非线性金融波动率模型及其实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金融市场具有高收益与高风险并存的特性。现代金融理论通常以波动率度量金融资产的风险,波动率在金融衍生品定价、投资组合、风险管理、对冲投资策略中扮演重要的角色。因此,波动率的估计和预测一直是经济学家研究的热点。在一定条件下,传统金融波动率模型对资产收益波动率的预测是较为成功的。为了进一步提高传统金融波动率模型的预测精度,本文将灰色预测理论、支持向量机理论及模糊推理技术与传统金融波动率模型相结合,主要完成了以下工作:
     1、将最小二乘支持向量机应用于CARRX模型,建立基于最小二乘支持向量机的非线性CARRX模型(LSSVR-CARRX),通过对沪深300指数的实证研究,发现LSSVR-CARRX模型的样本外预测能力优于CARRX模型。LSSVR-CARRX模型能够在长期预测中很好地刻画极差波动率的变动趋势,而CARRX模型对中短期极差波动率的预测准确度较高。
     2、以GM-GARCH类模型为基础,分别将SVRGM模型、RGM预测模型与GARCH模型、EGARCH模型相结合,以减少误差项的随机性和非线性因素。实证结果表明,SVRGM-GARCH模型及RGM-EGARCH模型均比GM-GARCH类模型有更好的波动率预测能力,适合于短期波动率预测。
     3、以极差替代收益的标准差来度量波动率,运用灰色支持向量机预测模型(GSVR)预测深市基金波动率,并将v支持向量机作为基准方法。实证结果表明,在中短期预测中,GSVR模型的基金波动率预测效果好于v-SVR模型,而在长期预测中,v-SVR模型则有更好的预测表现。
     4、将TSK模糊模型应用于GARCH类模型,建立基于TSK的非线性GARCH模型(TSK-GARCH)及TSK非线性组合预测模型,采用ANFIS方法确定TSK模糊模型的结构、调整模型的参数。实证研究表明,基于TSK的波动率模型比基准模型供了更好的波动率预测值。
     本研究将灰色预测理论、支持向量机理论及模糊推理技术应用于传统金融波动率模型中,建立非线性金融波动率模型。对中国金融市场的实证研究表明,这些理论能够有效地提高传统金融波动率模型的样本外预测性能。这一研究对金融波动率的建模及预测具有重要的理论和实际应用价值。
High return and high risk appear simultaneously in financial markets. The risk in financial assets is usually measured by volatility in the modern finance theory. Volatility plays an important role in securities valuation, portfolio optimization, risk management, and hedge investment strategies. Therefore, it is popular for economists to estimate and forecast volatility. Under certain conditions, the traditional financial volatility models have been successfully used for forecasting volatility of assets return. To improve the forecasting accuracy of these models, in this study, grey forecasting theory, support vector machine theory and fuzzy inference technology are combined with the traditional financial volatility models, respectively. The main content of this dissertation is as follows:
     First, least squares support vector machine is applied to CARRX model and LSSVR based nonlinear CARRX model is established (LSSVR-CARRX). The empirical research on Hushen 300 index shows that LSSVR-CARRX model performs better than CARRX model in out-of-sample volatility forecasting. LSSVR-CARRX model captures the varying trend of range volatility better in long-term forecasting, and CARRX model has relatively accurate range volatility forecasts in short- and middle-term forecasting.
     Second, based on GM-GARCH type model, this study integrates SVRGM with GARCH model and Residual GM(1,1) model with EGARCH model, respectively, to reduce the stochastic and nonlinearity of the error term sequence. Empirical results indicate that SVRGM-GARCH model and RGM-EGARCH model outperform their benchmark models in forecasting volatility of Shenzhen stock index returns, respectively and are applicable to short-term volatility forecasting.
     Third, volatility is measured using range instead of return’s standard deviation. Then grey support vector regression (GSVR) is applied to forecasting the volatility of Shenzhen fund market and v-SVR is the benchmark model. The empirical results indicate that GSVR could achieve better forecasting performance than v-SVR in shor-term volatility forecasting, while v-SVR has superior forecasting performance in long-term volatility forecasting.
