农产品产地污染综合知识挖掘系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决产地污染数据综合利用问题,开展产地污染分析与评估,特立此课题进行研究。本课题的研究目标是:对农产品产地污染监测结果及相关空间数据进行知识挖掘,建立一个产地污染综合知识挖掘系统。该系统由四部分组成:数据清洗系统,非空间谓词挖掘系统、空间谓词的提取系统,空间-非空间关联规则挖掘系统。
     本文采用属性清洗和重复数据清洗技术完成产地污染数据清洗工作。针对属性清洗,文中提出了统计分析清洗方法、聚类清洗方法、基于模式的清洗方法、关联规则清洗方法;针对重复记录的清洗,运用了DBSCAN聚类方法提取相似重复记录集,然后采用蚁群算法进行合并和删除重复记录,创造了一种新的数据清洗方法。
     本文将产地土壤污染非空间谓词的提取分为两部分,一是非空间背景知识的提取,二是产地污染原子命题集的提取。首先,采用了关系演算方式,以关系(元组、属性)建立笛卡尔积的形式获取非空间背景知识;然后,建立了一种产地污染预测与评估和原子命题集提取的新方法,即:利用PCA主成分对污染数据降维,采用RBF网络对产地污染状况进行评估预测,最后运用SWM相似权值法抽取规则的形式,提取原子命题集。
     本文建立了空间谓词提取新方法,引进了空间对象分层挖掘概念,改进了原有的空间谓词九交矩阵提取方法,以粗糙集理论创建了粗糙九交矩阵,并利用CART决策树完成空间谓词的提取,最后建立约束规则,对空间谓词进行归并,使得生成的分层谓词空间既精简又不丢失信息量,为后续关联规则挖掘奠定了基础。
     本文引进了SPADA算法来挖掘空间-非空间关联规则。在非空间谓词集和空间谓词集的基础上建立空间观察集,在分层的基础上以θ代换方式开展层内搜索和层间搜索,从而建立空间-非空间关联规则。同时,还建立了模式约束和关联规则约束,从而提高了搜索和剪枝速度。
     最后,本文建立了一个综合知识挖掘系统的实例。以湖北大冶的产地污染监测数据为依据,对数据清洗算法、土壤污染非空间谓词提取算法、空间谓词提取算法以及空间-非空间关联规则挖掘等进行了验证。验证结果表明,该系统挖掘出的产地污染知识较好的反映了当地产地污染现状。
With the development of China economy, the serious pollution on the agro-product area has caught so many eyeballs of the public. Aiming at improving utilization efficiency of the pollution data , we have a deep research on the pollution analysis and evaluation and as a result this paper come out.In detail, our research has built up an integrated knowledge mining system for the pollution in the agro-product area, in which a knowledge mining process can be applied to the pollution monitoring results and some corresponding spatial data of the agro-product area. This system would consist of four parts: data clearing system, non-spatial predicate mining system, spatial predicate extracting system, and spatial&non-spatial association rules mining system.
     The technologies adopted to clear the data of the agro-product polluted area can be described as attributes clearing and duplicated data clearing. Statistics, clustering, pattern-based and association rules have been discussed and one of which was selected as the optimum method for the attributed clearing. A new technology was developed to clear the duplicated records, which can be described as: the DBSCAN clustering method was adopted to extract the similar duplicated records, and then ant colony algorithm was run to merge and delete the duplicated records.
     Non-spatial predicates extracting can be split into two sub-tasks, one of which is non-spatial background knowledge extracting, the other is the atomic proposition sets extracting. Firstly, the non-spatial background knowledge was extracted in the form of a Cartesain Product which would be built as relation(tuple, attribute) after relational analysis. When we extract the atomic proposition set, the prediction estimation of the pollution in the agro-product area would be performed at the same time. Namely, the Principal Component Analysis was applied to reduce the dimensions of the pollution data. The RBF neural network was adopted to get the prediction estimation. And then the Similar Weight Method was used to extract the rules to form the atomic proposition set.
     In this paper, a new technology of extracting spatial predicates was delivered. Firstly, the concept of spatial objects hierarchy was introduced, and then we use the rough sets technology on the base of the 9-intersection model to build a new rough 9-intersection matrix, on which the CART decision tree was adopted to extract the spatial predicates. A refined spatial predicates space was obtained after the merging operation to the spatial rules was performed under the limitation of the constrain bias.
