末修子弹若干关键动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高我国弹道导弹的远程攻击线目标的能力,迫切需要研发以弹道导弹为应用平台的有控子母战斗部技术。本文重点研究了末修子弹研制设计之中亟待解决的关键动力学问题。论文的数值仿真结果与试验数据较吻合,证明了本文方法的正确性和有效性。
     在系统研究脉冲修正子弹工作原理的基础上,设计了末修子弹的总体方案。首先研究了子弹的总体结构、基本组成、末修控制方法和子弹工作过程等;然后以某导弹为运载平台,分析设计了末修子弹的主要弹道参数;最后采用Monte-Carlo法研究了两种典型方案的命中概率,其结论为总体方案论证提供了有力支撑。
     降落伞—子弹系统具有复杂的空气动力学特性,系统下落速度与子弹转速的变化对子弹命中精度影响很大。在准定常假设下,忽略降落伞、伞绳和子弹流场之间的相互影响,综合应用伞—弹系统动力学和计算流体动力学对伞—弹系统进行数值模拟。子弹落速和转速的数值仿真曲线与空投试验结果吻合较好。该方法具有一定通用性,可应用于伞—弹系统设计分析和指导伞—弹系统投放试验。
     为了利用子弹运动学消除由子弹晃动所造成的目标识别中的偏差,首先建立了末修子弹系统在扫描阶段的十二自由度动力学模型,利用扰动方法研究了参考运动状态的运动稳定性,给出了运动稳定性条件,分析了关键几何参数对系统运动稳定性的影响;然后建立了稳定下落状态下伞—弹系统九自由度动力学模型,推导了阵风扰动作用下的线性化系统近似动力学方程,提出了融合伞—弹系统动力学的图像目标识别算法;最后,利用空投试验验证了该算法的正确性和有效性。
     针对外场高空飞艇投放系留试验,建立了基于Kane法的飞艇—绳索—子弹系统的开链式多刚体动力学模型,提出了一种开链式多刚体系统的CFA快速仿真算法。仿真分析了系留子弹的动力学特征。
     本篇论文的研究成果不仅已成功应用于某新型末修子弹的研制设计之中,并且还可指导其它类似型号的研制设计工作。
In order to improve ballistic missile ability of long-range attacking linear targets, it is urgent to develop the controlled warhead taken by ballistic missile. Some key dynamics problems, which are important in the design and analysis of the terminal correction submunition (TCS), are studied in this thesis. Simulation results are comparative with flight test data, which confirms the correctness and availability of the method.
     On the basis of the working theory of impulse correction submunition, general system design of TCS is introduced in detail. The structure configuration, the terminal control method and the working process of TCS are designed. An analysis of main ballistic parameters of TCS, which is taken by ballistic missile, are proposed. The firing effectiveness of TCS is calculated by the method of Monte-Carlo, which can provide the foundation for the general design of TCS.
     The dynamic characteristic of parachute-bomb system is extremely complex. The velocity and spinning speed of the parachute-bomb system have impact on the precision of submunition. Under the hypothesis of quasi-steady state, the dynamic principles and the Computational Fluid Dynamics (CFD) are colligated to analyze and simulate the parachute-bomb system when there is no interaction of the parachute canopy, the suspension lines and the spinning bomb. The velocity and spinning speed of the parachute-bomb system are attained. The simulation results are consistent with the airdrop test data, which demonstrates the accuracy of the numerical simulation model. This method can be used in the design of the parachute-bomb system, as well as the airdrop experiment of parachute-bomb systems.
     With the purpose of reducing the deviation of object identification owing to the sloshing movement of submunition, the twelve-degree freedom dynamic model of the parachute system is developed for the analysis of bomb scanning state. The condition of stability is put forward, and the influences of some key parameters are also analyzed. Aiming at removing the influence of wind gust, the nine-degree freedom dynamic model of the parachute system is developed firstly, then five-degree freedom dynamic model by linearization about the steady state is proposed. Using the principles of dynamics of parachute systems, a new method is brought forward which could be used in target identification. Successful airdrop test demonstrates the rightness and feasibility of this method which can be used in the guidance of smart submunition systems.
