低能射线法油水气相含率测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油的生产、加工、输运等过程都与多相流有关,准确测量油水气多相流对监测油井生产状况、预测油田储量、优化油田开采方法、管理原油生产过程等有着重要意义。由于油水气多相流在管道流动时存在多种流型以及原油成分、水矿化度、介质温度等不断变化,油水气多相流测量一直是难于解决的问题。
     本文采用低能(<100keV)射线研究油水气多相流相含率测量问题,应用双能射线透射法和单能射线透射散射法测量油水气相含率。采用双能射线测量低含水原油的水相含率。通过散射射线能谱识别垂直管道气液两相流的流型,修正流型对双能射线法气相含率测量的影响。
     论文在分析射线法油水相含率测量模型的基础上,应用Monte Carlo仿真方法模拟γ光子与油水气介质的相互作用过程,对系统进行优化设计。通过仿真研究射线能量与灵敏度、统计误差的关系,发现低能γ射线对油水变化的灵敏度高,确定双能射线源采用238Pu和241Am同位素,单能射线源采用241Am同位素;研究散射探测器位置与散射射线能量分布的关系,确定散射探测器在90°散射角位置时能够反映管道流体的流态;分析了温度、压力和油成分变化对低含水原油水相含率的影响,建立了温度和油成分变化的补偿算法。
     应用散射射线能谱分布识别气液两相流型,补偿双能射线透射法气相含率的测量误差。仿真获得了均匀混合流、环状流和弹状流三种流型产生的散射射线能量概率分布数据,应用RBF网络对三种流型进行识别,均匀混合流和环状流的识别率为100%,应用流型识别结果修正环状流对双能射线气相含率测量的影响。采用RBF神经网络预测γ射线透射散射法的水相含率和气相含率,与双能射线模型近似求解相比,提高了相含率测量的精度。
     建立了油水气相含率测量实验系统。根据射线源和探测器的规格设计了测量装置的机械结构,进行了探测器输出信号放大成形电路和计数卡电路设计,开发了基于Windows驱动模型的计算机精确定时模块,减小了定时误差对射线强度计数值的影响,通过计算机进行数据采集与处理,用于油水气相含率测量实验。
     在循环测量装置上进行了双能射线油水气相含率测量、单能射线透射散射法油水气相含率测量和低含水原油水相含率测量试验,实验表明,双能射线法含水率和气相含率的最大绝对误差均小于0.01;单能射线透射散射法预测含水率最大绝对误差为0.04,预测气相含率最大绝对误差为0.02;双能射线法低含水原油水相含率测量精度高,温度、油成分变化对水相含率测量的影响通过算法进行补偿,补偿后的水相含率最大绝对误差小于0.002。
Multiphase flows are common in the petroleum industry, and it is related to oil extraction, transportation and refining processes. It is important to measure oil water and gas volume fractons for monitoring oil well, predicating oil reserves, optimizing oil extraction methods and managing oil production. The fact is that there are many different flow regimes in the pipe flow and the mixtures’s temperature and salinity are contantly change at the same time, so it’s always a difficult problem to measure oil water and gas volume frations.
     This paper studies on the oil, water and gas volume fraction measurement based on low energy radiation which less than 100keV. The phase fraction of crude oil measured by dual energies radiation transmission methods and single energy radiation transmission and scattering methods. The flow pattern recognition of gas-liquid two-phase flow in vertical pipe was studied by measuring gamma-ray scattering spectrum. The result of the flow recognition was used to compensate the effects of the flow pattern on the gas phase volume fraction measurement of dual energies radiation method.
     The paper introduces the models of oil, water and gas volume phase fraction using radiation method. In order to optimize system design, the particle transport process for oil, water and gas volume phase fraction measurement were simulated by using Monte Carlo method. The sensitivity and statistical errors with radiation energies were researched by the simulation software, and it found that low energy gamma-ray has high sensitivity for oil and water medium. So the dual energies radiation source is compose of 238Pu and 241Am isotope and single energy radiation source choices 241Am isotope by taking into the source’s half-life. In order to determine scattering detector position, the energies distribution of scattering ray with the scattering detector location were studied. The results show that the scattering detector can reflect the fluid state of pipeline when it located on source-transmission detector vertical position. The effects of temperature, pressure and oil contents change on water volume fraction measurement of dehydrated oil were analysed. The compensation algorithms for temperature and oil content change were found.