     In order to mining the spatial association rules, the SPADA algorithm was introduced in this paper. The spatial observations was built up on the bases of non-spatial predicates space and the spatial predicates space. The intra-level and the inter-level search were implementing according to theθ-subsumption in the structure of the predicates space hierarchies. the spatial association rules set would be presented in the end. At the same time, the pattern/rules constraint biases were applied to improve the searching and pruning speed in the mechanism.
     In the last section of the paper we describe a practical example that shows how it is possible to perform a spatial analysis on the pollution data in Daye of Hubei province. We exam all the algorithms we mentioned at above and the results show that this integrated knowledge mining system works well and the mining results are satisfied.
引文
[1]郑向群,农业环境信息数据分析中数据挖掘技术的应用.农业环境与发展, 2003(1): p. 35-37.
    [2]檀满枝,陈杰,郑海龙,模糊C一均值聚类法在土壤重金属污染空问预测中的应用.环境科学学报, 2006. 26(12): p. 2086-2092.
    [3]李家科,李怀恩,赵静,支持向量机在非点源污染负荷预测中的应用.西安建筑科技大学学报, 2006. 38(6): p. 756-760.
    [4]钟晓兰,周生路,李江涛,长江三角洲地区土壤重金属污染的空间变异特征——以江苏省太仓市为例.土壤学报, 2007. 44(1): p. 33-40.
    [5]胡远安,程声通,贾海峰,非点源污染模拟的空间分割优化.清华大学学报:自然科学版, 2005. 45(3): p. 367-370.
    [6]李德仁,王树良,李德毅,王新洲,论空间数据挖掘和知识发现的理论与方法.武汉大学学报(信息科学版), 2002. 27(3): p. 221-233.
    [7]王新洲,论空间数据处理与空间数据挖掘.武汉大学学报:信息科学版, 2006. 31(1): p. 1-8.
    [8] Cressie, N., Statistics for Spatial Data. 1991, New York: John Wiley and Sons.
    [9] CRESSIE, N., Geostatistics:a Tool for Environmental modellers, in Environmental Modelling with GIS, M.F. GOODCHILD, PARKS,B.O. ,STEYAERT,LT., Editor. 1993, Oxford University Press: New York.
    [10] WANG, J., YANG, J., MUNTZ, R., An approach to active spatial data mining based on statistical information. IEEE Transactions on Knowledge and Data Engineering, 2000. 12(5): p. 715-728.
    [11]冯建生, KDD及其应用.宝钢技术, 1999(3): p. 27-31.
    [12]胡彩平,秦小麟,空间数据挖掘研究综述.计算机科学, 2007. 34(5): p. 14-19.
    [13] ESTER, M.e.a., Spatial data mining: databases primitives, algorithms and efficient DBMS support. Data Mining and Knowledge Discovery, 2000(4): p. 193-216.
    [14] KOPERSKI, K., HAN, J. Discovery of spatial association rules in geographic information databases. in Proceedings of the 4th International Symposium on Spatial Databases (SSD'95). 1995. Berlin: Spring-Verlag.
    [15]石云,孙玉芳,左春,基于Rough Set的空间数据分类方法.软件学报, 2000.11(5): p. 673-678.
    [16] Shekhar S, S.P., Vatsavai R, et al., Spatial Contextual Classification and Prediction Models for Mining Geospatial Data, in IEEE Transactions on Multimedia. 2002.
    [17] Chawla S, S.S., Wu W. Predicting Locations using Map Similarity(PLUMS): A Framework for Spatial Data Mining. in Proceeding of the 6th International Conference on Knowledge Discovery and Data Mining. 2000. Boston, USA.
    [18] Chawla S, S.S., Wu W, et al. Modeling Spatial dependencies for Mining Geospatial Data. in 1st SIAM International Conference on Data Mining. 2001.
    [19] Hu Tianming, S.S.Y., Data Fusion in Radial Basis function Networks for Spatial Regression. Neural Networks Letters, 2005. 21(2): p. 81-93.