     Using Kane's method, a dynamical model of numerical simulation is built, which can solve the problem of airdrop tether test system. A constraint force algorithm (CFA) is constructed for the simulation of a kind of open chain multi-rigid-body system. Numerical results validate the experimentation of airdrop in Airship-towed system. And CFA can also be applied to solve the problem of tether dynamics in other fields.
     Results of this dissertation not only have been successfully applied in the design of a new submunition, but also can provide analysis and demonstrating methods for other similitude system design.
引文
[1] Riggins. Brilliant Attack: The need for autonomous standoff weapon in airfield attack missions. AD-A293645. 1994.
    [2] C. Beal, B. Sweetman. Bolt from the blue standoff weapon development.International Defense Review, 1992, (8).
    [3] K. Alder. New hard-target munitions for the US Air Force. Armada International, 1989,(4).
    
    [4] V. P. Grimes. Is there life after TSSAM. Military Technology, 1995, (3).
    [5] H. Hilgendorf. Are Stand -off Air-to-Ground Weapons a Necessity. Military Technology, 1993, (6).
    [6] R. Braybrook. Not-to-close Encounters of the Air-to-Ground Kind. Armada International, 1996, (1).
    [7] D. Richardson. Missiles for the Morden Warplane. Asian Defence Journal,1996,(9).
    
    [8] T. Nash. Standoff and Deliver. Armada International, 1996, (4).
    [9] J. P. Philippe. The APACHE: Forerunner of a family of air-to-surface missiles.Military Technology, 1992, (5).
    [10] P. Turpin, J. P. Genest, N. Saidenberg. APACHE-An Up-to-Date European MSOW. Matra Defense, 1992, (5).
    [11] Dornier. Advanced standoff missiles for strike aircraft. Military Technology,1985,(3).
    [12] Ozan Tekinalp, Saadet Utalay. Simulated Annealing for Missile Trajectory Planning and Multidisciplinary Missile Design Optimization. AIAA 00-0684.2000.
    [13] Thomas L. Vincent, Ronald G. Cottrellj, Robert W. Morgan. Minimizing Maneuver Advantage Requirements for a Hit-to-kill Interceptor. AIAA 2001-4276.2001.
    [14] S. Subchan, R. Zbikowski. Minimum-time Optimal Trajectories for the Terminal Bunt Manoeuvre. AIAA 2005-5968. 2005.
    [15] Jeremy A. Hodgson. Trajectory Optimization Using Differential Inclusion to Minimize Uncertainty in Target Location Estimation. AIAA 2005-6187. 2005.
    [16] Tuomas Raivio, Jukka Ranta. Optimal Missile Avoidance Trajectory Synthesis in the endgame. AIAA 2002-4947. 2002.
    [17] Robert Windhorst. Aerospace Vehicle Trajectory Design and Optimization within a Multi-disciplinary Environment. AIAA 2004-704. 2004.
    [18] Chen Gang. Genetic Algorithm Optimization of RLV Reentry Trajectory. AIAA 2005-3269.2005.
    [19]Marat Mor,Eli Livne.Multidisciplinary Design Optimization of Reentry Vehicles:Trajectory Optimization and Sensitivities.AIAA 2006-1718.2006.
    [20]杨启仁编著.子母弹飞行动力学,北京:国防工业出版社,1999.6
    [21]薛晓中,孙传杰.简易制导炸弹方案弹道优化设计.兵工学报,2004,25(3):376-378.
    [22]黄鹃,陈森发,刘荣忠.基于神经网络和遗传算法的末敏弹系统效能参数优化设计.兵工学报,2004,25(3):257-260.
    [23]张涛,彭绍雄,宋贵宝.反舰巡航导弹弹道设计与优化探讨.飞航导弹,2002,(7):16-18.