     The errors of gas volume fraction caused by the flow pattern were correctted by the scattering ray energy spectrum for the dual energies radiation. The scattering ray energy probability distribution of the homogeneous mixed flow, annular flow and slug flow in vertical pipeline were obtained by simulation method. The flow patterns were identified by RBF neural network using simulation data. The results show that the homogeneous mixing flow and annular flow can be completely seperated. The effects of annular flow on gas volume fraction can be corrected by the compensation algorithm. The phase fraction of gamma-ray tansmission and scattering method were predicted by RBF neural network. The precision of phase fraction were increased comparison with dual energies algorithm.
     The oil, water and gas measurement system were setup. The measuring device mechanical structure was designed according to the radiation source and detector’s specifications. The pusle shaping amplifier circuit for detector output and the computer counting cards were designed. The precise timing codes were developed by using windows driver model. The efftect of timing error on phase volume fration measurement can be reduced. The computer was used for the data acquiring and processing.
     The experiments for the dual energies ray method, single energy gamma ray transmission and scattering method and low water content crude oil measurement were implemented in the measuring device. The experimental results show that the maxinum absolute error of water cut is less than 0.01 and the maxinum absolute error of gas volume fraction is less than 0.01 by using dual energies ray method; The maxinum absolute error of water cut is 0.04 and the maxinum absolute error of gas volume fraction is 0.02 by using the single energy gamma-ray transmission and scattering method; The precision of of water volume fraction for low water content crude oil has been improved when using dual energies ray. The effects of temperature and oil composition changing on low water content crude oil can be compensated by some algorithms and the maxinum absolute error of water volume fraction is less than 0.002.
引文
1 R. Thorn, G. A. Johansen, E. A. Hammer. Three-Phase Flow Measurement in the Offshore Oil Industry Is There a Place for Process Tomography? 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, 1999. 1999: 228-235
    2 R. Thorn, G. A. Johansen, E. A. Hammer. Recent Developments in Three-Phase Flow Measurement. Measurement Science and Technology, 1997, 8(7):691-701
    3 G. Falcone, G. F. Hewitt, C. Alimonti, et al. Multiphase Flow Metering: Current Trends and Future Developments. Journal of Petroleum Technology, 2002, 54(4):77-84
    4 I. M. M. Babelli. In Search of an Ideal Multiphase Flow Meter for the Oil Industry. The Arabian Journal for Science and Engineering, 2002, 27(2B):113-126
    5 C. T. Crowe. Multiphase Flow Handbook. Boca Raton: CRC Press, 2006: 1-3
    6 C. E. Brennen. Fundamentals of Multiphase Flow. New York: Cambridge University Press, 2005: 1-2
    7 G. Oddie, J. R. A. Pearson. Flow-Rate Measurement in Two-Phase Flow. Annual Review of Fluid Mechanics, 2004, 36(1):149-172
    8劳力云,郑之初,吴应湘,等.关于气液两相流流型及其判别的若干问题.力学进展, 2002, 32(2):235-249
    9 J. M. Mandhane, G. A. Gregory, K. Aziz. A Flow Pattern Map for Gas--Liquid Flow in Horizontal Pipes. International Journal of Multiphase Flow, 1974, 1(4):537-553
    10 J. Weisman, S. Y. Kang. Flow Pattern Transitions in Vertical and Upwardly Inclined Lines. International Journal of Multiphase Flow, 1981, 7(3):271-291
