantly gradually increase with the descending differentiation degree(P<0.05).
     There is no evident correlation between the expressive scores of BRMS1 protein and that of CA I protein in cancer tissues of PHC(r= -0.37,P>0.05)
     Conclusion The lost expression of BRMS 1 protein in PHC plays an impotant role in the invasive and metastatic process,without effect on the transformation and growth of PHC.On the contrary,the overexpression of CA I protein in PHC is closely related to the differentiation,and it may have nothing to do with the growth、invasiveness and metastasis.And there is no correlation between the expressive scores of BRMS1 protein and that of CA I protein in cancer tissues of PHC
引文
[1]Parkin D,Bray F,Ferlay J,et al.Global cancer statistics,2002[J].CA:a cancer journal for clinicians,2005,55(2):74-108.
    [2]陈建国,宋新明.中国肝癌发病水平的估算及分析[J].中国肿瘤,2005,14(001):28-31.
    [3]张思维,李连弟.中国1990-1992年原发性肝癌死亡调查分析[J].中华肿瘤杂志,1999,21(004):245-9.
    [4]Buell J,Rosen S,Yoshida A,et al.Hepatic resection:Effective treatment for primary and secondary tumors.Discussion[J].Surgery,2000,128(4):686-93.
    [5]杨广顺,吴志全,吴孟超.原发性肝癌的规范化综合治疗[J].中华外科杂志,2001,39(010):742-4.
    [6]Poon R,Fan S,Wong J.Risk factors,prevention,and management of postoperative recurrence after resection of hepatocellular carcinoma[J].Annals of surgery,2000,232(1):10-24.
    [7]Fan S,Ng I,Poon R,et al.Hepatectomy for Hepatocellular Carcinoma The Surgeon's Role in Long-term Survival[J].1999,134(10):1124-30.
    [8]Nakashima O,Kojiro M.Recurrence of hepatocellular carcinoma:multicentric occurrence or intrahepatic metastasis? A viewpoint in terms of pathology[J].Journal of Hepato-Biliary-Pancreatic Surgery,2001,8(5):404-9.
    [9]Kumada T,Nakano S,Takeda I,et al.Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma[J].Hepatology,1997,25(1):87-92
    [10]Sugimoto R,Okuda K,Tanaka M,et al.Metachronous multicentric occurrence of hepatocellular carcinoma after surgical treatment-clinicopathological comparison with recurrence due to metastasis[J].Oncol Rep,1999,6(6):1303-8.
    [11]Ikeda K,Arase Y,Kobayashi M,et al.Significance of multicentdc cancer recurrence after potentially curative ablation of hepatocellular carcinoma:a longterm cohort study of 892 patients with viral cirrhosis[J].Journal of Gastroenterology,2003,38(9):865-76.
    [12]陈建国,Sankaranarayanan.R,沈卓才,等.恶性肿瘤16922例生存率分析[J].中华肿瘤杂志,1998,20(003):202-6.
    [13]Seraj M,Samant R,Verderame M,et al.Functional Evidence for a Novel Human Breast Carcinoma Metastasis Suppressor,BRMS1,Encoded at Chromosome 11q13 1[J].Cancer Research,2000,60(11):2764-9.
    [14]Zhang Z,Yamashita H,Toyama T,et al.Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer[J].Clinical Cancer Research,2006,12(21):6410-4.
    [15]Shevde L,Samant R,Goldberg S,et al.Suppression of human melanoma metastasis by the metastasis suppressor gene,BRMS1[J].Experimental Cell Research,2002,273(2):229-39.
    [16]Seraj M,Harding M,Gildea J,et al.The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines[J].Clinical and Experimental Metastasis,2000,18(6):519-25.
    [17]Zhang S,Lin Q,Di W.Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene,BRMS1[J].International Journal of Gynecological Cancer,2006,16(2):522-31.
    [18]Ohta S,Lai E,Pang A,et al.Downregulation of metastasis suppressor genes in malignant pheochromocytoma This article is a US Government work and,as such,is in the public domain in the United States of America[J].International Journal of Cancer,2005,114(1):139-43.
    [19]王旭霞,赵作勤,张君,等.肿瘤转移抑制基因BRMS1 mRNA在口腔鳞癌中的表达及临床意义[J].口腔颌面外科杂志,2007,17(004):312-5.
    [20]彭海,周文学,周吴昕,等.BRMS1在胃癌组织中的表达与淋巴结转移的关系[J].中国现代普通外科进展,2007,10(006):497-9.
    [21]李晓瑜,郭星,李笑天,等.BRMS1基因蛋白在声门上型喉癌中的表达及临床意义[J].山东大学耳鼻喉眼学报,2007,21(006):481-3.
    [22]Smith P,Liu Y,Siefert S,et al.Breast cancer metastasis suppressor 1(BRMS1)suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer[J].Cancer letters,2008,276(2):196-203.
    [23]Phadke P,Vaidya K,Nash K,et al.BRMS1 Suppresses Breast Cancer Experimental Metastasis to Multiple Organs by Inhibiting Several Steps of the Metastatic Process[J].American Journal of Pathology,2008,172(3):809-17.