    [20] Wang Lizhen, X.K., Chen Tao, et al., Efficient discovery of multilevel spatial association rules using partitions. Information and Software Technology, 2005. 47: p. 829-840.
    [21] Shama L K, V.O.P., Tiwary U S, et al., A Novel Approach of Multilevel Positive and Negative Association Rule Mining for Spatial Databases, in MLDM. 2005. p. 620-629.
    [22] Malerba D, E.F., Lisi F A, et al., Mining spatial association rules in census data: A relational approach. Research in Official Statistics, 2002. 5(1): p. 620-629.
    [23]丁祥武,挖掘时态关联规则.武汉交通科技大学学报, 1999. 23(4): p. 365-367.
    [24]何彬彬,郭达志,方涛,基于空间统计学的空间关联挖掘.计算机工程, 2006. 32(5): p. 20-22.
    [25]刘大有,王生生,虞强源,胡鹤,基于定性空间推理的多层空间关联规则挖掘算法.计算机研究与发展, 2004. 41(4): p. 565-570.
    [26]袁红春,熊范纶,元规则指导下的逐步求精多层空间关联规则挖掘算法研究.计算机工程, 2004. 30(8): p. 34-36.
    [27]陈江平,傅中良,边馥苓,等,基于空间分析的空间关联规则提取.计算机工程, 2003. 29(11): p. 29-31.
    [28] Eliseo Clementini, P.D.F.K.K., Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering, 2000(34): p. 251-270.
    [29] Kacar E, C.N.K. Discovery Fuzzy Spatial Association Rules. in Data Mining and Knowledge Discovery: Theory, Tools and Technology IV. In:Dasarathy B V, ed. Proceedings of SPIE. 2002.
    [30] Shshi S, Y.H. Discovering spatial co-location patterns:A summary of results. inProceedings of the 7th International Symposium on Spatial and Temporal Databases. 2001. Redondo Beach, Canada.
    [31] Huang Y, X.H., Shekhar S, et al. Mining Confident Co-location Rules without a Support Threshold. in Proc. 2003 ACM Symposium on Applied Computing. 2003. New York, USA.
    [32] Xiong H, S.S.H.Y., et al. A Framework for Discovering Co-location Patterns in Datasets with Extended Spatial Objects. in Proceeding of the 4th SIAM International Conference on Data Mining. 2004. Florida, USA.
    [33] Yoo Jin Soung, S.S. A partial join approach for mining co-location patterns. in 12th ACM International Workshop on Geographic Information Systems. 2004. Washington, DC,USA.
    [34] Yoo Jin Soung, S.S., Celik M. A Joinless Approach for co-location Pattern Mining: A Summary of Results. in Proceedings of the IEEE International Conference on Data Mining(ICDM). 2005. Houston, USA.
    [35] Tung A K H, H.J., Han J, Spatial Clustering in the Prosence of Obstacles. IEEE Transactions on Knowledge and Data Engineering, 2001. 11: p. 359-369.
    [36] Estivill-Castro V, L.I.J. AUTOCLUST+: Automatic Vlustering of Point-Data Sets in the Prosence of Obstacles. in Proceeding of International Workshop on Temporal,Spatial and Spatio-Temporal Data Ming. 2000. Lyon, France.
    [37] Estivill-Castro V, L.I.J. AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets. in Proceeding of the 5th International Conference on Geocomputation. 2000.
    [38] A Foss, OR Zalane, A Parameterless Method for Efficiently Discovering Clusters of Arbitrary Shape in Large Datasets. in Proceedings of the 2002 IEEE International Conference on Data Mining 2002.
    [39] Wang Xin, H.H.J. DBRS:a density-based spatial clustering method with random sampling. in Proc of the 7th PAKDD. 2003. Seoul, Korea.
    [40] Ester M, A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. in The 2nd International Conference on Knowledge Discovery and Data Mining. 1996. Portland.
    [41] S Nittel, K Leung, A Braveman. Scaling K-Means for Massive Data Sets using Data Streams. in Proceeding of International Conference on Data Engineering(ICDE). 2004. Boston, USA.
    [42] A Agouris, S Stefanidis, Gyftakis, Differential snakes for change detection in roadsegments. Photogrammetric Engineering and Remote Sensing, 2001. 67(12): p. 1391-1399.