    11白博峰,王忠勇,郭烈锦,等.多相流流型识别技术与系统开发.西安交通大学学报, 2003, 37(3):306-309
    12 C. T. Crowe, M. Sommerfeld, Y. Tsuji. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 1997: 17-20
    13 A. Jaworek, A. Krupa. Gas/Liquid Ratio Measurements by Rf Resonance Capacitance Sensor. Sensors and Actuators A: Physical, 2004, 113(2):133-139
    14 H. Ahmed. Capacitance Sensors for Void-Fraction Measurements and Flow-Fattern Identificationin Air-Oil Two-Phase Flow. Sensors Journal, IEEE, 2006, 6(5):1153-1163
    15 J. C. Gamio, J. Castro, L. Rivera, et al. Visualisation of Gas-Oil Two-Phase Flows in Pressurised Pipes Using Electrical Capacitance Tomography. Flow Measurement and Instrumentation, 2005, 16(2-3):129-134
    16 H. Zhiyao, W. Baoliang, L. Haiqing. Application of Electrical Capacitance Tomography to the Void Fraction Measurement of Two-Phase Flow. Instrumentation and Measurement, IEEE Transactions on, 2003, 52(1):7-12
    17 W. Mi, M. Yixin, N. Holliday, et al. A High-Performance Eit System. Sensors Journal, IEEE, 2005, 5(2):289-299
    18 O. Lund Bo, E. Nyfors. Application of Microwave Spectroscopy for the Detection of Water Fraction and Water Salinity in Water/Oil/Gas Pipe Flow. Journal of Non-Crystalline Solids, 2002, 305(1-3):345-353
    19 W. Wangjiraniran, M. Aritomi, H. Kikura, et al. A Study of Non-Symmetric Air Water Flow Using Wire Mesh Sensor. Experimental Thermal and Fluid Science, 2005, 29(3):315-322
    20 H. Pietruske, H.-M. Prasser. Wire-Mesh Sensors for High-Resolving Two-Phase Flow Studies at High Pressures and Temperatures. Flow Measurement and Instrumentation, 2007, 18(2):87-94
    21 A. Cartellier. Optical Probes for Multiphase Flow Characterization: Some Recent Improvements. Chemical Engineering and Technology, 2001, 24(5):535-538
    22 R. T. Ramos, E. J. Fordham. Oblique-Tip Fiber-Optic Sensors for Multiphase Fluid Discrimination. Journal of Lightwave Technology, 1999, 17(8):1392-1400
    23王进旗,强锡富,于英华.基于相位法原油含水率仪的实验研究.计量学报, 2004, 25(4):366-368
    24 J. K. Hartwell, R. J. Gehrke, M. E. M. Ilwain. Performance Comparison of Four Compact Room-Temperature Detectors-Two Cadmium Zinc Telluride (Czt) Semiconductor Detectors, a Lacl/Sub 3/(Ce) Scintillator, and an Nai(Tl) Scintillator. Nuclear Science, IEEE Transactions on, 2005, 52(5):1813-1818
    25 M. Gierlik, T. Batsch, M. Moszynski, et al. Comparative Study of Large Nai(Tl) and Bgo Scintillators for the European Illicit Trafficking Countermeasures Kit Project. Nuclear Science, IEEE Transactions on, 2006, 53(3):1737-1743
    26 G. A. Johansen, E. Abro. Advances in Nuclear Radiation Detectors for Fluid Flow Measurement.Advances in Sensors for Fluid Flow Measurement, IEE Colloquium on, London, UK, 1996. IEE, Stevenage, England, 1996: 10/11-10/13
    27 O. M. H. Rodriguez, R. V. A. Oliemans. Experimental Study on Oil-Water Flow in Horizontal and Slightly Inclined Pipes. International Journal of Multiphase Flow, 2006, 32(3):323-343
    28孙普男.智能一体化原油含水率检测仪的研制与应用.核技术, 2003, 16(11):879-882
    29白秋果,张学斌,景春国,等.Γ射线原油低含水率测量仪.核电子学与探测技术, 2000, 20(4):269-271
    30 C. S. Eberle, W. H. Leung, M. Ishii, et al. Optimization of a One-Shot Gamma Densitometer for Measuring Area-Averaged Void Fractions of Gas-Liquid Flows in Narrow Pipelines. Measurement Science and Technology, 1994, 5(9):1146-1158
    31 Z. Li, Y. Wu, D. Li. Gamma-Ray Attenuation Technique for Measuring Void Fraction in Horizontal Gas-Liquid Two-Phase Flow. Nuclear Science and Techniques, 2007, 18(2):73-76
    32 P. Stahl, P. R. von Rohr. On the Accuracy of Void Fraction Measurements by Single-Beam Gamma-Densitometry for Gas-Liquid Two-Phase Flows in Pipes. Experimental Thermal and Fluid Science, 2004, 28(6):533-544