    [24]Hedley B,Vaidya K,Phadke P,et al.BRMS1 suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation[J].Clinical and Experimental Metastasis,2008,25(7):727-40.
    [25]Aj K,Saarnio J,Karttunen T,et al.Differential expression of cytoplasmic carbonic anhydrases,CAⅠ and Ⅱ,and membrane-associated isozymes,CA Ⅸand Ⅻ,in normal mucosa of large intestine and in colorectal tumors[J].Digestive diseases and sciences,2001,46(10):2179-86.
    [26]Chiang W,Chu S,Yang S,et al.The aberrant expression of cytosolic carbonic anhydrase and its clinical significance in human non-small cell lung cancer[J].Cancer letters,2003,188(1-2):199-206.
    [27]Kummola L,H(a|¨)m(a|¨)l(a|¨)inen J,Kivel(a|¨) J,et al.Expression of a novel carbonic anhydrase,CA ⅩⅢ,in normal and neoplastic colorectal mucosa[J].BMC cancer,2005,5(1):41.
    [28]Mori M,Staniunas R,Barnard G;et al.The significance of carbonic anhydrase expression in human colorectal cancer[J].Gastroenterology,1993,105(3):820-6.
    [29]Parkkila A,Herva R,Parkkila S,et al.Immunohistochemical demonstration of human carbonic anhydrase isoenzyme Ⅱ in brain tumours[J].The Histochemical Journal,1995,27(12):974-82.
    [30]Parkkila S,Parkkila A,Juvonen T,et al.Immunohistochemical demonstration of the carbonic anhydrase isoenzymes Ⅰ and Ⅱ in pancreatic tumours[J].The Histochemical Journal,1995,27(2):133-8.
    [31]Yoshiura K,Nakaoka T,Nishishita T,et al.Carbonic anhydrase Ⅱ is a tumor vessel endothelium-associated antigen targeted by dendritic cell therapy[J].Clin Cancer Res,2005,11(22):8201-7.
    [32]Haapasalo J,Nordfors K,Jarvela S,et al.Carbonic anhydrase Ⅱ in the endothelium of glial tumors:A potential target for therapy[J].Neuro-Oncology,2007,9(3):308-13.
    [33]Pastorekova S,Zatovicova M,Pastorek J.Cancer-associated carbonic anhydrases and their inhibition[J].Curr Pharm Des,2008,14(7):685-98.
    [34]Carter N,Wistrand P,Lonnerholm G.Carbonic anhydrase localization to perivenous hepatocytes[J].Acta Physiologica Scandinavica,1989,135(2):163-7.
    [35]胡淳玲,喻伦银,陈德基,等.大鼠试验性肺癌癌变各阶段间微血管密度及VEGF、FLK 21表达的动态变化[J].癌症,2001,20(10):713-7.
    [36] Chambers A, Groom A, Macdonald I. MetastasisDissemination and growth of cancer cells in metastatic sites [J]. Nature Reviews Cancer, 2002, 2(8): 563-72.
    [37] Steeg P. Tumor metastasis: mechanistic insights and clinical challenges [J]. Nature medicine, 2006,12(8): 895-904.
    [38] Gupta G, Massague J. Cancer metastasis: building a framework [J]. Cell, 2006, 127(4): 679-95.
    [39] Fidler I. Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes memorial award lecture [J]. Cancer Research, 1990, 50(19): 6130-8.
    [40] Butler T. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma [J]. Cancer Research, 1975, 35(3): 512-6.
    [41] Shevde L, Welch D. Metastasis suppressor pathways—an evolving paradigm [J]. Cancer letters, 2003, 198(1): 1-20.
    [42] Hasty P. Is NHEJ a tumor suppressor or an aging suppressor? [J]. Cell cycle (Georgetown, Tex), 2008, 7(9): 1139-45.
    [43] Stafford L, Vaidya K, Welch D. Metastasis suppressors genes in cancer [J]. International Journal of Biochemistry and Cell Biology, 2008,40(5): 874-91.
    [44] Horak C, Lee J, Marshall J, et al. The role of metastasis suppressor genes in metastatic dormancy [J]. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 2008,116(7-8Tumor Dormancy (Editors: Lars A. Akslen, George N. Naumov, Judah Folkman)): 586.
    [45] Tonoli H, Barrett J. CD82 metastasis suppressor gene: a potential target for new therapeutics? [J]. Trends in Molecular Medicine, 2005, 11(12): 563-70.
    [46] Fu Z, Kitagawa Y, Shen R, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer [J]. The Prostate, 2006, 66(3): 248-56.
    [47] Lee D, Kang Y, Kim W, et al. Functional and clinical evidence for NDRG2 as a candidate suppressor of liver cancer metastasis [J]. Cancer Res, 2008, 68(11): 4210-20.
    [48] Gobeil S, Zhu X, Doillon C, et al. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene [J]. Genes & Development, 2008, 22(21): 2932-40
    [49] Chang T, Yu S, Lin S, et al. HLJ1, a novel invasion/metastasis suppressor, regulates nucleophosmin translocation and function [J]. American Association for Cancer Research, 2006,47(1): 588-9.
