铜铅锌硫化矿选矿废水中捕收剂降解及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮选药剂是矿山废水中的主要污染成分,具有难降解、毒性大等特点,极大的威胁人类健康及对环境造成严重污染。研究浮选药剂的降解规律,分析浮选药剂的降解机理,为工业上寻求一种经济、高效地处理方法提供理论依据,对解决选矿废水的污染问题及保护矿山生态环境有着重要意义。
     本论文以丁基黄药、乙硫氮和LP-01三种常用的铜铅锌硫化矿捕收剂为研究对象,分析了以上三种捕收剂的分解特性,并探讨了次氯酸钠及Fenton试剂氧化法在不同反应条件下对三种捕收剂降解性能的影响。实验结果表明:采用次氯酸钠氧化法处理三种捕收剂取得了较好的效果。次氯酸钠氧化丁基黄药的最佳条件为:溶液初始pH=4,反应温度为20℃左右,次氯酸钠投加量为120mg·L~(-1),反应50min后,丁基黄药的去除率高达99.51%,COD的去除率为91.14%。次氯酸钠氧化乙硫氮的最佳反应条件:溶液初始pH值为4,次氯酸钠投加量为30mg·L~(-1),反应温度为室温,反应30min后乙硫氮的去除率高达99.78%,COD的去除率为94.75%。次氯酸钠氧化LP-01的最佳反应条件为:溶液初始pH值为6,次氯酸钠投加量为240mg·L~(-1),反应温度为室温,反应30min后LP-01的去除率高达99.87%,COD的去除率为90.69%。论文选用次氯酸钠氧化法处理实际选矿废水,在溶液初始pH=4,次氯酸钠用量为160 mg·L~(-1)条件下,处理后废水的pH为6~7,COD的含量为90.71 mg·L~(-1),因此,次氯酸钠处理选矿废水中的有机浮选药剂有较好的效果。应用紫外光谱测试技术,研究了次氯酸钠氧化三种捕收剂的作用机理,通过三种捕收剂氧化前后特征吸收峰的变化,分析了三种捕收剂氧化前后的浓度变化,并推测了次氯酸钠氧化三种捕收剂的最终产物。研究表明,采用次氯酸钠氧化法能有效去除丁基黄药、乙硫氮和LP-01等浮选药剂,使难降解有机物转化为CO_2、H_2O等小分子物质,降低了浮选药剂对环境的危害,解决了矿山废水的污染问题,为保护矿山生态环境提供了一条有效途径。
The floation reagents is a major component of pollution in the mine wastewater, is characterized by difficult degradation, great toxicity and so on. It has great threate to human health and serious pollution the environment. Study the degradation law and analyse the degradation mechanism of the floation reagent, provide the theoretical basis for seek a kind of economic and efficient treatment for industry, all of them have important significance to solve the pollution problem of benefication wastewater and protect the mine ecological environment.
     The research object are common sulfide flotation collectors such as Butyl Xanthate, Sodium diethyldithiocarbamate and LP-01 in the paper. Analyse the degradation properties of sulfide flotation collectors, and discuss the influences of the degradation properties with different reaction conditions by sodium hypochlorite oxidation and Fenton reagent oxidation. The results show that the removal efficiency of three sulfide flotation collectors with sodium hypochlorite is very good. The optimum technological conditions of sodium hypochlorite treating Butyl Xanthate is the initial solution pH 4, the reaction temperature 20℃, the dosage of sodium hypochlorite 120 mg·L~(-1), the reaction time 50 min, under this condition, the removal rate of Butyl Xanthate and COD is up to 99.51% and 91.14% respectively. The optimum technological conditions of sodium hypochlorite treating sodium diethyldithiocarbamate is the initial solution pH 4, the dosage of sodium hypochlorite 30 mg·L~(-1), the reaction temperature is room temperature, the reaction time 30 min, under this condition, the removal rate of Butyl Xanthate and COD is up to 99.78% and 94.75% respectively. The optimum technological conditions of sodium hypochlorite treating LP-01 is the initial solution pH 6, the reaction temperature is room temperature, the dosage of sodium hypochlorite 240 mg·L~(-1), the reaction time 30 min, under this condition, the removal rate of LP-01 and COD is up to 99.87% and 90.69% respectively. Treatment of practical benefication wastewater by sodium hypochlorite in the paper, the technological conditions of sodium hypochlorite treating practical benefication wastewater is the initial solution pH 4, the dosage of sodium hypochlorite 160 mg·L~(-1), the soulution pH is 6~7, the residual COD is 90.71 mg·L~(-1) in solution. Therefore, treatment of the floation reagent in the benefication wastewater by sodium hypochlorite is very effective.