    33 J. B. Fitzgerald, K. E. Stephenson. Continuous Gamma-Ray Densitometry in a Borehole Flow Meter. Nuclear Science Symposium Conference, Portland, Oregon, USA, 2003. IEEE Press, 2003, 732: 732-736
    34 S. A. Tjugum, B. T. Hjertaker, G. A. Johansen. Multiphase Flow Regime Identification by Multibeam Gamma-Ray Densitometry. Measurement Science and Technology, 2002, 13(8):1319-1326
    35 M. S. A. Abouelwafa, E. J. M. Kendall. The Measurement of Component Ratios in Multiphase Systems Using Gamma -Ray Attenuation. Journal of Physics E: Scientific Instruments, 1980, 13(3):341-345
    36 J. S. Watt, H. W. Zastawny, M. D. Rebgetz, et al. Determination of Flow Velocity of the Liquids in Oil/Water/Gas Mixtures by Dual Energy Gamma-Ray Transmission. Nuclear Geophysics, 1991, 5(4):469-477
    37 N. G. Cutmore, J. E. Eberhardt, B. D. Sowerby, et al. On-Line Measurement of Composition for the Australian Mineral and Energy Industries, Brussels, Belgium, 1996. IEEE, Piscataway, NJ, USA, 1996: 330-334
    38 G. J. Roach, J. S. Watt, H. W. Zastawny, et al. Multiphase Flowmeter for Oil, Water and Gas in Pipelines Based on Gamma-Ray Transmission Techniques. Nuclear Geophysics, 1994, 8(3):225-242
    39 P. E. Hartley, G. J. Roach, D. Stewart, et al. Trial of a Gamma-Ray Multiphase Flow Meter on the West Kingfish Oil Platform. International Journal of Multiphase Flow, 1996, 22(1001):137-137
    40 G. J. Roach, J. S. Watt, H. W. Zastawny, et al. Field Trial of a Gamma-Ray Multiphase Flow Meter on Thevenard Island. Nuclear Geophysics, 1995, 9(1):1-17
    41梁法春,王栋,林宗虎.基于神经网络的水平管三相分层流相分率测量.西安交通大学学报, 2004, 38(7):750-753
    42 Z.-B. Li, Y.-X. Wu, D.-H. Li. Studies on Absorption Coefficients of Dual-Energy Gamma-Rays and Measuring Error Correction for Multiphase Fraction Determination. Nuclear Science and Techniques, 2006, 17(2):86-91
    43 D. H. Li, Y. X. Wu, Z. H. Li, et al. Volumetric Fraction Measurement in Oil-Water-Gas Multiphase Flow with Dual Energy Gamma-Ray System. Journal of Zhejiang University Science(Science in Engineerin), 2005, 6A(12):1405-1411
    44 Z. H. Li, D. H. Li, Y. X. Wu. Study on Absorption Coefficients of Dual-EnergyΓ-Rays in Determining Phase Fractions of Multiphase Flows. Journal of Zhejiang University Science(Science in Engineerin), 2005, 6A(12):1416-1419
    45白秋果,张学斌,景春国.双能γ射线透射法测原油含水含气的分析与计量系统.核电子学与探测技术, 2000, 20(3):187-190
    46白秋果,景春国,舒冬梅.利用γ射线测量原油含水率和含气率的数学算法分析.核电子学与探测技术, 2002, 22(3):225-227
    47郭余峰.利用放射线测量油管中的原油密度和含水率.大庆石油学院学报, 2003, 27(3):115-117
    48王化祥,郝魁红,徐丽荣,等.多相流分相含率检测.仪器仪表学报, 2004, 25(3):336-339
    49郝魁红,王化祥,潘勇.射线法两相流测量的动态误差研究.核电子学与探测技术, 2004, 24(6):594-597
    50郝魁红,王化祥,潘勇.基于241am-Ag源的相含率测试用的快速分析系统和方法.核电子学与探测技术, 2004, 24(5):477-480
    51 C. M. Bishop, G. D. James. Analysis of Multiphase Flows Using Dual-Energy GammaDensitometry and Neural Networks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 327(2-3):580-593
    52 C. M. Bishop. Neural Network Validation: An Illustration from the Monitoring of Multi-Phase Flows, Brighton, UK, 1993. IEE, 1993: 41-45
    53 B. G. Pinguet, G. Roux, N. Hopman. Field Experience in Multiphase Gas-Well Testing: The Benefit of the Combination of Venturi and Gamma Ray Fraction Meter. SPE Annual Technical Conference and Exhibition, San Antonio, TX, United States, 2006. Society of Petroleum Engineers (SPE), Richardson, TX 75083-3836, United States, 2006: 4481-4490
    54 B. C. Theuveny, G. Segeral, B. Pinguet. Multiphase Flowmeters in Well Testing Applications, New Orleans, LA, United States, 2001. Society of Petroleum Engineers (SPE), 2001: 1305-1319