    [50] Takahashi S, Nihei N, Risinger J, et al. Characterization of a new metastasis suppressor gene TEY1 [J]. American Association for Cancer Research, 2004, 45(1): 552-.
    [51] Metge B, Frost A, King J, et al. Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer [J]. Clinical and Experimental Metastasis, 2008,25(7): 753-63.
    [52] Phillips K, Welch D, Miele M, et al. Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11 [J]. Cancer research(Baltimore), 1996, 56(6): 1222-7.
    [53] Samant R, Seraj M, Saunders M, et al. Analysis of mechanisms underlying BRMS1 suppression of metastasis [J]. Clinical and Experimental Metastasis, 2000,18(8): 683-93.
    [54] Cicek M, Samant R, Kinter M, et al. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells [J]. Clinical and Experimental Metastasis, 2004,21(2): 149-57.
    [55] Stark A, Tongers K, Maass N, et al. Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases [J]. Journal of cancer research and clinical oncology, 2005,131(3): 191-8.
    [56] Champine P, Michaelson J, Weimer B, et al. Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression [J]. Clinical and Experimental Metastasis, 2007, 24(7): 551-65.
    [57] Meehan W, Samant R, Hopper J, et al. Breast cancer metastasis suppressor 1(BRMS 1) forms complexes with retinoblastoma-binding protein 1(RBP 1) and the mSin 3 histone deacetylase complex and represses transcription [J]. The Journal of biological chemistry(Print), 2004,279(2): 1562-9.
    [58] Meehan W, Welch D. Breast cancer metastasis suppressor 1: Update [J]. Clinical & experimental metastasis, 2003,20(1): 45-50.
    [59] Saunders M, Seraj M, Li Z, et al. Breast Cancer Metastatic Potential Correlates with a Breakdown in Homospecific and Heterospecific Gap Junctional Intercellular Communication 1 [J]. Cancer Research, 2001, 61(5): 1765-7.
    [60] Piechocki M, Burk R, Ruch R. Regulation of connexin 32 and connexin 43 gene expression by DNA methylation in rat liver cells [J]. Carcinogenesis(New York Print), 1999,20(3): 401-6.
    [61] Liu Y, Smith P, Jones D. Breast Cancer Metastasis Suppressor 1 Functions as a Corepressor by Enhancing Histone Deacetylase 1-Mediated Deacetylation of RelA/p65 and Promoting Apoptosis?? [J]. Molecular and Cellular Biology, 2006,26(23): 8683-96.
    [62] Samant R, Clark D, Fillmore R, et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation [J]. Mol Cancer, 2007, 6(6): 1476-4598.
    [63] Hurst D, Edmonds M, Scott G, et al. Breast Cancer Metastasis Suppressor 1 Up-regulates miR-146, Which Suppresses Breast Cancer Metastasis [J]. Cancer Research, 2009, 69(4): 1279-83.
    [64] Cicek M, Fukuyama R, Welch D, et al. Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-KB activity [J]. Cancer research(Baltimore), 2005, 65(9): 3586-95.
    [65] Hedley B, Welch D, Allan A, et al. Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1 [J]. International Journal of Cancer, 2008,123(3): 526-34.
    [66] Yang J, Zhang B, Lin Y, et al. Breast cancer metastasis suppressor 1 inhibits SDF-1α-induced migration of non-small cell lung cancer by decreasing CXCR4 expression [J]. Cancer letters, 2008,269(1): 46-56.
    [67] Dewald D, Torabinejad J, Samant R, et al. Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells [J]. Cancer research(Baltimore), 2005,65(3): 713-7.
    [68] Vaidya K, Harihar S, Phadke P, et al. Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling [J]. Journal of Biological Chemistry, 2008, 283(42): 28354-60.
    [69] Vaidya K, Harihar S, Phadke P, et al. Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling [J]. Journal of Biological Chemistry, 2008, 283(42): 28354-60.
    [70] Guglielmi A, Ruzzenente A, Campagnaro T, et al. Intrahepatic Cholangiocarcinoma: Prognostic Factors After Surgical Resection [J]. World journal of surgery, 2009, Epub ahead of print.
    [71] Nakagohri T, Kinoshita T, Konishi M, et al. Surgical Outcome and Prognostic Factors in Intrahepatic Cholangiocarcinoma [J]. World journal of surgery, 2008, 32(12): 2675-80.
    [72] Di C. V, Ferrari G, Castoldi R, Nadalin S, Marenghi C, Molteni B, Taccagni G, and Castrucci M. Surgical treatment and prognostic variables of hepatocellular carcinoma in 122 cirrhotics [J]. Hepatogastroenterology, 1995,42(2): 222-9.
    [73] Ng I, Guan X, Poon R, et al. Determination of the molecular relationship between multiple tumour nodules in hepatocellular carcinoma differentiates multicentric origin from intrahepatic metastasis [J]. The Journal of Pathology, 2003,199(3): 345 - 53.