    [43]邸凯昌,李德仁,用探测性的归纳学习方法从空间数据库发现知识.中国图象图形学报, 1999. 4(11): p. 924-928.
    [44]王树良,王新洲,曾旭平,史文中,滑坡监测数据挖掘视角.武汉大学学报:信息科学版, 2004. 29(7): p. 608-610.
    [45]朱阿兴,裴韬等,基于专家知识的滑坡危险性模糊评估方法.地理科学进展, 2006. 25(4): p. 1-12.
    [46]高韬,谢昆青,马修军,陈冠华, SDML:基于空间数据库的空间数据挖掘语言.北京大学学报:自然科学版, 2003. 40(3): p. 465-472.
    [47]杨霞,基于GIS的空问数据挖掘研究综述.计算机与信息技术, 2007(26): p. 58-69.
    [48] Han J et al., A system prototype for spatial data mining, in Proc A CM-SIGMOD Conference Management of Data. 1997: AZ, USA. p. 324-335.
    [49] Lu W, Han J et al. Discovery of general knowledge in large spatial databases. in Proc of 1993 Far East Workshop on Geographic Information Systems(FEGIS’93). 1993. Singapore.
    [50] Han, R.T.N.J. Efficient and efective clustering methods for spatial data mining. in 20th International Conference on Very Large Databases(VLDB'94). 1994. Santiago, Chile.
    [51] K Koperski, J.H. Discovery of spatial association rules in geographic information databases. in Proceedings of the 4th International Symposium on Large Spatial Databases(SSD95). 1995. Maine.
    [52] K Koperski, J.H. An efficient two-step method for classification of spatial data. in Proc 1998 International Symposium on Spatial Data Handling(SDH'98). 1998. Vancouver,B.C.,Canada.
    [53]蒋旻,基于空间数据库的数据挖掘技术.武汉科技大学学报:自然科学版, 2002. 25(2): p. 183-186.
    [54]袁红春,熊范纶,一个适用于地理信息系统的数据挖掘工具—GISMiner.中国科学技术大学学报, 2002. 32(2): p. 217-224.
    [55] Fayyad, U.M.e.a., Advances in Knowledge Discovery and Data Mining. 1996, Menlopark CA: AAAI/MIT Press.
    [56]李德毅,发现状态空间理论.小型微型计算机系统, 1994. 15(11): p. 1-6.
    [57]郭际元,周顺平,刘修国,空间数据库. 2004,武汉:中国地质大学出版社.
    [58]祝晓东,倪凯,基于空间数据的关联规则挖掘算法及实现.宁波职业技术学院学报, 2004. 8(3): p. 1-2.
    [59]龚健雅,边馥苓,地理信息系统导论. 1993,北京:测绘出版社.
    [60]毛国君,段立娟,王实,等,数据挖掘原理与算法. 2005,北京:清华大学出版社.
    [61]邸凯昌,空间数据发掘和知识发现的理论和方法. 1999,武汉:武汉测绘科技大学.
    [62]毕硕本,耿焕同,闾国年,国内空间数据挖掘研究进展与技术体系探讨.地理信息世界, 2008(1): p. 21-27.
    [63]赵伟,张姝,李文辉,改进K-means的空间聚类算法.计算机应用研究2008(7): p. 22-24.
    [64]东凯,方裕,空间数据库模型概念与结构研究.地理信息世界, 2004. 2(2): p. 8-16.
    [65]龚健雅,空间数据库管理系统的概念与发展趋势.测绘科学, 2001. 26(3): p. 4-9.
    [66]张山山,基于对象关系数据库的地理时空数据组织.计算机工程与应用, 2006. 42(1): p. 166-168.
    [67]胡金星,潘懋,宋扬,马照亭,空间数据库实现及其集成技术研究.计算机应用研究, 2003(3): p. 12-19.
    [68]石云,孙玉芳,左春,空间数据采掘的研究与发展.计算机研究与发展, 1999. 36(11): p. 1301-1309.
    [69] Han J, F.Y., Exploration of the power of attribute-oriented induction in data mining, in Advances in Knowledge Discovery and Data Mining. 1996, AAAI/MIT Press: Menlo Park, CA.