    [24]张军挪,王军波,刘丽荣.滑翔增程炮弹弹道仿真与优化设计.军械工程学院学报,2003,15(2):42-45.
    [25]李响.导弹俯冲段弹道分析与最优设计.北京理工大学学报,2006,26(9):773-776.
    [26]刘莉,李怀建.机载布撒器滑翔方案弹道优化与方案弹道库设计.弹箭与制导学报,2004,24(3):61-64.
    [27]Gelb,R.S.Warren.Direct Statistical Analysis of Nonlinear Systems:CADET.AIAA Journal,1973,11(5):689-697.
    [28]R.S.Warran,C.F.Price,A.Gelb.Direct Statistical Evaluation of Nonlinear Guidance System.AIAA Guidance and Control Conference,KEY BISCAYNE,FLORIDA,1973.1-11.
    [29]R.Froriep,D.Joost.Stochastic Simulation Using Covariance Techniques:Modular Program Package for Nonlinear Missile Guidance.J.Guidance,1984,7(4):509-512.
    [30]骆连珍,徐明友,曹坚.随机风场作用下火箭弹散布的协方差分析描述函数法.弹道学报,1997,9(4):55-58,62.
    [31]金惠明,屈也频.协方差分析描述函数法在终端航空武器投放动态仿真研究中的应用.航空学报,1998,19(2):190-194.
    [32]康凤举,杨惠珍,贺聪芳.水下航行器半实物仿真精度统计的CADET法应用研究.系统仿真学报,1999,11(6):421-425.
    [33]李海平,钟瑞麟,魏岳等.导弹末制导精度分析的协方差方法研究.战术导弹技术,2004,(1):49-54.
    [34]郭齐胜,郅志刚,杨瑞平等.装备效能评估概论.北京:国防工业出版社,2005.
    [35]甄涛,王平均,张新民.地地导弹武器作战效能评估方法.北京:国防工业 出版社,2005
    [36]张青斌.载人飞船降落伞回收系统动力学研究[博士学位论文].国防科学技术大学,2003.
    [37]熊菁.翼伞系统动力学及归航方案研究[博士学位论文].国防科学技术大学,2005.
    [38]宋旭民.大型降落伞系统动力学及抽鞭现象研究[博士学位论文].国防科学技术大学,2006.
    [39]W.R.Botton.Trajectory Simulation of Parachute System.AIAA74-0470.1974.
    [40]Tory.Computer Model of a Fully Deployed Parachute.J.Aircraft,1977,14(7):675-679.
    [41]J.Cockrell,N.A.Haidar.Influence of the Canopy-payload Coupling on the Dynamic Stability in Pitch of a Parachute System.AIAA93-1248.1991.
    [42]Fallon.Parachute Dynamics and Stability Analysis of the Queen Match Recovery Systems.AIAA91-0879.1991.
    [43]F.M.White,D.F.Wolf.A theory of three dimensional parachute dynamic stability.J.Aircraft,1968,5(1):86-92.
    [44]F.Wolf.The dynamics stability of a non-rigid parachute and payload system.J.Aircraft,1971,8(6):603-609.
    [45]S.K.Ibrahim,R.A.Engdahl.Parachute dynamics and stability analysis.NASA CR 120326.
    [46]F.Dohher,C.Saliaris.On the Influence of Stochastic and Acceleration Dependent Aerodynamics Forces on the Dynamic Stability of Parachute.AIAASl-194.1981.
    [47]F.Doherr,D.J.Cockrell.Advances in the Application of Parachute Identification Analysis Techniques to Parachute Aerodynamics Test Data.AIAA84-0799.1984.
    [48]F.Dohher,H.Schilling.Nine-Degree-of-Freedom Simulation of Rotating Parachute Systems.J.Aircraft,1992,29(5):774-780.