     Fourth, TSK fuzzy model is applied to traditional GARCH type model. TSK based nonlinear GARCH model (TSK-GARCH) and TSK nonlinear combined forecasting model are established, respectively. The parameters and structure of TSK fuzzy model is determined by ANFIS. Empirical results indicate that TSK based volatility models provide better volatility forecasts than their benchmark models.
     In this study, grey forecasting theory, support vector machine theory and fuzzy inference technology are applied to the traditional financial volatility models and nonlinear financial volatility models are established. Empirical results on Chinese financial markets show that these theories and methods can improve out-of-sample forecasting performance of traditional financial volatility models. The study has important theory and practice value for modeling and forecasting of financial volatility models.
引文
[1]马金龙,马非特,金融市场价格波动数值预测的思考,管理科学,2006,19(1):78~84
    [2] Markowitz H, Portfolio selection, Journal of Finance, 1952, 7: 77~91
    [3] Sharp W, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 1964, 19: 425~442
    [4] Lintner J, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics, 1965, 47: 13~37
    [5] Mossin J, Equilibrium in a capital asset market, Econometrica, 1966, 34: 768~783
    [6] Black F, Scholes M, The pricing of options and corporate liabilitites, Journal of Political Economy, 1973, 81: 637~659
    [7] Ross S A, The arbitrage theory of capital asset pricing, Journal of Economic Theory, 1976, 13: 341~360
    [8] Black F, Studies in stock price volatility changes, Proc. Amer. Statist. Assoc., Bussiness and Economic Statistics Section, 1976, 177~181
    [9] Mandelbrot B T, The Variation of Certain Speculative Prices, Journal of Business, 1963, 36:394~419
    [10] Fama E F, The Behavior of Stock Market Prices, Journal of Bussiness, 1965, 38: 34~105 Engle R F, Autoregressive Conditional Heteroscedasticity with estimates of the variance of UK inflation, Econometrica, 1982, 50: 987~1008
    [11]
    [12]张世英,樊智,协整理论与波动率模型,北京:清华大学出版社,2004
    [13] Bollerslev T, Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 1986, 31: 307~327
    [14] Hageman R L, Notes: More evidence on the distribution of security returns, The Journal of Finance, 1978, 33: 1213~1221
    [15] Lau A, Lau H, Wingender J, The distribution of stock returns: new evidence against the stable model, Journal of Bussiness and Economic Statistics, 1990, 8: 217~223
    [16] Nelson D, Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica, 1991, 59(2): 347~370
    [17] Engle R F, Ng V, Measuring and testing the impact of news on volatility. Journal of Finance, 1993, 48: 1749~1778
    [18] Sentana E, Quadratic ARCH models, Review of Economic Studies, l 995, 62: 639~661
    [19] Zakoian J M, Threshold heteroskedastic models, Journal of Economic Dynamics and Control, 1994, 18: 931~944 Engle R F, Kraft D, Multiperiod Forecast Error Variances of Inflation Estimated from ARCH Models, In: A Zellner Applied Time Series Analysis of Economic Data. Washington, D C, 1983, 293~302
    [20]
    [21] Bollerslev T, Engle R F, Wooldridge J M, A capital asset pricing model with time varying covariances, Journal of Political Economy, 1988, 96: 116~131
    [22] Ding Zhuanxin, Granger C W J, Modeling volatility persistence of speculative returns: a new approach, Journal of Econometrics, 1996, 73: 185~215
    [23] Baillie R T, Bollerslev T, Milkkelsen H, Fractional integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 1996, 74: 3~30
    [24] Bollerslev T, Milkkelsen H, Modeling and pricing long memory in stock market volatility, Journal of Econometrics, 1996, 73: 151~184
    [25]柯珂,张世英,ARCH模型的诊断分析,管理科学学报,2001,4(2):12~18
    [26]张世英,柯珂,ARCH模型体系,系统工程学报,2002,17(3):236~245
    [27] Parkinson M, The extreme value method for estimating the variance of the rate of return, Journal of Business, 1980, (53): 61~65
    [28] Ray Y Chou, Forecasting financial volatilities with extreme values: The conditional autoregressive range model. Journal of Money, Credit, and Banking, 2005, 67(3): 34~56
    [29] Melino A, Turnbull S, Pricing foreign currency options with stochastic volatility, Journal of Econometrics, 1990, 45:239~266
    [30] Taylor S, Xu X, The incremental volatility information in one million foreign exchange quotations, Journal of Empirical Finance, 1997, 4(4): 317~340
    [31] Andersen T, Bollerslev T, Diebold F, et al, The distribution of realized exchange rate volatility, Journal of the American Statistical Association, 2001, 96: 42~55
    [32] Andersen T, Bollerslev T, Diebold F et al, Modeling and forecasting realized volatility, Econometrica, 2003, 71: 529~626
    [33] Barndorff-Nielsen O, Shephard N, Econometric analysis of realised volatility and its use in estimating stochastic volatility models, Journal of the Royal Statistical Society, 2002, Series B, 64: 253~280
    [34] Bandi F, Russell J, Microstructure noise, realized volatility and optimal sampling, Manuscript, University of Chicago, 2004.
