用户名: 密码: 验证码:
MITA介导的细胞抗病毒反应信号转导及其调节机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,病毒感染与宿主免疫的机制一直是生命科学领域的研究热点。病毒入侵宿主细胞后,首先被宿主模式识别受体(pattern-recognition receptors, PRRs)所识别,PRRs激活一系列的信号转导,诱导Ⅰ型干扰素和白细胞介素1β(interleukin 1-p, IL-1β)等细胞因子的表达。这些细胞因子分泌到细胞外,与细胞表面受体结合,激活相应的信号转导,诱导大量的抗病毒基因的表达,从而抑制病毒的复制,诱导被感染的细胞凋亡;同时,这些细胞因子诱导产生炎症反应,激活天然免疫细胞以及适应性免疫系统,从而杀灭病毒并清除病毒感染的细胞。因此,Ⅰ型干扰素等细胞因子的表达对宿主抵抗病毒入侵起着举足轻重的作用。
     研究表明,病毒在感染与复制的过程中产生病原相关分子模式(pathogen-associated molecular patterns, PAMPs),如5’三磷酸具有锅柄状结构的RNA(5'ppp panhandle RNA)以及双链RNA (double-stranded RNA, dsRNA)。宿主细胞内的PRR如RIG-I(retinoic acid-inducible gene I)与MDA5(melanoma differentiation-associated gene 5)识别相应的PAMP后构象发生变化,招募定位于线粒体的接头蛋白VISA (virus-induced signaling adaptor)。VISA通过与TRAF6 (tumor necrosis factor receptor-associated factor 6)或TRAF2相互作用,激活IKK (inhibitor ofκB kinase)复合物,IKK复合物磷酸化IκB (inhibitor ofκB),使IKB经泛素-蛋白酶体途径降解,释放出转录因子NF-κB。同时VISA与TRAF3以及TBK1 (TRAF family member-associated NF-κB activator-binding kinase 1)相互作用,促进TBK1磷酸化激活IRF3 (interferon-regulatory factor 3)。激活的转录因子如IRF3与NF-κB进入细胞核结合至Ⅰ型干扰素等基因的启动子上,激活Ⅰ型干扰素的转录。
     尽管最近十年的研究初步揭示了病毒感染诱导Ⅰ型干扰素产生的过程,但是仍然有很多未知的问题有待进一步研究。例如,VISA通过保守的TRAF相互作用位点与TRAF6和TRAF2相互作用激活NF-κB,而VISA如何与TBK1的相互作用并进一步激活IRF3则并不清楚。此外,DNA病毒的受体及其介导Ⅰ型干扰素的机制是什么,细胞中是否存在其它未知的激活Ⅰ型干扰素的蛋白等等。为了寻找参与激活Ⅰ型干扰素表达的蛋白,我们利用表达克隆的方法筛选了人脾脏cDNA表达文库,发现一个功能未知的蛋白能有效激活IRF3,我们将其命名为MITA (mediator of IRF3 activator)。研究表明,MITA能有效激活转录因子IRF3而不激活NF-κB。RNAi下调MITA的表达则抑制病毒诱导的IRF3和NF-κB的激活、IFN-β等抗病毒基因的表达以及细胞抗病毒反应。MITA的N端含有四个跨膜结构域,其中第三个跨膜结构域(aalll-150)对其线粒体定位、与VISA相互作用以及自身的多聚化非常重要,第二个跨膜结构与第三个跨膜结构之间的部分(aa81-110)对促进TBK1-IRF3相互作用是必须的。内源性免疫沉淀实验表明,MITA持续性地与VISA和IRF3相互作用,病毒感染后,MITA将TBK1招募至线粒体,介导VISA-TBK1-IRF3相互作用;同时,MITA通过自身多聚化形成VISA-MITA-TBK1-IRF3复合物。在这一复合物中,MITA第358位的丝氨酸被TBK1磷酸化,这一过程为IRF3的磷酸化激活所必需。
     在研究MITA介导Ⅰ型干扰素表达机制的过程中,我们发现没有病毒感染的情况下MITA已经被磷酸化,但是哪(几)种蛋白介导静息状态下MITA磷酸化还不清楚;同时我们也观察到MITA能被泛素化,但是MITA泛素化的机制与意义也不清楚。为了回答上述问题,我们以MITA为“诱饵”蛋白进行了酵母双杂交实验,发现一个E3泛素连接酶RNF5能与MITA相互作用。RNF5的C端含有一个跨膜结构域,并通过其C端与MITA相互作用。RNF5在多种细胞中特异地抑制病毒感染引发的信号转导,包括293、HeLa以及原代巨噬细胞和树突状细胞(dendritic cells, DCs),并且其E3泛素连接酶活性对抑制信号转导过程是必需的。RNAi下调RNF5的表达则促进病毒感染引起的IRF3的激活以及IFN-P等抗病毒基因的表达。进一步的研究表明,病毒感染诱导RNF5在线粒体-内质网上动态分布,RNF5在线粒体上与MITA和VISA相互作用,并催化MITA第150位赖氨酸以及VISA第362和461位的赖氨酸残基发生泛素化,并使其通过蛋白酶体途径降解,从而负调节病毒感染早期的信号转导,以防止过度的免疫反应。