     The mechanism of sodium hypochlorite treating three kind of sulfide flotation collectors is studied by Ultraiolet radiation spectrum analysis. By the changes of characteristic absorption peaks of ulfide flotation collectors and after oxidized,analyse the concentration changing of the collectors before and after oxidized, and speculate on the final products that sodium hypochlorite oxidizing three kind of sulfide flotation collectors. The results show that sodium hypochlorite oxidation can remove the flotation reagent of Butyl xauthate, Sodium diethyldithiocarbamate and LP-01 effectively, and cause the difficult organic convert to small oraganic molecules substance as CO_2 and H_2O. Sodium hypochlorite oxidation has reduced environmental hazards caused by flotation reagents and solved the problem of mine drainage pollution. It has provided an effective way to protect the ecological environment .
引文
[1]袁志彬.中国水污染的形势和出路[J].科学决策,2007,(9):28~29
    [2]周大杰.中国可持续发展下水资源管理政策研究[J].中国人口·资源与环境,2004,(4):21~24.
    [3]方群.中国水资源安全研究[J].经济研究参考,2004,(59):15~18
    [4]罗仙平,严群,卢凌等.江西有色金属矿山固体废物处理与处置存在的问题与对策[J].中国矿业,2005,14(2):24~26
    [5]戴晶平.凡口选矿回水中铅锌硫化矿浮选基础研究与工业实践:[博士学位论文].长沙:中南大学,2005
    [6]唐锦涛.选矿废水的危害及防治[J].工程设计与研究,1992,(3):41~45
    [7]张秀芳.矿产资源开发中的废水问题[A].见:中国地质矿产经济学会2007年学术年会[C].2007:696~698
    [8] Jean V. Dsa, Kelly S. Johnson, Dina Lopez, Corey Kanuckel. Residual Toxicity of Acid Mine Drainage-Contaminated Sediment to Stream Macroinvertebrates: Relative Contribution of Acidity vs. Metals[J]. WATER, AIR, SOIL POLLUTION, 2008, (194):185~197
    [9]鞠海燕,黎剑华,袁源平.矿山酸性污水土石坝渗漏探测及诱因分析[J].中国钨业,2007,22(3)42~45
    [10]李晓明,刘敬勇,梁德沛等.矿山选矿有机化学药剂的环境污染与防治研究[J].安徽农业科学,2009,37(11):5086~5116
    [11]栾和林,姚文.选矿药剂中持久性有机污染物现状与问题[J].有色金属,2003,55(S1):74~77
    [12]栾和林,姚文.矿山化学药剂污染及其复合污染问题与探讨[J].矿冶,2002,11(7):265~267
    [13]宋庆福,阳光.改善矿山环境加强环保型选矿药剂研究[J].国外金属矿选矿,2002(2):39~40
    [14]翁建浩.选矿废水中残余黄药降解规律的试验研究[J].化工矿物与加工,2001(5):18~21
    [15] D.W.Boening, Aquatic toxicity and environmental fate of xanthates. Express Information of Mineral proeessing Abroad, 1999, (25) :18~22.