    [35] Ait-Sahalia Y, Mykland P, How often to sample a continuous-time process in the presence of market microstructure noise, NBER Working Paper No. W9611, 2005
    [36] Jorion P, On jump processes in foreign exchange and stock markets, Review of Finance Studies, 1988, 1: 427~445
    [37] Nieuwland F G M C, Verschoor W F C, Wolff C C P. EMS exchange rates, Journal of International Financial Markets, Institutions and Money, 1991, 2: 21~42
    [38] Hsieh D, Modeling heteroskedasticity in daily foreign exchange rates, Journal of Bussiness Economic Statistics, 1989, 7: 307~317
    [39] Vlaar P J G, Palm F C, The message in weekly exchange rates in the European Monetary System: Mean reversion, conditional heteroskedasticity and jumps, Journal of Bussiness Economic Statistics, 1993, 11: 351~360
    [40] Bollerslev T, Wooldridge J M, Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances, Econometric Reviews, 1992 , 11: 143~172
    [41] Pagan A R, Schwert G W, Alternative models for conditional stock volatility, Journal of Econometrics 1990, 45: 267~290
    [42] Pagan A R, Hong Y S, Nonparametric estimation and the risk premium. In: Barnet W A, Powell J, Tauchen G editors. Nonparametrics and SemiparametricMethods in Econometrics and Statistics, Cambirdge University Press, Cambridge, 1991
    [43] Gallant A R, On the bias in flexible functional forms and an essentially unbiased form: The Fourier flexible form, Journal of Econometrics, 1981, 15: 211~244
    [44] Donaldson R G, Kamstra M, An artificial neural network-GARCH model for international stock return volatility, Journal of Empirical Finance, 1997, 4: 17~46
    [45] Schittenkopf C, Dorffner G, Dockner E J, Forecasting time-dependent conditional densities: a semi-non-parametric neural network approach, Journal of Forecasting, 2000, 19: 355~374
    [46] Taylor J W, A quantile regression neural network approach to estimating the conditional density of multiperiod returns, Journal of Forecasting, 2000, 19: 299~311
    [47] Dunis C L, Huang X H, Forecasting and trading currency volatility: an application of recurrent neural regression and model combination, Journal of Forecasting, 2002, 21: 317~354
    [48] Perez-Cruz F, Afonso-Rodriguez J A, Giner J, Estimating GARCH models using support vector machines, Quantitative Finance, 2003, 3: 1~10
    [49] Gavrishchaka V V, Ganguli S B, Volatility forecasting from multiscale and high-dimensional market data, Neurocomputing, 2003, 55: 285~305
    [50] Chang B R. Applying nonlinear generalized autoregressive conditional heteroscedasticity to compensate ANFIS outputs tuned by adaptive support vector regression, Fuzzy Sets and Systems, 2006, 158(3): 1832~1850
    [51] Yu S W, Wang M X, A combination of realized volatility forecasting models and quasi-Monte Carlo Simulation on the estimation of value at risk, Management Sciences in China, 2006, 19(1): 72~78
    [52] Tseng C-H, Cheng S-T, Wang Y-H, New Hybrid Methodology for Stock Volatility Prediction, Expert Systems with Applications, 2008.