     我们的研究发现了一个新的定位于线粒体并介导Ⅰ型干扰素表达的接头蛋白MITA,进一步阐述了病毒感染诱导Ⅰ型干扰素表达的机制;我们进一步的研究发现了定位于内质网和线粒体的E3泛素连接酶RNF5通过泛素化降解MITA和VISA,负调控病毒感染诱导的Ⅰ型干扰素的表达,防止免疫系统过度激活对宿主造成的伤害,也揭示亚细胞器线粒体-内质网之间的“交流”(interplay)在抵御病毒感染与防止过度免疫的平衡过程中扮演着非常重要的角色。
The mechanisms of viral infection and host immune response have long been recognized as a hot research field in life sciences. Pattern-recognition receptors (PRRs) encoded by the host genome recognize invading viruses, representing the first step for antiviral response. The PRRs initiates a series of signaling, which leads to production of a number of cytokines such as typeⅠinterferons (IFNs) and interleukin-1β(IL-1β). The secreted typeⅠIFNs bind to the receptors in autocrine or paracrine manner and initiate signaling that activates transcription of thousands of genes. The produced proteins collaborate to inhibit viral replication or induce apoptosis of infected cells. On the other hand, typeⅠIFNs activate innate immune cells to induce inflammatory response and/or adaptive immune system, resulting in clearance of invading virus and infected cells. Thus, typeⅠIFNs play a vital role in host antiviral response.
     The mechanisms of virus-triggered induction of typeⅠIFNs have been extensively investigated during the past decade. Viral infection and replication generate pathogen associated molecular patterns (PAMPs) such as 5'triphosphate panhandle RNA and double-stranded RNA, which are recognized by the pattern-recognition receptors (PRRs). Among the PRRs, the cytoplasmic RIG-Ⅰ-like receptors (RLRs), RIG-I and MDA5, have been demonstrated to bind to viral RNAs. Upon detection of viral RNA, RIG-I or MDA5 is associated with the mitochondrial adaptor protein VISA. VISA is associated with several downstream proteins constitutively or in a viral infection dependent manner, including TRAF2, TRAF3 and TRAF6. On one hand, VISA interacts with TRAF2 and/or TRAF6 to activate IKK complex, which phosphorylates IκB. The phosphorylated IκB is ubiquitinated and degraded through proteasome, leading to the release and activation of NF-κB. On the other hand, VISA recruits TRAF3 and TBKl to phosphorylate and activate IRF3. The activated transcription factors IRF3 and NF-κB enter into the nucleus and collaboratively activate transcription of typeⅠIFN genes.