    [49]Raiszadeh,E.M.Queen.Partial validation of multibody program to optimize simulated trajectories Ⅱ(POST Ⅱ) parachute simulation with interacting forces.2002.
    [50]J.Calise,H.A.Ei-Shirbing.An Analysis aerodynamic control for direct fire spinning projectiles.AIAA2001-2417
    [51]程文科,秦子增.具有倒”Y”吊挂的物伞组合体动力分析.弹道学报,1998,10(2):10-14.
    [52]韩子鹏,孙乐.末敏弹刚柔二体相互作用力学模型探讨.弹道学报,1997, 9(4):45-49.
    [53]舒敬荣,王宝贵,韩子鹏,等伞-弹系统三体运动分析.航空学报,2001,22(6):481-485.
    [54]孙乐,韩子鹏,李奉昌,等.末敏弹减速运动和稳态扫描段运动特性的研究.航空学报,1998,19(2):147-151.
    [55]韩子鹏,王宝贵,刘昌源.旋转伞-物体系统扫描角变化特性分析.兵工学报,2000,21(3):205-208.
    [56]U.S.Air Force Parachute Handbook,Wright Air Development Center,TR55o265(December 1965)
    [57]H.G.Heinrich and E.L.Haak,Stability and dray of Parachutes with varying effective porosity,Wright-Patterson Air Force Base,ASD-TDR-62-100(September 1962)
    [58]H.G.Heinrich,Experimental parameters in parachute opening shock theory,Dept.of Defense,Shock & Uibrcition Bulletin 19,(February 1953)
    [59]E.J.Meyer,Results of a dynamic stability test using weight-scaled SAND parachute system,Sandia Corp.,Albuquerque,W.Mex.,Report.SC-4771(RR)(March 1963)
    [60]Henn H.,Descent Characteristics of Parachutes,Royal Aeronautical Establishment Translation of German Report ZWB/UN/6202(October 1944)
    [61]Brown,W.D.,Parachutes(Pitman and Sons Ltd.,London,1951)
    [62]Lester,W.G.S.,A note on the theory of parachute stability,Royal Aeronautical Establishment,Farnborough TN Mechanical Engineering 358(July 1962)
    [63]Heinrich,H.G.and Rust,L.W.,Dynamic Stability of a Parachute Point-mass Load System,Wright-Patterson Air Force Base,FDL-TDR-64-126(June 1965)
    [64]Heinrich,H.G.,Drag and Stability of Parachutes,Aeronaut.Eng.Rev.,1573-81(June 1956)
    [65]G.E.Reid,The Evaluation of Aircraft Stability and Control Parameters from Flight-Test Data using Maximum Likelihood Estimation Methods,Aero.Eng.Dept.,Queen University,Belfast,1975.
    [66]K.F.Doherr and C.Saliaris,On the Influence of Statistic and Acceleration Dependent Aerodynamic Forces on the Dynamic Stability of Parachutes,AIAA Paper No.81-1941,7th Aerodynamic Decelerator & Balloon Technology Conference,1981.
    [67]W.G.S.Lester,A Note on the Theory of Parachute Stability,A.R.C.R & M,3352,July 1962.
    [68]李大耀,李大治,物.伞系统运动方程与稳定性判据,中国空间科学技术, 1994年第2期,pp43-54.
    [69]李大耀,李大治,物体.双伞系统运动方程与稳定性判据,宇航学报,1997年第4期,pp93-97.
    [70]K.F.Doherr and H.Schilling,Nine-Degree-of-Freedom Simulation of Rotating Parachute Systems,Journal of Aircraft 29(1992) 774-782.
    [71]D.J.Cockrell,K.F.Doherr,Preliminary Consideration of Parameter Identification Analysis From Parachute Aerodynamic Flight Test Data,AIAA Paper No.81-1940,7th Aerodynamic Decelerator & Balloon Technology Conference,1981.