    [70] Fayyad U, P.-S.e.a., From data mining to knowledge discovery: An overview, in Advances in Knowledge Discovery and Data Mining. 1996, AAAI/MIT Press: Menlo Park,CA.
    [71] Quinlan, J.R., Programs for Machine Learning. 1993, San Mateo: Morgan Kaufmann Pub.
    [72]周成虎,张健挺,基于信息熵的地学空间数据挖掘模型.中国图象图形学报, 1999. 4(11): p. 946-951.
    [73] Li deyi, H.J., Chan E, Shi Xuemei. Knowledge representation and discovery based on linguistic atoms. in Proc the 1st Pacific Asia Conf KDD & DM. 1997. Singapore.
    [74]李德毅,史雪梅,孟海军,隶属云和隶属云发生器.计算机研究与发展, 1995. 42(8): p. 32-41.
    [75]郑向群,赵政,基于S-CART决策树的多关系空间数据挖掘方法.计算机应用,2008. 28(3): p. 749-752.
    [76] Dzeroski S, L.N., Relational Data Mining. 2001, Berlin: Springer Press.
    [77]徐光美,杨炳儒,张伟,宁淑荣,多关系数据挖掘方法研究.计算机应用研究, 2006. 23(9): p. 8-12.
    [78] Quinlan, J.R., Learning Logical Definitions from Relations. Machine Learning, 1990. 5(3): p. 239-266.
    [79] Wrobel, M.K.S. Relational distancebased clustering. in Proceedings of the Eighth International Conference on Inductive Logic Programming. 1998. Berlin: Springer.
    [80] Wrobel, M.K.S. Extending K-Means Clustering to First-Order Representations. in Proceedings of the Tenth International Conference on Inductive Logic Programming. 2000. Berlin: Springer.
    [81] Blockeel, H., Top-down induction of first order logical decision trees. Artificial Intelligence, 1998. 101: p. 285-297.
    [82] Kramer, S. Structural regression trees. in Proceedings of the Thirteenth National Conferenee on Artificial Intelligence. 1996. Cambridge,MA: MIT Press.
    [83] Toivonen, L.D.a.H., Discovery of Relational Association Rules, in Relational Data Mining, N.L.a.S. Dzeroski, Editor. 2001, Springer-Verlag. p. 189-212.
    [84] S Nijssen,J Kok, Faster association rules for multiple relations. in Seventeenth International Joint Conference on Artificial Intelligence. 2001.
    [85] Kuan-Tsae Huang, Y.W.L.W.R., Quality information and knowledge management. 2002, New Jersey: Prentice Hall.
    [86] Cappiello C, F.C.P.B. Data quality assessment from user's perspective. 2004.
    [87] Daniel Aebi, L.P. Towards improving data quality. 1993.
    [88] Galhardas, H.F.D., An Extensible Frmaework for Data Cleaning. 1999.
    [89] Hernandez,ManadStolfo,Js, Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem. Jounral of Data Mining and Knowledge Discovery, 1998. 2: p. 9-37.
    [90] Kimball,R, Dealing with dirty Data. DBMS, 1996. 9(10): p. 55.
    [91]郭志懋,周傲英,数据质量和数据清洗研究综述.软件学报, 2002. 13(11): p. 2076-2081.
    [92] Fellegi I. P, H.D., A systematic approch to automatic edit and imputation. Americ Statistics of Association, 1976(17-35).
    [93] Wu Xintao, B.D., Learning missing values from summary constrains. 2002.
    [94] Fan W, L.H.j., MadnickSe, et al., Discovering and reconciling value conflicts fornumerical data integration. Information Systems, 2001(26): p. 635-656b.
    [95] Redman, T., Data Quality for the Information Age. 1993: Artech House.
    [96]范明,孟小峰等译,Jiawei Han, M.K.,数据挖掘概念与技术. 2001.8:机械工业出版社.
    [97] R, K., Dealing with Dirty Data, in DBMS. 1996. p. 55.
    [98] Agrawal R, I.T., and Swami A, Mining Association Rules between Sets of Items in Large Databases, in In Proceedings of ACM SIGMOD International Conference on Management of Data. May 1993: Washington D.C. p. 207-216.