     Although breakthrough advances on the virus-triggered typeⅠIFN signaling pathways have been made during the past decade, there are a lot of key questions remaining to be elucidated. For example, it has been suggested that VISA interacts with TRAF2/TRAF6 via its conserved TRAF-interacting motifs to activate NF-κB, whereas how VISA is associated with TBK1 to activate IRF3 is not known yet. Also, what are the unknown proteins involved in virus-triggered typeⅠIFN signaling is another research interest. To identify proteins involved in typeⅠIFNs production, we performed expression cloning experiments, leading to the identification and characterization of MITA (mediator of IRF3 activation). Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of typeⅠIFNs, and cellular antiviral response. MITA contained four putative transmenbrane domains at its N-terminus and was found to localize to the outer membrane of mitochondria and the third transmembrane is critical for its mitochondrial localization, VISA-MITA association and MITA oligomerization. MITA was found to be associated with VISA and IRF3 constitutively and recruited the kinase TBK1 to the VISA-associated complex. The serine 358 of MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3.
     During the process to characterize MITA, we found that MITA was basally phosphorylated without viral infection. However, the kinase(s) remained to be identified. In addition, we also observed that MITA was ubiquitinated, whereas the mechanism of this process was unknown. To address these questions, we performed yeast two-hybrid assays with full-length MITA as bait, leading to the identification of an E3 ubiquitin ligase RNF5 as a MITA-interacting protein. RNF5 interacted with MITA through its C-terminus in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFN-βexpression and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. We also found that RNF5 targeted Lys 362 and Lys 461 of VISA for ubiquitination at the early phase of viral infection, thereby negatively regulating virus-induced type I IFN signaling and preventing excessive immune responses.
     These studies further our understandings of the mechanisms and regulations of virus-induced type I IFN signaling and contribute to the elucidation of the complicated molecular mechanisms of cellular antiviral response. Our results also indicate that the interplay between mitochondria and ER plays a critical role in host defense against invading viruses as well as avoiding harmful excessive immune responses.
引文
Ablasser, A., Bauernfeind, F., Hartmann, G, Latz, E., Fitzgerald, K. A., and Hornung, V. (2009). RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate. Nat Immunol 10,1065-1072.
    Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., and Thanos, D. (2000). Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103,667-678.
    Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4,499-511.
    Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413,732-738.
    Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R. T., Medzhitov, R., Fikrig, E., and Flavell, R. A. (2002). Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1-and TLR2-deficient mice. Nat Med 8,878-884.
    Allen, I. C., Scull, M. A., Moore, C. B., Holl, E. K., McElvania-TeKippe, E., Taxman, D. J., Guthrie, E. H., Pickles, R. J., and Ting, J. P. (2009). The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30,556-565.
    Amer, A., Franchi, L., Kanneganti, T. D., Body-Malapel, M., Ozoren, N., Brady, G., Meshinchi, S., Jagirdar, R., Gewirtz, A., Akira; S., and Nunez, G. (2006). Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281,35217-35223.
    An, H., Hou, J., Zhou, J., Zhao, W., Xu, H., Zheng, Y, Yu, Y, Liu, S., and Cao, X. (2008). Phosphatase SHP-1 promotes TLR-and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9,542-550.
    An, H., Zhao, W., Hou, J., Zhang, Y., Xie, Y., Zheng, Y, Xu, H., Qian, C., Zhou, J., Yu, Y, et al. (2006). SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25,919-928.
    Ank, N., West, H., and Paludan, S. R. (2006). IFN-lambda:novel antiviral cytokines. J Interferon Cytokine Res 26,373-379.
    Apostolou, E., and Thanos, D. (2008). Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 134,85-96.
    Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500-7505.
    Balachandran, S., Thomas, E., and Barber, G. N. (2004). A FADD-dependent innate immune mechanism in mammalian cells. Nature 432,401-405.
    Barbalat, R., Lau, L., Locksley, R. M., and Barton, G. M. (2009). Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10, 1200-1207.
    Barreiro, L. B., Ben-Ali, M., Quach, H., Laval, G, Patin, E., Pickrell, J. K., Bouchier, C., Tichit, M., Neyrolles, O., Gicquel, B., et al. (2009). Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5, e1000562.
    Bauer, S., Pigisch, S., Hangel, D., Kaufmann, A., and Hamm, S. (2008). Recognition of nucleic acid and nucleic acid analogs by Toll-like receptors 7,8 and 9. Immunobiology 213,315-328.
    Bhoj, V. G, and Chen, Z. J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430-437.
    Boone, D. L., Turer, E. E., Lee, E. G., Ahmad, R. C., Wheeler, M. T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., et al. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5,1052-1060.