    [74] Hsu H, Chiou T, Chen J, et al. Clonality and clonal evolution of hepatocellular carcinoma with multiple nodules [J]. Hepatology, 1991,13(5): 923-8.
    [75] Supuran C T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators [J]. Nat Rev Drug Discov, 2008, 7(2): 168-81.
    [76] Hilvo M, Tolvanen M, Clark A, et al. Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase [J]. Biochemical Journal, 2005, 392(1): 83-92.
    [77] Innocenti A, Zimmerman S, Ferry J G, et al. Carbonic anhydrase inhibitors. Inhibition of the zinc and cobalt gamma-class enzyme from the archaeon Methanosarcina thermophila with anions [J]. Bioorg Med Chem Lett, 2004, 14(12): 3327-31.
    [78] Chegwidden W, Dodgson S, Spencer I. The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals [J]. Exs, 2000, (90): 343-63.
    [79] Bundy H. Carbonic anhydrase [J]. Comp Biochem Physiol B, 1977, 57(1): 1-7.
    [80] Tashian R. Genetics of the mammalian carbonic anhydrases [J]. Adv Genet, 1992, 30(321-56.
    [81] Yu B, Li S, An P, et al. Comparative study of proteome between primary cancer and hepatic metastatic tumor in colorectal cancer [J]. World Journal of Gastroenterology, 2004, 10(18): 2652-6.
    [82] Bekku S, Mochizuki H, Yamamoto T, et al. Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer [J]. Hepato-gastroenterology, 2000,47(34): 998-1001.
    [83] Van De Wetering M, Sancho E, Verweij C, et al. Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells [J]. Cell, 2002,111(2): 241-50.
    [84] Tanaka N, Kato H, Inose T, et al. Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma [J]. Br J Cancer, 2008, 99(9): 1468-75.
    [85] Korkeila E, Talvinen K, Jaakkola P, et al. Expression of carbonic anhydrase IX suggests poor outcome in rectal cancer [J]. British Journal of Cancer, 2009, 100(6): 874-80.
    [86] Kim J Y, Shin H J, Kim T H, et al. Tumor-associated carbonic anhydrases are linked to metastases in primary cervical cancer [J]. J Cancer Res Clin Oncol, 2006,132(5): 302-8.
    [87] Chia S, Wykoff C, Watson P, et al. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma [J]. Journal of Clinical Oncology, 2001,19(16): 3660-8.
    [88] Bui M, Seligson D, Han K, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma implications for prognosis and therapy [M]. AACR. 2003: 802-11.
    [89] Haapasalo J, Nordfors K, Hilvo M, et al. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis [J]. Clinical Cancer Research, 2006, 12(2): 473-7.
    [90] Giatromanolaki A, Koukourakis M, Sivridis E, et al. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer [J]. Cancer Research 2001, 61(21): 7992-8.
    [91] Hoskin P, Sibtain A, Daley F, et al. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON [J]. British Journal of Cancer, 2003, 89(7): 1290-7.
    [92] Maseide K, Kandel R, Bell R, et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma [J]. Clinical Cancer Research, 2004, 10(13): 4464-71.
    [93] Hui E P, Chan a T C, Pezzella F, et al. Coexpression of Hypoxia-inducible Factors 1 {alpha} and 2{alpha}, Carbonic Anhydrase IX, and Vascular Endothelial Growth Factor in Nasopharyngeal Carcinoma and Relationship to Survival[J].Clin Cancer Res,2002,8(8):2595-604.
    [94]Ivanov S,Liao S,Ivanova A,et al.Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer[J].The American journal of pathology,2001,158(3):905-19.
    [95]Svastova E,Hulikova A,Rafajova M,et al.Hypoxia activates the capacity of tumor-associated carbonic anhydrase Ⅸ to acidify extracellular pH[J].FEBS letters,2004,577(3):439-45.
    [96]Latif F,Tory K,Gnarra J,et al.Identification of the von Hippel-Lindau disease tumor suppressor gene[J].Science,1993,260(5112):1317-20.
    [97]Stubbs M,Mcsheehy P,Griffiths J,et al.Causes and consequences of tumour acidity and implications for treatment[J].Molecular Medicine Today,2000,6(1):15-9.
    [98]Chiche J,Ilc K,Laferriere J,et al.Hypoxia-Inducible Carbonic Anhydrase Ⅸand Ⅻ Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH[J].Cancer Research,2009,69(1):358-68.
    [99]Parkkila S,Kivela A,Kaunisto K,et al.The plasma membrane carbonic anhydrase in murine hepatocytes identified as isozyme ⅩⅣ[J].BMC Gastroenterol,2002,2(13):2877-88.
    [100]Saarnio J,Parkkila S,Parkkila A,et al.Transmembrane carbonic anhydrase,MN/CA Ⅸ,is a potential biomarker for biliary tumours[J].J Hepatol,2001,35(5):643-9.
    [101]Walloch J,Frankel S,Hrisinko M,et al.Carbonic anhydrase:a marker for the erythroid phenotype in acute nonlymphocytic leukemia[J].Blood,1986,68(1):304-6.