    55 P. B. Warren, K. H. Al-Dusari, M. Zabihi, et al. Field-Testing a Compact Multiphase Flow Meter - Offshore Saudi Arabia. SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. Society of Petroleum Engineers (SPE), 2003: 1-6
    56 M. M. Hassan, M. Bekkoucha, M. Abukhader. Production Well Testing Optimization Using Multiphase Flow Meters (Mpfm), Abu Dhabi, United Arab Emirates, 2006. Society of Petroleum Engineers, Richardson, TX 75083-3836, United States, 2006: 658-662
    57 N. M. Al Araimi, N. K. Jha, S. Al Zakwani. Exploration Well Testing with a Venturi/Dual Energy Gamma Ray Multiphase Flow Meter - a Case Study from Oman. 2005 SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, India, 2005. Society of Petroleum Engineers (SPE), Richardson, TX 75083-3836, United States, 2005: 505-512
    58 E. Delvaux, B. Germond, N. K. Jha. Combination of Dual-Energy Gamma Ray/Venturi Multiphase Flowmeter and Phase Splitter for Application in Very High Gas Volume Fraction Environment. 11th ADIPEC: Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 2004. Society of Petroleum Engineers (SPE), Richardson, TX 75083-3836, United States, 2004: 731-738
    59 V. R. Bom, M. C. Clarijs, C. W. E. van Eijk, et al. Accuracy Aspects in Multiphase Flow Metering Using X-Ray Transmission. Nuclear Science, IEEE Transactions on, 2001, 48(6):2335-2339
    60 H. Van Santen, Z. I. Kolar, A. M. Scheers. Photon Energy Selection for Dual Energy Gamma-Ray and/or X-Ray Absorption Composition Measurements in Oil-Water-Gas Mixtures. NuclearGeophysics, 1995, 9(3):193-202
    61 H. Van Santen, Z. I. Kolar. Using a Third Photon Energy for Gamma-and/or X-Ray Composition Measurements in Oil--Water--Gas Mixtures. Nuclear Geophysics, 1995, 9(5):413-423
    62 A. M. Scheers, W. F. J. Slijkerman. Multiphase Flow Measurement Using Multiple Energy Gamma Ray Absorption (Megra) Composition Measurement. Proceedings of the 1996 SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 1996. Society of Petroleum Engineers 1996: 203-211
    63 E. Elias, Y. Ben-Haim. Determination of Spatial Distribution in Two-Phase Flow Using Scattered Gamma Radiation. Nuclear Engineering and Design, 1980, 59(2):433-441
    64 P. Gebureck, H. P. Klanke, V. Martens, et al. Measurement of Volumetric Steam Content in Two Phase Flows with the Help of the Gamma-Compton-Radiation, Berlin, West Germany, 1983. Deutsches Atomforum, 1983: 77-80
    65 R. D. Luggar, M. J. Key, E. J. Morton, et al. Energy Dispersive X-Ray Scatter for Measurement of Oil/Water Ratios. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422(1-3):938-941
    66 E. Abro, G. A. Johansen. Improved Void Fraction Determination by Means of Multibeam Gamma-Ray Attenuation Measurements. Flow Measurement and Instrumentation, 1999, 10(2):99-108
    67 S.-A. Tjugum, J. Frieling, G. A. Johansen. A Compact Low Energy Multibeam Gamma-Ray Densitometer for Pipe-Flow Measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 197(3-4):301-309
    68 E. Abro, V. A. Khoryakov, G. A. Johansen, et al. Determination of Void Fraction and Flow Regime Using a Neural Network Trained on Simulated Data Based on Gamma-Ray Densitometry. Measurement Science and Technology, 1999, 10(7):619-630
    69 G. A. Johansen, P. Jackson. Salinity Independent Measurement of Gas Volume Fraction in Oil/Gas/Water Pipe Flows. Applied Radiation and Isotopes, 2000, 53(4-5):595-601
    70 S. A. Tjugum, G. A. Johansen, M. B. Holstad. The Use of Gamma Radiation in Fluid Flow Measurements. Radiation Physics and Chemistry, 2001, 61(3-6):797-798