    [53] Tseng C-H, Cheng S-T, Wang Y-H, et al, Artificial Neural Network Model of the Hybrid EGARCH Volatility of the Taiwan Stock Index Option Prices, Physica, 2008, A(387): 3192~3200
    [54]许启发,金融高阶矩风险识别与控制,北京:清华大学出版社,2007.
    [55] Engle R, Russell J, Autoregressive conditional duration: a new model for irregular spaced transaction data, Econometrica,1998, (66):1127~1162
    [56]周杰,刘三阳,条件自回归极差模型与波动率估计,数量经济技术经济研究,2006,9:141~149
    [57] Drost F C, Nijman T E, Temporal A ggregation of Garch Processes, Econometr- ica, 1993, 61: 909~927
    [58] Muller M A, Michel M, Volatilities of different time resolutions: Analyzing the dynamics of market components, Journal of Empirical Finance, 1997, 4: 213-239
    [59] Ghysels E, Jaslak J, GARCH for irregularly spaced financial data: the ACD-GARCH models, Studies in Nonlinear Economics and Econometrics, 1998, 2: 133-149
    [60] Engler F, The Econometrics of ultra-high frequency data, Econometrica, 2000, 68(1): 1-22
    [61]黄席樾等,现代智能算法理论及应用,北京:科学出版社,2005.
    [62] Vapink V N, Chervonenkis A Y, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and its Applications, 1971, 17(2): 264~280
    [63] Vapink V N, Estimation of dependences based on empirical data, Springer-Verlag, Berlin, 1982.
    [64] Boser B E, Guyon I M, Vapink V, A training algorithm for optimal margin classifiers, Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA: ACM Press, 1992, 144~152
    [65] Cortes C, Vapnik V, The soft margin classifier, Technical memorandum 11359-931209-18TM, AT&T Bell Labs, 1993.
    [66] Vapink V, The nature of Statistical Learning Theory, New York: Springer-Verlag, Berlin, 1995.
    [67] Vapnik V, Golowich S, Smola A, Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing, Advances in Neural Information Processing System 9, Cambridge, MA, MIT Press, 1997, 281~287
    [68] Vapnik V, Statistical Learning Theory, New York: John Wiley & Sons, 1998.
    [69] Friess T, Cristianini N, Campbell C, The Kernel-Adatron: A Fast and Simple Learning Procedure for Support Vector Machines, In: Proceedings of the Fifteenth International Conference on Machine Learning, 1998: 188~196
    [70] Osuna E, Freund R, Girosi F, Support Vector Machines: Training and Application, A.I. Meno No.1602 C.B.C.L Paper No.144, Cambridge, MA: Massachusetts Institute of Technology, AILab, 1997.
    [71] Mangasarian O L, Musicant D R, Successive Overrelaxation for Support Vector Machines, IEEE Transactions on Neural Networks, 1999, 10(5): 1032~1037
    [72] Scholkopf B, Smola B, Bartlett P, New Support Vector Algorithms, Neural Computation, 2000, 12: 1207~1245
    [73] Chih-Chung Chang, Chih-Jen Lin, Traning v -Support Vector Classifiers: Theory and Algorithms, Neural Computation, 2001,13(9): 2119~2147
    [74] Pai-Hsuen Chen, Chih-Jen Lin, Scholkopf B, A Tutorial on -Support Vector Machines, Applied Stochastic Models in Bussiness and Industry, 2005, To appear. v
    [75] Chih-Chung Chang, Chih-Jen Lin, Traning v -Support Vector Regression: Theory and Algorithms, Neural Computation, 2002,14(8): 1959~1977
    [76] Mangasarian O L, Generalized Support Vector Machines. In: A. Smola, P.Bartlett, B. Scholkopf, and D. Schuurmans, editors. Advances in Large Margin Classifiers, MIT Press, 2000: 135~146
    [77] Mangasarian O L, Musicant D, Nonlinear Data Discrimination via Generalized Support Vector Machines, ICCP99, Madison, Wisconsin, June 9~12, 1999.