    [102]Chen J,Kremer C,Bender T.The carbonic anhydrase I locus contains a c-Myb target promoter and modulates differentiation of murine erythroleukemia cells [J].Oncogene,2006,25(19):2758-72.
    [103]Yang H,Huang Z,Wang J,et al.The role of c-Myb and Spl in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma[J].The FASEB journal:official publication of the Federation of American Societies for Experimental Biology,2001,15(9):1507-16.
    [104]张荣贵,汤正好,冯洁,等.c-myb在肝细胞癌组织中的表达及临床意义 [J].临床肝胆病杂志,2008,24(002):106-8.
    [105]Gonda T.The c-Myb oncoprotein[J].International Journal of Biochemistry and Cell Biology,1998,30(5):547-51.
    [106]Zorbas M,Sicurella C,Bertoncello I,et al.c-Myb is critical for murine colon development[J].Oncogene,1999,18(42):5821-30.
    [107]Banyer J L,Hapel a J.Myb-transformed hematopoietic cells as a model for monocyte differentiation into dendritic cells and macrophages[J].Journal of leukocyte biology,1999,66(2):217-23.
    [108]赵志光,谢丽微,高宝辉,等.C-myb在宫颈癌组织中的表达及意义[J].实用肿瘤学杂志,2007,21(002):108-10.
    [1] Seraj M, Samant R, Verderame M, et al. Functional Evidence for a Novel Human Breast Carcinoma Metastasis Suppressor, BRMS1, Encoded at Chromosome 11q13 1 [J]. Cancer Research, 2000, 60(11): 2764-9.
    [2] Phadke P, Vaidya K, Nash K, et al. BRMS1 Suppresses Breast Cancer Experimental Metastasis to Multiple Organs by Inhibiting Several Steps of the Metastatic Process [J]. American Journal of Pathology, 2008,172(3): 809-17.
    [3] Hedley B, Vaidya K, Phadke P, et al. BRMS1 suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation [J]. Clinical and Experimental Metastasis, 2008, 25(7): 727-40.
    [4] Zhang Z, Yamashita H, Toyama T, et al. Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer [J]. Clinical Cancer Research, 2006,12(21): 6410-4.
    [5] Shevde L, Samant R, Goldberg S, et al. Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1 [J]. Experimental Cell Research, 2002,273(2): 229-39.
    [6] Seraj M, Harding M, Gildea J, et al. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines [J]. Clinical and Experimental Metastasis, 2000, 18(6): 519-25.
    [7] Zhang S, Lin Q, Di W. Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1 [J]. International Journal of Gynecological Cancer, 2006, 16(2): 522-31.
    [8] Ohta S, Lai E, Pang A, et al. Downregulation of metastasis suppressor genes in malignant pheochromocytoma This article is a US Government work and, as such, is in the public domain in the United States of America [J]. International Journal of Cancer, 2005, 114(1): 139-43.
    [9] 王旭霞,赵作勤,张君,等. 肿瘤转移抑制基因BRMS1 mRNA 在口腔鳞 癌中的表达及临床意义[J].口腔颌面外科杂志,2007,17(004):312-5.
    [10]彭海,周文学,周昊昕,等.BRMS1在胃癌组织中的表达与淋巴结转移的关系[J].中国现代普通外科进展,2007,10(006):497-9.
    [11]李晓瑜,郭星,李笑天,等.BRMS1基因蛋白在声门上型喉癌中的表达及临床意义[J].山东大学耳鼻喉眼学报,2007,21(006):481-3.
    [12]Smith P,Liu Y,Siefert S,et al.Breast cancer metastasis suppressor 1(BRMS1)suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer[J].Cancer letters,2008,276(2):196-203.
    [13]Champine P,Michaelson J,Weimer B,et al.Microarray analysis reveals potential mechanisms of BRMS 1-mediated metastasis suppression[J].Clinical and Experimental Metastasis,2007,24(7):551-65.
    [14]Phillips K,Welch D,Miele M,et al.Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11[J].Cancer research(Baltimore),1996,56(6):1222-7.
    [15]Samant R,Seraj M,Saunders M,et al.Analysis of mechanisms underlying BRMS1 suppression of metastasis[J].Clinical and Experimental Metastasis,2000,18(8):683-93.
    [16]Cicek M,Samant R,Kinter M,et al.Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells[J].Clinical and Experimental Metastasis,2004,21(2):149-57.
    [17]Stark A,Tongers K,Maass N,et al.Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases[J].Journal of cancer research and clinical ontology,2005,131(3):191-8.
    [18]Metge B,Frost A,King J,et al.Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer[J].Clinical and Experimental Metastasis,2008,25(7):753-63.
    [19]Chambers A,Groom A,Macdonald I.MetastasisDissemination and growth of cancer cells in metastatic sites[J].Nature Reviews Cancer,2002,2(8):563-72.
    [20] Steeg P. Tumor metastasis: mechanistic insights and clinical challenges [J]. Nature medicine, 2006,12(8): 895-904.
    [21] Gupta G, Massague J. Cancer metastasis: building a framework [J]. Cell, 2006, 127(4): 679-95.