    [72]程文科,秦子增,张晓今.具有倒“Y”型吊挂系统的物伞组合体的动力学研究.弹道学报,1998,10(2):10—14
    [73]程文科,杨小伟,秦子增,张晓今.物伞系统动力特性研究.国防科大学报,1998,20(4):27-30
    [74]程文科,减速伞返回舱组合体动力及稳定性分析:[学位论文].长沙:国防科学技术大学,1996
    [75]陈喜兰.降落伞载荷系统的运动方程及运动特性分析:[学位论文].长沙:国防科学技术大学,1998
    [76]程文科.一般降落伞-载荷系统动力学及其稳定性研究:[学位论文].长沙:国防科学技术大学,2000
    [77]张青斌等.绳系力对降落伞拉直过程的影响.航天返回与遥感,2002,23(2):9-14
    [78]张青斌等.降落伞拉直过程的多刚体模型.中国空间科学技术,2003,23(2):45—50
    [79]张青斌 等.降落伞拉直过程的阻尼弹簧模型.弹道学报,2003,15(1):31—35
    [80]Polen S R.Geometric Algorithms for the dynamics and control of Multibody systems:[dissertation].University of California,1997
    [81]Michel Geradin,Alberto Cardona.Flexible Multibody Dynamics:A finite element approach.John Wiley &Sons Ltd.2001
    [82]Keat J E.Multibody system order n dynamics formulation based on velocity transform method.J.Guidance,Control and dynamics,1990,10:207-212
    [83]刘延柱,洪嘉振,杨海兴著,多刚体系统动力学,高等教育出版社,北京,1989.
    [84]袁士杰,吕哲勤.多刚体系统动力学.北京:北京理工大学出版社,1992
    [85]休斯敦,刘又午.多刚体系统动力学.天津:天津大学出版社,上册 1987,下册 1991
    [86] 刘又午.多体动力学的休斯敦方法及其发展,机械学报,2000,11(6):601-607
    [87] Banerjee A. K. Extrusion of a Beam from a rotating base. J. Guidance, Control and dynamics, 1990 ,12(2):207-212
    [88] Banerjee A. K. Block-Diagonal Equations for multibody Elastodynamics with Geometric stiffness and constraints. J. Guidance, Control and dynamics, 1993,16(6): 1092-1100
    [89] Walker M. W ,Orin D E. Efficient Dynamics Computer Simulation of Robotic Mechanisms . Dynamics Systems ,Measurement, and Control, 1982,(104):205-211
    [90] Featherstone R. The calculation of robot Dynamics Using Articulated-Body Inertias. Journal of robotics Research, 1983,2(1):13-30
    [91] Featherstone R, Khatib O. Load Independence of the Dynamical Consistent Inverse of the Jacobin Matrix. Int. J. of robotics Research, 1997,16(2): 168-170
    [92] Featherstone R. A Divide-and-Conquer Articulated for parallel 0(log(n)) Calculation of Rigid-Body Dynamics.Part1: Basic Algorithm. Int. Journal of robotics Research, 1999,18(9):867-875
    [93] Featherstone R. A Divide-and-Conquer Articulated for parallel 0(log(n)) Calculation of Rigid-Body Dynamics, Part2:Trees,Loops, and Accuracy. Int.Journal of robotics Research, 1999,18(9):867-875
    [94] Jain A. Unified formulation of dynamics for serial rigid multibody Systems. J.Guidance, 1991(14):531-542
    [95] Rodriguez. G, Kenneth K D. Spatial Operator Factorization and Inversion of the manipulator Mass Matrix. IEEE Trans. On Robotics and automation ,1992,8(1):65-75
    [96] Rodriguez. G, Kenneth K D. Spatial Operator Algebra for multibody system dynamics . J. Astronautical Science, 1992,40(10 ):27-50
    [97] Jain A , Rodriguez G. Recursive dynamics algorithm for multibody systems with prescribed motion. J. Guidance, Control and dynamics, 1993,16(5):830-837
    [98] Saha S K. A decomposition of the Manipulator Inertia Matrix. IEEE trans. On Robotics and automation ,1997,13(2):301-304
    [99] Fijany A. Parallel O(log(n)) algorithm for computation of manipulator forward dynamics. IEEE trans. On Robotics and automation ,1995,11(2):389-400