    [16]赵玉娥.黄药、黑药、二号油在水体中的降解试验研究[J].黄金,1995,16(7):47~51
    [17] V. A. Ignatkina, V. A. Bocharov, B. T. Puntsukova and D. A. Alekseychuk. Analysis of selectivity of thionocarbamate combinations with butyl xanthate and dithiophosphate. Journal of Mining Science, 2010, (13):324~332
    [18]朱玉霜,朱建光.浮选药剂的化学原理[M ].长沙:中南工业大学出版社,1996
    [19]王晓蓉.环境化学[M ].南京:南京大学出版社,1993
    [20]俞通武,董蕴英.选矿废水中微量黑药的测定[J].化工环保,1994,(1): 39~42
    [21]王均扬.矿山废水的治理与利用[J].中国资源综合利用,2000,(3):4~7
    [22]仲崇波,王成功,陈炳辰.氰化物的危害及其处理方法综述[J].金属矿山,2001,(5):44~47
    [23] Omar Rimawi, Anwar Jiries,Yasin Zubi. Reuse of mining wastewater in agricultural activities in Jordan[J]. Environment, Development and Sustainability. 2007, (11): 695~703
    [24]邓敬石,张宗华,陈家栋.浅谈含重金属离子的铅锌矿尾矿废水危害及治理[J].云南冶金,2002,31(2):20~23
    [25] Peppas A, Komnitsas K, Halikial. Use of organic covers for acid mine drainage control[J]. Minerals Engineering, 2000, 13(5): 563~574
    [26]见百熙.浮选药剂[M ].北京:冶金工业出版社,1981,193~198
    [27]朱玉霜,朱建光.浮选药剂的化学原理[M ].长沙:中南工业大学出版社,1987,16~22
    [28]徐辉远.金属螯合物的溶剂萃取[M ].北京:中国工业出版社,1970,211~213
    [29]何小春.混合用浮选云浮硫铁矿的试验研究[J].有色金属(选矿部分),2001(5):32~34
    [30]戚文彬.表面活性剂与分析化学(上册)[M ].北京:中国计量出版社,1986,55~61
    [31]付丹.铜铅锌多金属硫化矿浮选行为与表面吸附机理研究:[硕士学位论文].赣州:江西理工大学,2010
    [32]李建永.葫芦岛锌厂重金属废水的治理与回用[J].有色金属,2002,54(4):117~119
    [33]胡涛,李亚云.含铬废水的治理研究[J].污染防治技术,2005,18(4):5~7
    [34] Mujde Erten-Unal, Bobby G. Wixson. Biotreatment and Chemical Speciation of Lead and Zinc Mine/Mill Wasterwater Discharges in Missouri, U.S.A[J]. WATER, AIR, SOIL POLLUTION, 1999, (116): 501~522
    [35]赵会义,朱慎林.用离子交换膨胀床去除铬离子[J].清华大学学报:自然科学版,2003,43(10):1309~1312
    [36] Clare A N, Wilson D J. Gas floation process separating[J]. Separation and Purification Methods, 1998, 8(2): 45~52
    [37] El-Shafey E, Cox M, Piehugin A. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution[J]. Journal of Chemical Technology and Biotechnology, 2002,77(4):429~443
    [38] Chen Jian-ming, Liu Run-qing, Sun Wei. Effect of mineral processing wastewater on flotation of sulfide minerals[J]. Transactions of Nonferrous Metals Society of China, 2009, (19): 454~458
    [39] S.C.Cheng, M. Gattrell, T. Guena, B. MacDougall. Electrochemical studies of gold ore processing wastewater containing cyanide, copper, and sulfur compounds[J]. JOURNAL OF APPLIED ELECTROCHEMISTRY. 2006, (36): 1317~1326
    [40] Henry H. Tabak, Rakesh Govind. Advances In Biotreatment of Acid Mine Drainage and Biorecovery of Metals: 2 Membrane Bioreactor System for Sulfate Reduction[J]. BIODEGRADATION. 2003, (14): 437~452
    [41] Aisling D.O’Sullivan, Declan A. Murray, Marinus L.Otte. Removal of Sulfate, Zinc, and Lead from Alkaline Mine Wastewater Using Pilot-scale Surface-Flow Wetlands at Tara Mines, Ireland[J]. Mine Water and Environment. 2004, (23): 58~65