    71 M. B. Holstad, G. A. Johansen. Produced Water Characterization by Dual Modality Gamma-Ray Measurements. Measurement Science and Technology, 2005, 16(4):1007-1013
    72 G. A. Johansen. Nuclear Tomography Methods in Industry. Nuclear Physics A, 2005, 752:696-705
    73郝魁红,王化祥,高梅.基于γ射线多相流成像系统图像重建算法.核电子学与探测技术, 2007, 27(2):184-186
    74 T. Froystein, H. Kvandal, H. Aakre. Dual Energy Gamma Tomography System for High Pressure Multiphase Flow. Flow Measurement and Instrumentation, 2005, 16(2-3):99-112
    75 S. Roy, M. Al-Dahhan. Flow Distribution Characteristics of a Gas-Liquid Monolith Reactor. Catalysis Today, 2005, 105(3-4):396-400
    76 B. T. Hjertaker, S. A. Tjugum, E. A. Hammer, et al. Multimodality Tomography for Multiphase Hydrocarbon Flow Measurements. Sensors Journal, IEEE, 2005, 5(2):153-160
    77 B. Hu, C. Stewart, C. Hale, et al. Development of an X-Ray Computed Tomography (Ct) System with Sparse Sources: Application to Three-Phase Pipe Flow Visualization. Experiments in Fluids, 2005, 39(4):667-678
    78 G. D. Harvel, K. Hori, K. Kawanishi, et al. Cross-Sectional Void Fraction Distribution Measurements in a Vertical Annulus Two-Phase Flow by High Speed X-Ray Computed Tomography and Real-Time Neutron Radiography Techniques. Flow Measurement and Instrumentation, 1999, 10(4):259-266
    79 H. M. Prasser, M. Misawa, I. Tiseanu. Comparison between Wire-Mesh Sensor and Ultra-Fast X-Ray Tomograph for an Air-Water Flow in a Vertical Pipe. Flow Measurement and Instrumentation, 2005, 16(2-3):73-83
    80 M. H. Younis, T. W. Hoffmann, A. A. Harms. Neutron Diagnosis of Two-Phase Flow. Nuclear Instruments and Methods, 1981, 187(2-3):489-497
    81 A. C. Butterworth, D. R. Weaver. Void Distribution Estimation Using a Neutron Scattering Gauge. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 336(1-2):278-284
    82 E. M. A. Hussein, P. Han. Phase Volume-Fraction Measurement in Oil-Water-Gas Flow Using Fast Neutrons. International Journal of Multiphase Flow, 1996, 22(1001):137-137
    83 K. Mishima, T. Hibiki, H. Nishihara. Visualization and Measurement of Two-Phase Flow by Using Neutron Radiography. Nuclear Engineering and Design, 1997, 175(1-2):25-35
    84 N. Takenaka, H. Asano. Quantitative Void Fraction Measurement Method by Neutron Radiography and Applications to Two-Phase Flow Researches. Experimental Thermal and FluidScience, 2005, 29(3):393-402
    85 N. Takenaka, H. Asano. Quantitative Ct-Reconstruction of Void Fraction Distributions in Two-Phase Flow by Neutron Radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3):387-391
    86 H. Asano, N. Takenaka, T. Fujii, et al. Visualization and Void Fraction Measurement of Gas-Liquid Two-Phase Flow in a Commercial Plate Heat Exchanger by Thermal Neutron Radiography. Nuclear Science, IEEE Transactions on, 2005, 52(1):280-284
    87 J. E. Cha, I. C. Lim, C. M. Sim, et al. Observation of the Two-Phase Flow Patterns for a Finned Assembly Using Neutron Radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3):175-180
    88 I. C. Lim, C. M. Sim, J. E. Cha, et al. Measurement of the Void Fraction in a Channel Simulating the Hanaro Fuel Assembly Using Neutron Radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1-3):181-186
    89 A. Ouardi, D. Benchekroun, A. Hoummada, et al. Geant Simulation of the Gamma Nuclear Gauge. Nuclear Science, IEEE Transactions on, 2003, 50(4):1257-1270
    90李正平,吴瑞生,阴泽杰,等. Monte Carlo方法设计的泥浆密度测试系统.中国科学技术大学学报, 2005, 35(5):639-644
    91李正平,阴泽杰,吴瑞生,等.Γ射线密度测量系统灵敏度的数值模拟.核技术, 2005, 28(3):236-238