    [100] Featherstone R, Fijany A. A technique for analyzing constrained rigid-body systems, and its application to the constraint force algorithm. IEEE Trans. On Robotics and automation, 1999, 15(6): 1140-1144
    [101] Anderson K. S, Duan S. A hybrid parallelizable low-order algorithm for dynamics of multi-rigid-body systems: Part I:chain systems, Mathematical and Computer, 30(1999):193-215
    [102] Anderson K. S, Duan S. Highly parallel low-order dynamics simulation algorithm for multi-rigid-body systems. J. Guidance ,Control ,and dynamics,2002,23(2):355464
    [103] Hsu. Y, Anderson K S. Low Operation order analytic sensitivity analysis for tree-type multibody dynamics systems. J. Guidance ,Control ,and dynamics,2001, 24(6): 1133- 1143;
    [104] Cosmo M. L, Lorenzini E.C. Tethers In Space Handbook. Marshall Space Flight Center, 1997
    [105] Carroll J. A. Tether application in space transportation. Acta. Astronautical,1986,13(4):167-174
    [106] Gobat I. WHOI Cable: Time Domain Numerical Simulation of Moored and Towed Oceanographic Systems. WHOI-97-15,1997
    
    [107] Smith P. S. Cable Mechanics and Computation in B2000. PB2000-103719
    [108] Huston R. L, Kamman J W. Representation of fluid force in finite segment cable models. Computers & Structure, 1981,14(1-3):281-287
    [109] Kamman J. W, Huston R. L. Advance structural applications modeling of submerged cable dynamics. Computers & Structure, 1985,20(1-3):623-629
    [110] Khan N. U, Ansarl K. A. On the dynamics of a multi-component mooring line.Computers & Structure, 1986,22(3):311-334
    [111] Triantafyllou M. S. The dynamics of translating cables. J. Sound and Vibration,1985,103(2):171-182
    [112] Burgess J., Triantafyllou M. S. The elastic frequencies of cables. J. Sound and Vibration, 1988,120(1):153-165
    [113] Triantafyllou M. S. The dynamics of translating cables. J. Sound and Vibration,1985,103(2):171-182
    [114] Papazoglou V. J. Non-linear cable response and model testing in water. J.Sound and Vibration, 1990,140(1): 103-115
    [115] Triantafyllou M. S, Howell C. T. Non-linear unstable response of hanging chains. J. Sound and Vibration, 1993,162(2):263-280
    [116] Triantafyllou M. S, Howell C. T. Dynamics response of cables under negative tension: an ill-posed problem. J. Sound and Vibration, 1994,173(4):433-447
    [117] Caroline Catti. Physical and numerical modeling of dynamics behavior of fly line. J. Sound and Vibration, 2001,173(4):433-447
    [118] NI Y Q. Dynamics analysis of large-diameter sagged cables taking into account flexural rigidity. J. Sound and Vibration, 2002,257(2):301-319
    [119] Zhao X. Y. Non-linear dynamics analysis of two dimension simplified model of elastic cable. J. Sound and Vibration, 2002,255(1):43-59
    [120]Fung R.F.Dynamic modeling and vibration analysis of flexible cable-stead beam structure.J.Sound and Vibration,2002,254(4):717-726
    [121]Leonard J.W.Large angular motions of tethered surface buoys.J.Ocean engineering.2000(27):1345-1371
    [122]Vassalos D,Huang S.Dynamics of small-sagged taut-slack marine cables.Computers & Structure,1996,58(2):557-562