    [42]顾泽平.苯胺黑药废水的物化净化特性研究[硕士学位论文].广州:广东工业大学,2006
    [43]严群,谢明辉,罗仙平.会理锌矿选矿废水循环利用的研究[J].给水排水,2006,32(4):54~56
    [44] D.Feng, J.S.J.Van Deventer, C. Aldrich.Removal of pollutants from acid mine wastewater using metallurgical by-product slags[J]. Separation Purification Technology, 2004, 40 (2004) 61~67
    [45]王洪忠,赵静静.孝妇河废水处理方法的研究[J].建材新科技,1998,19(1)4~8
    [46]严发真,钟涛.磷矿浮选废水治理的探索与实践[J].化工矿物与加工,1999(9):16~18
    [47]李学金,钱显文,郑乐平等.某铁矿尾矿库酸性废水处理试验研究[J].金属矿山,2006,363(9)73~77
    [48]严群,韩磊,罗仙平等.铅锌选矿废水净化回用工艺的实验研究[J].中国矿业,2007,16(9)57~61
    [49]孙水裕,谢光炎,宁寻安等.硫化矿浮选废水净化与回用的研究[J].有色金属·选矿部分.2001,(4)33~41
    [50]郑亚杰,彭振华.铅锌选矿废水的处理及循环利用[J].中南大学学报(自然科学版),2007,38(3):468~473
    [51]赵永红,谢明辉,罗仙平.去除水中黄药的实验研究[J].金属矿山,2006,360(6):75~77
    [52]吉鸿安.利用臭氧分解选矿废水中黄药和二号油[J].甘肃冶金.2008,30(3)70~72
    [53] J.R.Parga, S.S.Shukla, F.R.Carrillo-Pedroza. Dsetruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol[J].Waste Management, 2002,(23)183~191
    [54]翁建浩,盛金华,朱秋耿.硫铁矿选矿废水处理试验研究[J].化工矿物与加工.2001,(7):6~8
    [55] BRIX H. Treament of wastewater in the rhizosphere of wetland plants the root-zone method[J]. Water Science and Technology, 1987, 19: 107~118.
    [56] Jan Vymazal. Constructed wetlands for wastewater treatment in the Czech Republic the first 5 years experience[J]. Water Science and Technology, 1996, 34(11): 159~164
    [57]张红涛,王拯.人工湿地中基质的研究进展[J].广东化工.2009,36(199):73~74
    [58]阳承胜,蓝崇钰,束文圣.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J].深圳大学学报(理工版),2000,17(2-3):51~57
    [59] Sardar Khan, Irshad Ahmad, M.Tahir Shah,et.al. Use of constructed wetland for the removal of heavy metals from industrial wastewater[J]. Journal of Environmental Management, 2009, (90):3451~3457
    [60]李亚新,苏冰琴.硫酸盐还原菌和酸性矿山废水的生物处理[J].环境污染治理技术与设备,2000,1(5):17~21
    [61]坎迪·M.硫酸盐还原菌示范工程概述[J].国外金属矿山,2000,(4):62~68
    [62] Carmen M.Neculita,Gerald J.Zagury. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization[J]. Journal of Hazardous Materials,2008,157:358~366
    [63] Tony J, David L P. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs[J]. Water Res,2003,37:379~389
    [64]肖利萍,刘文颖,褚玉芬.被动处理技术SAPS处理酸性矿山废水实验研究[J].水资源与水工程学报,2008,19(2):12~15
    [65]杜一平.现代仪器分析方法[M].华东理工大学出版社,2008, 109~112
    [66]钱晓荣,郁桂云.仪器分析实验教程[M].华东理工大学出版社,2009,78~81
    [67]许晓文,杨万龙,沈含熙.定量化学分析[J].天津:南开大学出版社,1996,423~424
    [68]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].中国环境科学出版社.北京,2002,210~213
    [69]余雪花.乙基黄药同黄铁矿作用行为的紫外光谱研究[J].有色金属(选矿部分),1994,(5):29~33
    [70]余润兰.铅锑铁锌硫化矿浮选电化学基础理论研究[D].中南大学博士学位论文,2004
    [71]盛梅,马芬,杨文伟.次氯酸钠溶液稳定性研究[J].化工技术与开发,2005,34(3):8~10
    [72]张景利.浅析次氯酸钠水溶液的稳定性[J].中国洗涤用品工业,2010,(1):77~79
    [73]陈绍华,龚文琪,梅光军.烃基黄药类捕收剂的生物降解性实验研究[J].北京大学学报(自然科学版),2010,46(3):351~357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700