    [78] Takuya Inoue, Shigeo Abe, Fuzzy Support Vector Machines for Pattern Classification. In: Proceedings of International Joint Conference on Neural Networks, 2001, 2: 1449~1454
    [79] Lin Chun-Fu, Wang Sheng-De, Fuzzy support vector machines, IEEE Transactions on Neural Networks, 2002, 13(2): 464~471
    [80] Suykens J A K, Vandewalle J, Least squares support vector machines for classifiers, Neural Processing Letters, 1999, 9(3): 293~300
    [81] Suykens J A K, Vandewalle J, Recurrent least squares support vector machines, IEEE Transactions on Circuits and Systems, 2000, 47(7): 1109~1114
    [82] Chew Hong-Gunn, Crisp D,Bogner R E et al, Target Detection in Radar imagery Using Support Vector Machines with Training Size Biasing. In: Proceedings of the sixth international conference on control, Automation, Robotics and Vision, Singapore, 2000.
    [83] Chew Hong-Gunn, Bogner R E, Lim Cheng-Chew, Dual -Support Vector Machine with Error Rate and Training Size Biasing, In: Proceedings of 26vth IEEE ECASSP2001, Salt Lake City, USA, 2001(2): 1269~1272
    [84] Yuh-Jye Lee, Mangasarian O L, SSVM: A Smooth Support Vector Machines, Computational Optimization and Applications, 2001, 20(1): 5~22
    [85] Yuh-Jye Lee, Mangasarian O L, RSVM: Reduced Support Vector Machines, In Proceedings of the First SIAM International Conferece on Data Mining, 2001.
    [86] Lin Kuan-Ming, Lin Chih-Jen, A Study on Reduced Support Vector Machines, IEEE Transactions on Neural Networks, 2003, 14(6):1449-1459.
    [87] Zhang Li, Zhou Weida, Jiao Licheng, Wavelet Support Vector Machine, IEEE Transactions on Systems, Man and Cybernetics, Part B, 2004, 34(1):34~39
    [88] Mangasarian O L, Musicant D R, Lanrangian Support Vector Machines, Journal of Machine Learning Research, 2001, 1: 161~177
    [89] De Freitas N, Milo M, Clarkson P, et al, Sequential Support Vector Machines, Neural Networks for Signal Proceeding IX, 1999, 31~40
    [90] Mangasarian O L, Musicant D R, Active Support Vector Machine Classification, Technical Report 00-04, Data Mining Institue, University of Wisconsin, April 2000.
    [91] Weston J, Herbrich R, Adaptive Margin Support Vector Machines. In :A.Smola, P.Bartlett, B.Scholkopf, and D.Schuurmans, editors. Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, 2000: 281~295
    [92]刘立霞,多变量金融时间序列的非线性检验及重构研究,[博士学位论文],天津:天津大学,2007.
    [93] Smola J Scholkopf B, A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.
    [94] Vapink V ,统计学习理论的本质,第一版,张学工译,北京:清华大学出版社,2000.
    [95] Courant R, Hilbert D, Methods of mathematical physics, New York: Wiley InterScience, 1970.
    [96]苏高利,邓芳萍,关于支持向量回归机的模型选择,科技通报,2006,22(2):154~158
    [97]刘思峰,灰色系统理论及应用,武汉:华中理工大学出版社, 1990.
    [98]黄铭,数学模型与工程安全监测,上海:上海交通大学出版社,2008.
    [99]李国平,于广青,陈森发,中国股票价格灰色预测研究综述,东南大学学报(哲学社会科学版),2005,7(2): 28~30
    [100]李峰,邓聚龙,灰色系统理论的发展概况,信息与开发,2000 ,3: 6~9
    [101]邓聚龙,灰色系统理论简介,内蒙古电力,1993,3:51~52
    [102]王治祯,柏景方,灰色系统及模糊数学在环境保护中的应用,哈尔滨:哈尔滨工业大学出版社,2007.
    [103]邓聚龙,灰理论基础,武汉:华中科技大学出版社,2002.
    [104]丛春霞,季秀芳,灰色预测在股票价格指数预测中的应用,中国统计, 2000,5:15~17
    [105]王雪,测试智能信息处理,北京:清华大学出版社,2008.
    [106]吴晓莉,林哲辉,MATLAB辅助模糊系统设计,西安:西安电子科技大学出版社,2002.