    Bowie, A. G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8,911-922.
    Boyden, E. D., and Dietrich, W. F. (2006). Nalplb controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38,240-244.
    Bromberg, K. D., Kluger, H. M., Delaunay, A., Abbas, S., DiVito, K. A., Krajewski, S., and Ronai, Z. (2007). Increased expression of the E3 ubiquitin ligase RNF5 is associated with decreased survival in breast cancer. Cancer Res 67,8172-8179.
    Burckstummer, T., Baumann, C., Bluml, S., Dixit, E., Durnberger, G, Jahn, H., Planyavsky, M., Bilban, M., Colinge, J., Bennett, K. L., and Superti-Furga, G. (2009). An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10,266-272.
    Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., and Tschopp, J. (2003). Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197,263-268.
    Cao, W., Manicassamy, S., Tang, H., Kasturi, S. P., Pirani, A., Murthy, N., and Pulendran, B. (2008). Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9,1157-1164.
    Carty, M., Goodbody, R., Schroder, M., Stack, J., Moynagh, P. N., and Bowie, A. G (2006). The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7,1074-1081.
    Chamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., Ogura, Y., Kawasaki, A., Fukase, K., Kusumoto, S., et al. (2003). An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4,702-707.
    Chau, T. L., Gioia, R., Gatot, J. S., Patrascu, F., Carpentier, I., Chapelle, J. P., O'Neill, L., Beyaert, R., Piette, J., and Chariot, A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 33,171-180.
    Chaudhary, P. M., Ferguson, C., Nguyen, V., Nguyen, O., Massa, H. F., Eby, M., Jasmin, A., Trask, B. J., Hood, L., and Nelson, P. S. (1998). Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4:evidence for a multi-gene receptor family in humans. Blood 91, 4020-4027.
    Chiu, Y. H., Macmillan, J. B., and Chen, Z. J. (2009a). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138,576-591.
    Chiu, Y. H., Zhao, M., and Chen, Z. J. (2009b). Ubiquitin in NF-kappaB signaling. Chem Rev 109, 1549,1560.
    Choi, M. K., Wang, Z., Ban, T., Yanai, H., Lu, Y., Koshiba, R., Nakaima, Y, Hangai, S., Savitsky, D., Nakasato, M., et al. (2009). A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci U S A 106,17870-17875.
    Chuang, T. H., and Ulevitch, R. J. (2004). Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5,495-502.
    Covert, M. W., Leung, T. H., Gaston, J. E., and Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309,1854-1857.
    Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K. K., Krug, A., and Hopfner, K. P. (2008). The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell 29,169-179.
    Deng, W., Shi, M., Han, M., Zhong, J., Li, Z., Li, W., Hu, Y, Yan, L., Wang, J., He, Y., et al. (2008). Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK1. J Biol Chem 283,35590-35597.
    Diao, F., Li, S., Tian, Y, Zhang, M., Xu, L. G., Zhang, Y, Wang, R. P., Chen, D., Zhai, Z., Zhong, B., et al. (2007). Negative regulation of MDA5-but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci U S A 104,11706-11711.
    Didier, C., Broday, L., Bhoumik, A., Israeli, S., Takahashi, S., Nakayama, K., Thomas, S. M., Turner, C. E., Henderson, S., Sabe, H., and Ronai, Z. (2003). RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol 23,5331-5345.
    Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303,1529-1531.
    Diehl, G E., Yue, H. H., Hsieh, K., Kuang, A. A., Ho, M., Morici, L. A., Lenz, L. L., Cado, D., Riley, L. W., and Winoto, A. (2004). TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21,877-889.
    Divanovic, S., Trompette, A., Atabani, S. F., Madan, R., Golenbock, D. T., Visintin, A., Finberg, R. W., Tarakhovsky, A., Vogel, S. N., Belkaid, Y, et al. (2005). Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6,571-578.
    Edelmann, K. H., Richardson-Burns, S., Alexopoulou, L., Tyler, K. L., Flavell, R. A., and Oldstone, M. B. (2004). Does Toll-like receptor 3 play a biological role in virus infections? Virology 322,231-238.