    [99] Newcombe H. B, K.J.M.A.S.J. and et al., Automatic linkage of vital records. Science, 1959.
    [100] Firth C,Data Quality in Practice:experience from the frontline. 1996.
    [101] Hernandez,ManadStolfo,Js, Real一world Data is Dirty: Data Cleansing and The Merge/Purge Problem. Jounral of Data Mining and Knowledge Discovery, 1998. 2: p. 9-37.
    [102]杨欣斌,孙京诰,黄道,基于蚁群聚类算法的离群挖掘方法.计算机工程与应用, 2003. 39(9): p. 12-13.
    [103] Jin L, L.C., Mehrotra S. Efficient Record Linkage in Large Data Sets. in Proc 8th International Conference on Database Systems for Advanced Applications. 2003. Kyoto.
    [104] DZEROSKI S., D., Multi-relational data mining: an introduction. Sigmod ACM Trans Program Lang Syst, 1993. 15(5): p. 795-825.
    [105]胡虚怀, DATALOG规则与基于逻辑的关系查询.湖南理工学院学报:自然科学版, 2004. 17(3): p. 57-61.
    [106]卢延鑫,谓词逻辑在关系数据库中的应用.数据库及信息管理, 2007(17): p. 1213-1215.
    [107] H, G., Principal component analysis, ed. N. Park. 1989, Indian New Delhi: The Publishers of Professional Social Science.
    [108]王旭东,邵惠鹤, RBF神经网络在非线性系统建模中的应用.控制理论与应用, 1997. 14(1): p. 59-66.
    [109]徐丽娜,神经网络控制. 1999,哈尔滨:哈尔滨工业大学出版社.
    [110] Sestito S, D.i.T. Knowledge acquisition of conjunctive rules with continuously valued attributes. in Proc of 12th int'1 Conference on Artificial Intelligence. 1992. Avignon, France.
    [111]周志华,陈世福,神经网络规则抽取.计算机研究与发展, 2003. 39(4): p.398-405.
    [112]黄源,萧嵘,张福炎,神经网络的规则提取研究. Journal of computer research and development, 1999. 36(9): p. 1086-1091.
    [113] A.E. Elalfi, R.H., M.E. Elalami, Extracting rules from trained neural network using GA for managing E-business. Applied Soft Computing, 2004. 4: p. 65-77.
    [114] Pawlak, Z., Rough sets: theoretical aspects of reasoning about data. 1991, Netherlands: Academic Publishers.
    [115] Shuliang Wang, D.L.I.W.S.H.I.X.W. and D. LI. Rough Spatial Description. 2002. Xi’an.
    [116] Quinlan, J.R., Induction of decision trees. Machine Learning, 1986. 1(1): p. 81-106.
    [117] Leo Breiman, J.F.R.O. and et al., Classification and Regression Trees. 1984, Monterey, Calif: Wadsworth and Brooks.
    [118] Silverstein, G.P.M.J. Relational cliches: Constraining constructive induction during relational learning. 1991. Morgan Kaufmann: MK.
    [119] L. Hyafil, R.L.R., Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 1976. 5(1): p. 15-17.
    [120] D. Malerba, F.E., F.A.,Lisi and A. Appice, Mining Spatial Association Rules in Census Data. Research in Official Statistics, 2002. 5(1): p. 19-44.
    [121] Lisi, D.M.a.F.A., An ILP method for spatial association rule mining, in Working notes of the First Workshop on Multi-Relational Data Mining. 2001: Freiburg, Germany. p. 18-29.
    [122] ESRI. Spatial Database Engine. 2003 http://www.esri.com/software/sde
    [123]杨杨,赵政,基于数据仓库的农业环境监测系统的研究实现.计算机工程与应用, 2007. 43(9): p. 211-213.
    [124]周志逵,江涛,数据库理论与新技术. 2001,北京:北京理工大学出版社.
    [125] Hamming R W, Coding and Information Theory. 1980, New Jersey: Prentice-Hall.
    [126]许东,吴铮编著,基于MATLAB6.X系统分析与设计—神经网络. 2002,西安:西安电子科技大学出版社. 125-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700