    [107]张曾科,模糊数学在自动化技术中的应用,北京:清华大学出版社,1997.
    [108]冯斌,须文波,基于TSK模糊系统的生化变量预估模型,计算机与应用化学,2006,23(4):343~346
    [109]丁忠明,夏万军,中国股市波动的CARR模型分析,商业经济与管理,2005,12:41~45
    [110] Ray Y Chou, Modeling the asymmetry of stock movements using price ranges, Advances in Econometrics, 2006, 20: 231~257
    [111]周杰,刘三阳,条件自回归极差模型与波动率估计,数量经济技术经济研究,2006,9:141~149
    [112]郑梅,预测沪深股市市场波动性,系统工程理论与实践,2005,2:41~45
    [113]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [114]张大海,江世芳,史开泉,灰色预测公式的理论缺陷及改进,系统工程理论与实践,2002,22(8):1~3
    [115] Chang B R, Tsai H F, Forecast approach using neural network adaptation to support vector regression grey model and generallized autoregressive conditional heteroscedasticity, Expert System with Application, 2008, 34: 925~934
    [116] Varian H R, A Bayesian approach to real estate assessment, Studies in Bayesian Econometircs and Statistics in honor of Leonard J. Savage, North Holland, Amsterdam, 1975, 195~208
    [117] Mincer J, Zarnowitz V, The evaluation of economic forecasts, New York: Columbia University Press , 1969: 3~46
    [118]傅东升,曹丽娟,SVM与BP网络对基金波动的预测效果比较分析,世界经济情况,2007,8:45~50
    [119]唐万梅,基于灰色支持向量机的新型预测模型,系统工程学报,2006,21(4): 410~413
    [120]牛晓东,谷志红,王会青等,基于灰色支持向量机的季节型负荷预测方法,华东电力,2007,35(6): 1~5
    [121]邓乃扬,田英杰,数据挖掘中的新方法—支持向量机,北京:科学出版社,2005.
    [122]傅立,灰色系统理论及其应用,北京:科技技术文献出版社,1992.
    [123] Ql M, Maddala G S, Economic factors and the stock market: a new perspective, Journal of Forecasting, 1999, 18: 151~166
    [124] Takagi T, Sugeno M, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 1985, 15: 116~132
    [125] Chang P C, Liu C H, A TSK type fuzzy rule based system for stock price prediction, Expert System with Application, 2008, 34: 135~144
    [126]朱红霞,沈炯等,一种新的动态聚类算法及其在热工过程模糊建模中的应用,中国电机工程学报,2005,25(7):34~39
    [127]孙增圻,徐红兵,基于T-S模型的模糊神经网络,清华大学学报(自然科学版),1997,37(3):76~80
    [128] Cao L, Tay F, Financial forecasting using support vector machines, Neural Computation and Application, 2001, 10: 184~192
    [129] Kim K, Financial time series forecasting using support vector machines, Neurocomputing, 2003, 55: 307~319
    [130] Jang J S R, ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(3): 665~685
    [131]田丽,曹安照,自适应模糊神经网络在某电力公司一产用电量预测中的应用,安徽工程科技学院学报,2004,19(4):37~39
    [132]梁广华,李冠峰,张慧等,基于自适应神经模糊推理系统的国内工业总产值预测,河南农业大学学报,2006,40(6):665~667
    [133] Glosten L R, Jagannathan R, Runkle D, On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 1993, 48: 1779~1801
    [134] Wang Y H, Nonlinear neural network forecasting model for stock index option price: Hybrid GJR-GARCH approach. Expert Systems with Applications, 2007.
    [135] Bates J M, Granger C W J, The combination of Forecastion, Operational Research Quarterly, 1969, 20: 451~468
    [136] Donaldson R G , Kamstra M, Neural network forecast combining with interaction effects, Journal of the Franklin Institute, 1999, 336: 227~236
    [137] Hu M Y, Tsoukalas C, Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates, Journal of International Financial Markets, Institutions and Money, 1999, 9: 407~422
    [138] Moody J, Darken C J, Fast learning in networks of locally-tuned processing elements, Neural Computation, 1989, 1(2): 281~294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700