    [123]Driscoll F.R.The motion of a Deep-Sea Remotely operated Vehicle systems.Part 1:analytical model.J.Ocean engineering,2000(27):57-76
    [124]Driscoll F.R.The motion of a Deep-Sea Remotely operated Vehicle systems.Part 2:motion observations.J.Ocean engineering,2000(27):29-56
    [125]Buckham B.Three-Dimensional dynamics simulation of a towed underwater vehicle.18th International conference on Offshore Mechanics and Artic Engineering
    [126]纪宝淳.水下绳索之振动分析:[学位论文].台湾省中山大学海下技术研究所,2001
    [127]Banerijee A.K,Van N.D.Deployment control of a cable connecting a ship to an underwater vehicle.J.Guidance,Control,and Dynamics,1994,17(6):1327-11332
    [128]Djerassi S,Bamberger H.Simultaneous deployment of a cable from two platforms.J.Guidance,Control,and Dynamics,1998,21(2):271-276
    [129]Geoffrey Frost,Mark Costello.Two projectiles connected by a flexible tether dropped in the atmosphere.J.Guidance,Control,and Dynamics,2000,23(6):1081-1085
    [130]Geoffrey Frost,Mark Costello.Improved deployment characteristics of a tether-connected munition system.J.Guidance,Control,and Dynamics,2001,24(3):547-554
    [131]Suari J.P.Aerocapture with a flexible tether.J.Guidance,Control,and Dynamics,1995,18(6):1305-1312
    [132]Biswell B.L.Three-dimensional hinged-rod model for elastic aerobraking tethers.J.Guidance,Control,and Dynamics,1998,21(2):286-295
    [133]Mayer Nahon.Dynamics/Control of a radion telescope receiver supported by tethered aerostat.J.Guidance,Control,and Dynamics,2002,25(6):1107-1115
    [134]Hammett K R.Modeling simulation of space tether snapback:[dissertation].B.E.E:Auburn University,1995
    [135]Jesus P.Two-Bar model for the dynamics and stability of electrodynamics tethers.J.Guidance,Control,and Dynamics,2002,25(6):1125-1135
    [136]Vigneron F.R.Tether deployment and trajectory modeling for space plasma science missions.J.Spacecraft and Rockets,2000,37(1):78-85
    [137]Angrilli F.Effects of severed tethers in space.J.Spacecraft and Rockets,1997,34(2):239-245
    [138]Xiaohua He,Powell David I.Tether damping in space.J.Guidance,1990,13(1):104-112
    [139]Misa A.K,Modi V.J.Deployment and retrieval of shuttle supported tethered satellites.J.Guidance,5(3):278-2851
    [140]Banerjee A.K.Dynamics of tethered payloads and deployment rate control,J.Guidane,1990,13(4):759-760
    [141]Kim E,Vadali S.R.Model Issues Related to retrieval of Flexible Tethered Satellites Systems.J.Guidance,Control and Dynamics,1995,18(5):1169-1176
    [142]Djerassi S.Algorithm for simulation of motions of variable-mass systems.J.Guidance,Control and Dynamics,1998,21(3):427-434
    [143]Blanksby Chris,Trivailo Pavel.Collision Dynamics for space Tethers.J.Guidance,Control and Dynamics,2000,23(6):1078-1081
    [144]苟兴宇,马兴瑞,邵成勋.绳系卫星系统研究概括.航天器工程,1995,4(4):34-42
    [145]朱仁璋.绳系卫星系统动力学、运动学与控制评述纲要.航天器工程,1998,7(5):7-12
    [146]朱仁璋,林华宝.论绳系卫星系统的运动中心.中国空间科学技术,1998,7(5):21-26
    [147]朱仁璋,林华宝.一组新的绳系卫星系统的广义坐标.中国空间科学技术,1998,6:1-6
    [148]于绍华.绳系卫星系统中的周期运动.宇航学报,1997,18(3):51—58
    [149]张华,单建.张拉膜结构的动力松弛法,应用力学学报,2002,19(1):84-86
    [150]陈树辉等.索网结构静力分析的动态松弛法.应用力学学报,2002,19(2):34—37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700