    [22] Fidler I. Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes memorial award lecture [J]. Cancer Research, 1990, 50(19): 6130-8.
    [23] Butler T. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma [J]. Cancer Research, 1975, 35(3): 512-6.
    [24] Lin J, Takano T, Cotrina M, et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells [J]. Journal of Neuroscience, 2002,22(11): 4302-11.
    [25] Mesnil M. Connexins and cancer [J]. Biology of the Cell, 2002, 94(7): 493-500.
    [26] Saunders M, Seraj M, Li Z, et al. Breast Cancer Metastatic Potential Correlates with a Breakdown in Homospecific and Heterospecific Gap Junctional Intercellular Communication 1 [J]. Cancer Research, 2001, 61(5): 1765-7.
    [27] Kapoor P, Saunders M, Li Z, et al. Breast cancer metastatic potential: Correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells [J]. International Journal of Cancer, 2004,111(5): 693-7.
    [28] Nielsen S, Schneider R, Bauer U, et al. Rb targets histone H 3 methylation and HP 1 to promoters [J]. Nature(London), 2001,412(6846): 561-5.
    [29] Zhang H, Dean D. Rb-mediated chromatin structure regulation and transcriptional repression [J]. Oncogene(Basingstoke), 2001,20(24): 3134-8.
    [30] Lai A, Marcellus R, Corbeil H, et al. RBP 1 induces growth arrest by repression of E 2 F-dependent transcription [J]. Oncogene(Basingstoke), 1999, 18(12): 2091-100.
    [31] Meehan W, Samant R, Hopper J, et al. Breast cancer metastasis suppressor 1(BRMS 1) forms complexes with retinoblastoma-binding protein 1(RBP 1) and the mSin 3 histone deacetylase complex and represses transcription [J]. The Journal of biological chemistry(Print), 2004, 279(2): 1562-9.
    [32] Meehan W, Welch D. Breast cancer metastasis suppressor 1: Update [J]. Clinical & experimental metastasis, 2003, 20(1): 45-50.
    [33] Chen Y, Hiihn D, Kn?Sel T, et al. Downregulation of Connexin 26 in human lung cancer is related to promoter methylation [J]. International Journal of Cancer, 2005,113(1): 14-21.
    [34] Piechocki M, Burk R, Ruch R. Regulation of connexin 32 and connexin 43 gene expression by DNA methylation in rat liver cells [J]. Carcinogenesis(New York Print), 1999,20(3): 401-6.
    [35] Dewald D, Torabinejad J, Samant R, et al. Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells [J]. Cancer research(Baltimore), 2005, 65(3): 713-7.
    [36] Vaidya K, Harihar S, Phadke P, et al. Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling [J]. Journal of Biological Chemistry, 2008, 283(42): 28354-60.
    [37] Vaidya K, Harihar S, Phadke P, et al. Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling [J]. Journal of Biological Chemistry, 2008,283(42): 28354-60.
    [38] Baek S, Ohgi K, Rose D, et al. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein [J]. Cell, 2002, 110(1): 55-67.
    [39] Liu Y, Smith P, Jones D. Breast Cancer Metastasis Suppressor 1 Functions as a Corepressor by Enhancing Histone Deacetylase 1-Mediated Deacetylation of RelA/p65 and Promoting Apoptosis?? [J]. Molecular and Cellular Biology, 2006, 26(23): 8683-96.
    [40] Samant R, Clark D, Fillmore R, et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation [J]. Mol Cancer, 2007, 6(6): 1476-4598.
    [41] Cicek M, Fukuyama R, Welch D, et al. Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-κB activity [J]. Cancer research(Baltimore), 2005, 65(9): 3586-95.
    [42] Hedley B, Welch D, Allan A, et al. Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1 [J]. International Journal of Cancer, 2008,123(3): 526-34.
    [43] Yang J, Zhang B, Lin Y, et al. Breast cancer metastasis suppressor 1 inhibits SDF-1α-induced migration of non-small cell lung cancer by decreasing CXCR4 expression [J]. Cancer letters, 2008,269(1): 46-56.
    [44] Meehan W J, Samant R S, Hopper J E, et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription [J]. J Biol Chem, 2004,279(2): 1562-9.
    [45] Kleer C, Griffith K, Sabel M, et al. RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast [J]. Breast Cancer Research and Treatment, 2005, 93(2): 101-10.
    [46] Bhaumik D, Scott G, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells [J]. Oncogene, 2008,27(42): 5643-7.
    [47] Hurst D, Edmonds M, Scott G, et al. Breast Cancer Metastasis Suppressor 1 Up-regulates miR-146, Which Suppresses Breast Cancer Metastasis [J]. Cancer Research, 2009, 69(4): 1279-83.
    [1]Innocenti A,Zimmerman S,Ferry J G,et al.Carbonic anhydrase inhibitors. Inhibition of the zinc and cobalt gamma-class enzyme from the archaeon Methanosarcina thermophila with anions [J]. Bioorg Med Chem Lett, 2004, 14(12): 3327-31.