    Ermolaeva, M. A., Michallet, M. C., Papadopoulou, N., Utermohlen, O., Kranidioti, K., Kollias, G., Tschopp, J., and Pasparakis, M. (2008). Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9,1037-1046.
    Ewald, S. E., Lee, B. L., Lau, L., Wickliffe, K. E., Shi, G. P., Chapman, H. A., and Barton, G. M. (2008). The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658-662.
    Fahimi, A., Kharrazi-Pakdel, A., and Talaei-Hassanloui, R. (2008). Evaluation of effect of PxGV-Taiwanii on cabbage moth Plutella xylostella (Lep.:Plutellidae) in laboratory conditions. Pak J Biol Sci 11,1768-1770.
    Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J., and Alnemri, E. S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458,509-513.
    Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T. D., Ozoren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., et al. (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin lbeta in salmonella-infected macrophages. Nat Immunol 7,576-582.
    Franchi, L., Stoolman, J., Kanneganti, T. D., Verma, A., Ramphal, R., and Nunez, G (2007). Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37,3030-3039.
    Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227,106-128.
    Franzini-Armstrong, C. (2007). ER-mitochondria communication. How privileged? Physiology (Bethesda) 22,261-268.
    Friedman, C. S., O'Donnell, M. A., Legarda-Addison, D., Ng, A., Cardenas, W. B., Yount, J. S., Moran, T. M., Basler, C. F., Komuro, A., Horvath, C. M., et al. (2008). The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9,930-936.
    Fukata, M., Vamadevan, A. S., and Abreu, M. T. (2009). Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21,242-253.
    Fukui, R., Saitoh, S., Matsumoto, F., Kozuka-Hata, H., Oyama, M., Tabeta, K., Beutler, B., and Miyake, K. (2009). Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA-but against RNA-sensing. J Exp Med 206,1339-1350.
    Gack, M. U., Kirchhofer, A., Shin, Y. C., Inn, K. S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K. P., and Jung, J. U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A105,16743-16748.
    Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., and Jung, J. U. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446,916-920.
    Gao, D., Wang, R., Li, B., Yang, Y, Zhai, Z., and Chen, D. Y. (2009a). WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol Life Sci 66,2573-2584.
    Gao, D., Yang, Y K., Wang, R. P., Zhou, X., Diao, F. C., Li, M. D., Zhai, Z. H., Jiang, Z. F., and Chen, D. Y (2009b). REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One 4, e5760.
    Gatot, J. S., Gioia, R., Chau, T. L., Patrascu, F., Warnier, M., Close, P., Chapelle, J. P., Muraille, E., Brown, K., Siebenlist, U., et al. (2007). Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J Biol Chem 282,31131-31146.
    Genin, P., Lin, R., Hiscott, J., and Civas, A. (2009a). Differential regulation of human interferon A gene expression by interferon regulatory factors 3 and 7. Mol Cell Biol 29,3435-3450.
    Genin, P., Vaccaro, A., and Civas, A. (2009b). The role of differential expression of human interferon--a genes in antiviral immunity. Cytokine Growth Factor Rev 20,283-295.
    Georgel, P., Jiang, Z., Kunz, S., Janssen, E., Mols, J., Hoebe, K., Bahram, S., Oldstone, M. B., and Beutler, B. (2007). Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362,304-313.
    Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl,S81-96.
    Gilmore, T. D. (2006). Introduction to NF-kappaB:players, pathways, perspectives. Oncogene 25, 6680-6684.
    Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M. K., Labigne, A., Zahringer, U., et al. (2003). Nodl detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300,1584-1587.
    Gottipati, S., Rao, N. L., and Fung-Leung, W. P. (2008). IRAKI:a critical signaling mediator of innate immunity. Cell Signal 20,269-276.
    Guo, B., and Cheng, G. (2007). Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282,11817-11826.
    Hacker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006, re13.
    Han, K. J., Su, X., Xu, L. G, Bin, L. H., Zhang, J., and Shu, H. B. (2004). Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 279,15652-15661.
    Hayden, M. S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes Dev 18,2195-2224.
    Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G, Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303,1526-1529.
    Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3,196-200.
    Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira; S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408,740-745.
    Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199,1641-1650.
    Higgs, R., Ni Gabhann, J., Ben Larbi, N., Breen, E. P., Fitzgerald, K. A., and Jefferies, C. A. (2008). The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181,1780-1786.
    Hisamatsu, T., Suzuki, M., Reinecker, H. C., Nadeau, W. J., McCormick, B. A., and Podolsky, D. K. (2003). CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124,993-1000.
    Honda, K., Ohba, Y, Yanai, H., Negishi, H., Mizutani, T., Takaoka, A., Taya, C., and Taniguchi, T. (2005a). Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434,1035-1040.
    Honda, K., Takaoka, A., and Taniguchi, T. (2006). Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25,349-360.
    Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y, Takaoka, A., Yoshida, N., and Taniguchi, T. (2005b). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434,772-777.
    Honda, K., Yanai, H., Takaoka, A., and Taniguchi, T. (2005c). Regulation of the type ⅠIFN induction:a current view. Int Immunol 17,1367-1378.
    Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. R., Latz, E., and Fitzgerald, K. A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458,514-518.
    Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., et al. (2006).5'-Triphosphate RNA is the ligand for RIG-I. Science 314,994-997.
    Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., de Fougerolles, A., et al. (2005). Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11, 263-270.
    Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., and
    Hartmann, G. (2002). Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168,4531-4537.
    Hu, X., Paik, P. K., Chen, J., Yarilina, A., Kockeritz, L., Lu, T. T., Woodgett, J. R., and Ivashkiv, L. B. (2006). IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24,563-574.
    Huang, J., Liu, T., Xu, L. G., Chen, D., Zhai, Z., and Shu, H. B. (2005). SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3-and virus-triggered IRF-3 activation pathways. Embo J 24,4018-4028.
    Ikeda, H., Old, L. J., and Schreiber, R. D. (2002). The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13,95-109. Isaacs, A., and Lindenmann, J. (1957). Virus interference. Ⅰ. The interferon. Proc R Soc Lond B Biol Sci 147,258-267.
    Ishii, K. J., and Akira, S. (2006). Innate immune recognition of, and regulation by, DNA. Trends Immunol 27,525-532.
    Ishii, K. J., Kawagoe, T., Koyama, S., Matsui; K., Kumar, H., Kawai, T., Uematsu, S., Takeuchi, O., Takeshita, F., Coban, C., and Akira, S. (2008). TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451,725-729.
    Ishikawa, H., and Barber, G. N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455,674-678.
    Ishikawa, H., Ma, Z., and Barber, G.N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461,788-792.
    Jia, Y., Song, T., Wei, C., Ni, C., Zheng, Z., Xu, Q., Ma, H., Li, L., Zhang, Y., He, X., et al. (2009). Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol 183, 4241-4248.
    Jiang, Z., Mak, T. W., Sen, G., and Li, X. (2004). Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A 101,3533-3538.
    Jin, L., Waterman, P. M., Jonscher, K. R., Short, C. M., Reisdorph, N. A., and Cambier, J. C. (2008). MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28,5014-5026.
    Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K. Q., Ishii, K. J., Kawai, T., Akira, S., Suzuki, K., and Okuda, K. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104,14050-14055.
    Jude, B. A., Pobezinskaya, Y, Bishop, J., Parke, S., Medzhitov, R. M., Chervonsky, A. V., and Golovkina, T. V. (2003). Subversion of the innate immune system by a retrovirus. Nat Immunol 4, 573-578.
    Kang, J. Y, Nan, X., Jin, M. S., Youn, S. J., Ryu, Y. H., Mah, S., Han, S. H., Lee, H., Paik, S. G., and Lee, J. O. (2009). Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31,873-884.
    Kanneganti, T. D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J. H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., et al. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440,233-236.
    Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., and Akira, S. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23,19-28.
    Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T. S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205, 1601-1610.
    Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A.,
    Kawai, T., Ishii, K. J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441,101-105.
    Kawagoe, T., Takeuchi, O., Takabatake, Y, Kato, H., Isaka, Y, Tsujimura, T., and Akira, S. (2009). TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10,965-972.