    92 T. Oishi, M. Tsutsumi, T. Sugita, et al. An Egs4 User Code Developed for Design and Optimization of Gamma-Ray Detection Systems. Journal of Nuclear Science and Technology, 2003, 40(6):441-445
    93 E. Abro, G. A. Johansen, H. Opedal. A Radiation Transport Model as a Design Tool for Gamma Densitometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 431(1-2):347-355
    94 L. M. N. Tavora, W. B. Gilboy. Study of Compton Scattering Signals in Single-Sided Imaging Applications Using Monte Carlo Methods. Nuclear Instruments and Methods in Physics ResearchSection B: Beam Interactions with Materials and Atoms, 2004, 213:155-161
    95廖义香,张文星,龚学余. MCNP程序在ads屏蔽计算中的应用.原子能科学技术, 2004, 38(6):526-529
    96 K. Wegmann, L. E. Adam, L. Livieratos, et al. Investigation of the Scatter Contribution in Single Photon Transmission Measurements by Means of Monte Carlo Simulations. Nuclear Science, IEEE Transactions on, 1999, 46(4):1184-1190
    97 R. A. Forster, L. J. Cox, R. F. Barrett, et al. Mcnp(Tm) Version 5. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 213:82-86
    98 G. W. McKinney, J. W. Durkee, J. S. Hendricks, et al. Mcnpx Features for 2006. Transactions of the American Nuclear Society, 2006, 95:674-676
    99 L. S. Waters, G. W. McKinney, J. W. Durkee, et al. The Mcnpx Monte Carlo Radiation Transport Code. 1in, Batavia, IL, USA, 2007. AIP, 2007: 81-90
    100 S. Agostinelli, J. Allison, K. Amako, et al. G4--a Simulation Toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3):250-303
    101 J. Allison, K. Amako, J. Apostolakis, et al. Geant4 Developments and Applications. Nuclear Science, IEEE Transactions on, 2006, 53(1):270-278
    102 S. Chauvie, S. Guatelli, V. Ivanchenko, et al. Geant4 Low Energy Electromagnetic Physics. Nuclear Science Symposium Conference Record, 2004 IEEE, Rome, Italy, 2004. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2004, 1883: 1881-1885
    103 I. Kawrakow. Accurate Condensed History Monte Carlo Simulation of Electron Transport. I. Egsnrc, the New Egs4 Version. Medical Physics, 2000, 27(3):485-498
    104 Y. Mi, M. Ishii, L. H. Tsoukalas. Vertical Two-Phase Flow Identification Using Advanced Instrumentation and Neural Networks. Nuclear Engineering and Design, 1998, 184(2-3):409-420
    105 Y. Mi, M. Ishii, L. H. Tsoukalas. Flow Regime Identification Methodology with Neural Networks and Two-Phase Flow Models. Nuclear Engineering and Design, 2001, 204(1-3):87-100
    106 L. F. C. Jeanmeure, T. Dyakowski, W. B. J. Zimmerman, et al. Direct Flow-Pattern Identification Using Electrical Capacitance Tomography. Experimental Thermal and Fluid Science, 2002,26(6-7):763-773
    107 D. Xie, H. Ji, Z. Huang, et al. An Online Flow Pattern Identification System for Gas-Oil Two-Phase Flow Using Electrical Capacitance Tomography. Instrumentation and Measurement Technology Conference, Como, Italy, 2004. IEEE Press, 2004, 2323: 2320-2325
    108 D. Feng, J. Zhi-Xu. Application of Electrical Resistance Tomography to Identification Two-Phase Flow Regime. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, China, 2003. 2003, 2214: 2217-2222
    109 H. Wu, F. Zhou, Y. Wu. Intelligent Identification System of Flow Regime of Oil-Gas-Water Multiphase Flow. International Journal of Multiphase Flow, 2001, 27(3):459-475
    110艾宪芸,魏义祥.室温半导体cdznte(Cdte)探测器性能综述.核电子学与探测技术, 2004, 24(3):325-328
    111 A. Owens, T. Buslaps, C. Erd, et al. Hard X- and [Gamma]-Ray Measurements with a 3x3x2 Mm3 Cdznte Detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 563(1):268-273
    112郝魁红,王化祥,马敏,等. Cdznte探测器在便携式探测仪中的设计应用研究.仪器仪表学报, 2007, 28(1):95-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700