    [2] Tashian R. Genetics of the mammalian carbonic anhydrases [J]. Adv Genet, 1992,30(321-56.
    [3] Chen J, Kremer C, Bender T. The carbonic anhydrase I locus contains a c-Myb target promoter and modulates differentiation of murine erythroleukemia cells [J]. Oncogene, 2006, 25(19): 2758-72.
    [4] Sanyal G, Maren T. Thermodynamics of carbonic anhydrase catalysis. A comparison between human isoenzymes B and C [J]. Journal of Biological Chemistry, 1981, 256(2): 608-12.
    [5] Sly W, Hu P. Human carbonic anhydrases and carbonic anhydrase deficiencies [J]. Annual Review of Biochemistry, 1995, 64(1): 375-401.
    [6] Kim G, Selengut J, Levine R. Carbonic anhydrase III: the phosphatase activity is extrinsic [J]. Archives of Biochemistry and Biophysics, 2000, 377(2): 334-40.
    [7] Raisanen S, Lehenkari P, Tasanen M, et al. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis [J]. FASEB J, 1999, 13(3): 513-22.
    [8] Kim G, Lee T, Wetzel P, et al. Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span [J]. Molecular and Cellular Biology, 2004,24(22): 9942-7.
    [9] Lehtonen J, Shen B, Vihinen M, et al. Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family [J]. Journal of Biological Chemistry, 2004, 279(4): 2719-27.
    [10] Aj K, Saarnio J, Karttunen T, et al. Differential expression of cytoplasmic carbonic anhydrases, CA I and II, and membrane-associated isozymes, CA IX and XII, in normal mucosa of large intestine and in colorectal tumors [J]. Digestive diseases and sciences, 2001, 46(10): 2179-86.
    [11] Chiang W, Chu S, Yang S, et al. The aberrant expression of cytosolic carbonic anhydrase and its clinical significance in human non-small cell lung cancer [J]. Cancer letters, 2003,188(1-2): 199-206.
    [12] Kummola L, Hamalainen J, Kivela J, et al. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa [J]. BMC cancer, 2005, 5(1): 41.
    [13] Mori M, Staniunas R, Barnard G, et al. The significance of carbonic anhydrase expression in human colorectal cancer [J]. Gastroenterology, 1993, 105(3): 820-6.
    [14] Yu B, Li S, An P, et al. Comparative study of proteome between primary cancer and hepatic metastatic tumor in colorectal cancer [J]. World Journal of Gastroenterology, 2004,10(18): 2652-6.
    [15] Bekku S, Mochizuki H, Yamamoto T, et al. Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer [J]. Hepato-gastroenterology, 2000,47(34): 998-1001.
    [16] Van De Wetering M, Sancho E, Verweij C, et al. Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells [J]. Cell, 2002, 111(2): 241-50.
    [17] Parkkila A, Herva R, Parkkila S, et al. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours [J]. The Histochemical Journal, 1995, 27(12): 974-82.
    [18] Parkkila S, Parkkila A, Juvonen T, et al. Immunohistochemical demonstration of the carbonic anhydrase isoenzymes I and II in pancreatic tumours [J]. The Histochemical Journal, 1995,27(2): 133-8.
    [19] Yoshiura K, Nakaoka T, Nishishita T, et al. Carbonic anhydrase II is a tumor vessel endothelium-associated antigen targeted by dendritic cell therapy [J]. Clin Cancer Res, 2005,11(22): 8201-7.
    [20] Haapasalo J, Nordfors K, Jarvela S, et al. Carbonic anhydrase II in the endothelium of glial tumors: A potential target for therapy [J]. Neuro-Oncology, 2007, 9(3): 308-13.
    [21] Pastorekova S, Zatovicova M, Pastorek J. Cancer-associated carbonic anhydrases and their inhibition [J]. Curr Pharm Des, 2008,14(7): 685-98.
    [22] Pastorek J, Pastorekova S, Callebaut I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment [J]. Oncogene, 1994, 9(10): 2877-88.
    [23] Svastova E, Zilka N, Zat'ovicova M, et al. Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with p-catenin [J]. Experimental cell research, 2003, 290(2): 332-45.
    [24] Dorai T, Sawczuk I, Pastorek J, et al. Biological significance of over-expression of carbonic anhydrase IX in renal cell carcinoma: EGF-induced phosphorylation of carbonic anhydrase IX leads to activation of PI-3-kinase pathway in renal cell carcinoma [J]. Eur J Cancer, 2005, 41(1): 2935-47.
    [25] Leppilampi M, Saarnio J, Karttunen T, et al. Carbonic anhydrase isozymes IX and XII in gastric tumors [J]. World Journal of Gastroenterology, 2003, 9(7): 1398-403.
    [26] Saarnio J, Parkkila S, Parkkila A, et al. Transmembrane carbonic anhydrase, MN/CA IX, is a potential biomarker for biliary tumours [J]. J Hepatol, 2001, 35(5): 643-9.
    [27] Saarnio J, Parkkila S, Parkkila A, et al. Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in the epithelial cells with the highest proliferative capacity [J]. Journal of Histochemistry and Cytochemistry, 1998, 46(4): 497.