    Kawai, T., and Akira, S. (2008). Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143,1-20.
    Kawai, T., and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21,317-337.
    Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol 6,981-988.
    Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O'Rourke, K. M., Eby, M., Pietras, E., Cheng, G, Bazan,'J. F., et al. (2007). DUBA:a deubiquitinase that regulates type I interferon production. Science 318,1628-1632.
    Keating, S. E., Maloney, G. M., Moran, E. M., and Bowie, A. G. (2007). IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J Biol Chem 282,33435-33443.
    Kim, M. J., Hwang, S. Y, Imaizumi, T., and Yoo, J. Y. (2008). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82,1474-1483.
    Kim, Y, Zhou, P., Qian, L., Chuang, J. Z., Lee, J., Li, C., Iadecola, C., Nathan, C., and Ding, A. (2007). MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204,2063-2074.
    Kleinman, M. E., Yamada, K., Takeda, A., Chandrasekaran, V, Nozaki, M., Baffi, J. Z., Albuquerque, R. J., Yamasaki, S., Itaya, M., Pan, Y., et al. (2008). Sequence-and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452,591-597.
    Klinman, D. M. (2004). Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4, 249-258.
    Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Jr., Medzhitov, R., and Flavell, R. A. (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110,191-202.
    Komuro, A., Bamming, D., and Horvath, C. M. (2008). Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 43,350-358.
    Krieg, A. M. (2002). CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709-760.
    Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M., and Colonna, M. (2004a). TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107-119.
    Krug, A., Luker, G. D., Barchet, W., Leib, D. A., Akira, S., and Colonna, M. (2004b). Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433-1437.
    Kumagai, Y., Takeuchi, O., Kato, H., Kumar, H., Matsui, K., Morii, E., Aozasa, K., Kawai, T., and Akira, S. (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27,240-252.
    Kumar, H., Kawai, T., and Akira, S. (2009a). Pathogen recognition in the innate immune response. Biochem J 420,1-16.
    Kumar, H., Kawai, T., and Akira, S. (2009b). Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388,621-625.
    Kumar, H., Kawai, T., Kato, H., Sato, S., Takahashi, K., Coban, C., Yamamoto, M., Uematsu, S., Ishii, K. J., Takeuchi, O., and Akira, S. (2006). Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 203,1795-1803.
    Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., and Finberg, R. W. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1,398-401.
    Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006). Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2, e53.
    Li, Y., Li, C., Xue, P., Zhong, B., Mao, A. P., Ran, Y, Chen, H., Wang, Y Y, Yang, F., and Shu, H. B. (2009). ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A 106,7945-7950.
    Lightfield, K. L., Persson, J., Brubaker, S. W., Witte, C. E., von Moltke, J., Dunipace, E. A., Henry, T., Sun, Y. H., Cado, D., Dietrich, W. F., et al. (2008). Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9,1171-1178.
    Lin, R., Lacoste, J., Nakhaei, P., Sun, Q., Yang, L., Paz, S., Wilkinson, P., Julkunen, I., Vitour, D., Meurs, E., and Hiscott, J. (2006a). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80,6072-6083.
    Lin, R., Yang, L., Nakhaei, P., Sun,Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. (2006b). Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281,2095-2103.
    Liu, P., Li, K., Garofalo, R. P., and Brasier, A. R. (2008). Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF-kappa B-inducing kinase signaling pathway. J Biol Chem 283,23169-23178.
    Lu, G., Reinert, J. T., Pitha-Rowe, I., Okumura, A., Kellum, M., Knobeloch, K. P., Hassel, B., and Pitha, P. M. (2006). ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. Cell Mol Biol (Noisy-le-grand) 52,29-41.
    Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A. (2003). Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198,513-520. Malathi, K., Dong, B., Gale, M., Jr., and Silverman, R. H. (2007). Small self-RNA generated by RNase
    L amplifies antiviral innate immunity. Nature 448,816-819. Mansell, A., Smith, R., Doyle, S. L., Gray, P., Fenner, J. E., Crack, P. J., Nicholson, S. E., Hilton, D. J., O'Neill, L. A., and Hertzog, P. J. (2006). Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7,148-155.