    [28] Kivela a J, Kivela J, Saarnio J, et al. Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours [J]. World J Gastroenterol, 2005, 11(2): 155-63.
    
    [29] Zavada J, Zavadova Z, Pastorek J, et al. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion [J]. British Journal of Cancer, 2000, 82(11): 1808-13.
    
    [30] Morgan P, Pastorekova S, Stuart-Tilley A, et al. Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters [J]. AJP-Cell Physiology, 2007, 293(2): C738--C48.
    
    [31] Tanaka N, Kato H, Inose T, et al. Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma [J]. Br J Cancer, 2008, 99(9): 1468-75.
    
    [32] Korkeila E, Talvinen K, Jaakkola P, et al. Expression of carbonic anhydrase IX suggests poor outcome in rectal cancer [J]. British Journal of Cancer, 2009, 100(6): 874-80.
    
    [33] Kim J Y, Shin H J, Kim T H, et al. Tumor-associated carbonic anhydrases are linked to metastases in primary cervical cancer [J]. J Cancer Res Clin Oncol, 2006, 132(5): 302-8.
    [34] Chia S, Wykoff C, Watson P, et al. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma [J]. Journal of Clinical Oncology, 2001,19(16): 3660-8.
    [35] Bui M, Seligson D, Han K, et al. Carbonic anhydrase DC is an independent predictor of survival in advanced renal clear cell carcinoma implications for prognosis and therapy [M]. AACR. 2003: 802-11.
    [36] Haapasalo J, Nordfors K, Hilvo M, et al. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis [J]. Clinical Cancer Research, 2006,12(2): 473-7.
    [37] Giatromanolaki A, Koukourakis M, Sivridis E, et al. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer [J]. Cancer Research 2001,61(21): 7992-8.
    [38] Hoskin P, Sibtain A, Daley F, et al. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON [J]. British Journal of Cancer, 2003, 89(7): 1290-7.
    [39] Maseide K, Kandel R, Bell R, et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma [J]. Clinical Cancer Research, 2004, 10(13): 4464-71.
    [40] Hui E P, Chan a T C, Pezzella F, et al. Coexpression of Hypoxia-inducible Factors 1 {alpha} and 2{alpha}, Carbonic Anhydrase IX, and Vascular Endothelial Growth Factor in Nasopharyngeal Carcinoma and Relationship to Survival [J]. Clin Cancer Res, 2002, 8(8): 2595-604.
    [41] Bui M, Seligson D, Han K, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy [J]. Clin Cancer Res, 2003, 9(2): 802-11.
    [42] Atkins M, Regan M, Mcdermott D, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer [J]. Clinical cancer research: an official journal of the American Association for Cancer Research, 2005,11(10): 3714-21.
    [43] Driessen A, Landuyt W, Pastorekova S, et al. Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas [J]. Annals of surgery, 2006, 243(3): 334-40.
    [44] Svastova E, Hulikova A, Rafajova M, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH [J]. FEBS letters, 2004, 577(3): 439-45.
    [45] Stubbs M, Mcsheehy P, Griffiths J, et al. Causes and consequences of tumour acidity and implications for treatment [J]. Molecular Medicine Today, 2000, 6(1): 15-9.
    [46] Cho M, Grabmaier K, Kitahori Y, et al. Activation of the MN/CA9 gene is associated with hypomethylation in human renal cell carcinoma cell lines [J]. Molecular Carcinogenesis, 2000,27(3): 184-9.
    [47] Ashida S, Nishimori I, Tanimura M, et al. Effects of von Hippel-Lindau gene mutation and methylation status on expression of transmembrane carbonic anhydrases in renal cell carcinoma [J]. Journal of Cancer Research and Clinical Oncology, 2002, 128(10): 561-8.
    [48] Kaluz S, Kaluzova M, Chrastina A, et al. Lowered Oxygen Tension Induces Expression of the Hypoxia Marker MN/Carbonic Anhydrase IX in the Absence of Hypoxia-inducible Factor 1α Stabilization A Role for Phosphatidylinositol 3'-Kinase 1 [J]. Cancer Research, 2002, 62(15): 4469-77.
    [49] Kopacek J, Barathova M, Dequiedt F, et al. MAPK pathway contributes to density-and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX [J]. BBA-Gene Structure and Expression, 2005, 1729(1): 41-9.
    [50] Liao S, Ivanov S, Ivanova A, et al. Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CAXII) in glaucoma [J]. Journal of Medical Genetics, 2003, 40(4): 257-61.
    [51] Liao S-Y, Lerman M, Stanbridge E. Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development [J]. BMC Developmental Biology, 2009, 9(1): 22.
    [52] Ivanov S, Liao S, Ivanova A, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer [J]. The American journal of pathology, 2001, 158(3): 905-19.
    [53] Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene [J]. Science, 1993, 260(5112): 1317-20.
    [54]Chiche J,Ilc K,Laferriere J,et al.Hypoxia-Inducible Carbonic Anhydrase Ⅸand Ⅻ Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH[J].Cancer Research,2009,69(1):358-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700