    Martin, M., Rehani, K., Jope, R. S., and Michalek, S. M. (2005). Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6,777-784.
    Martinon, F., Mayor, A., and Tschopp, J.(2009). The inflammasomes:guardians of the body. Annu Rev Immunol 27,229-265.
    Mashima, R., Saeki, K., Aki, D., Minoda, Y., Takaki, H., Sanada, T., Kobayashi, T., Aburatani, H., Yamanashi, Y., and Yoshimura, A. (2005). FLN29, a novel interferon-and LPS-inducible gene acting as a negative regulator of toll-like receptor signaling. J Biol Chem 280,41289-41297.
    Matsumoto, M., Funami, K., Tanabe, M., Oshiumi, H., Shingai, M., Seto, Y, Yamamoto, A., and Seya, T. (2003). Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171, 3154-3162.
    McDonald, C., Inohara, N., and Nunez, G. (2005). Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280,20177-20180.
    McGettrick, A. F., and O' Neill, L. A. Localisation and trafficking of Toll-like receptors:an important mode of regulation. Curr Opin Immunol.
    Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5,503-507.
    Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437,1167-1172.
    Miao, E. A., Ernst, R. K., Dors, M., Mao, D. P., and Aderem, A. (2008). Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105,2562-2567.
    Michallet, M. C., Meylan, E., Ermolaeva, M. A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., Konig, M., et al. (2008). TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28,651-661.
    Mishra, B. B., Gundra, U. M., and Teale, J. M. (2008). Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis. J Neuroinflammation 5,53.
    Moore, C. B., Bergstralh, D. T., Duncan, J. A., Lei, Y, Morrison, T. E., Zimmermann, A. G, Accavitti-Loper, M. A., Madden, V. J., Sun, L., Ye, Z., et al. (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451,573-577.
    Negishi, H., Fujita, Y, Yanai, H., Sakaguchi, S., Ouyang, X., Shinohara, M., Takayanagi, H., Ohba, Y, Taniguchi, T., and Honda, K. (2006). Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc
    Natl Acad Sci U S A 103,15136-15141.
    Ning, S., Campos, A. D., Darnay, B. G, Bentz, G. L., and Pagano, J. S. (2008). TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol Cell Biol 28,6536-6546.
    Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature 439,208-211.
    Okumura, A., Pitha, P. M., Yoshimura, A., and Harty, R. N. Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84,27-33.
    Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4, 161-167.
    Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284,807-817.
    Park, B., Brinkmann, M. M., Spooner, E., Lee, C. C., Kim, Y. M., and Ploegh, H. L. (2008). Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9,1407-1414.
    Pasare, C., and Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+T cell-mediated suppression by dendritic cells. Science 299,1033-1036.
    Pasare, C., and Medzhitov, R. (2005). Toll-like receptors:linking innate and adaptive immunity. Adv Exp Med Biol 560,11-18.
    Paz, S., Vilasco, M., Arguello, M., Sun, Q., Lacoste, J., Nguyen, T. L., Zhao, T., Shestakova, E. A., Zaari, S., Bibeau-Poirier, A., et al. (2009). Ubiquitin-regulated recruitment of IkappaB kinase epsilon to the MAVS interferon signaling adapter. Mol Cell Biol 29,3401-3412.
    Perry, A. K., Chow, E. K., Goodnough, J. B., Yeh, W. C., and Cheng, G. (2004). Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199,1651-1658.
    Pestka, S., Krause, C. D., and Walter, M. R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202,8-32.
    Piccini, A., Carta, S., Tassi, S., Lasiglie, D., Fossati, G., and Rubartelli, A. (2008). ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-lbeta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105,8067-8072.
    Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001. Pippig, D. A., Helhnuth, J. C., Cui, S., Kirchhofer, A., Lammens, K., Lammens, A.; Schmidt, A.,
    Rothenfusser, S., and Hopfner, K. P. (2009). The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37,2014-2025.
    Pobezinskaya, Y. L., Kim, Y. S., Choksi, S., Morgan, M. J., Li, T., Liu, C., and Liu, Z. (2008). The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 9,1047-1054.
    Poeck, H., Bscheider, M., Gross, O., Finger, K., Roth, S., Rebsamen, M., Hannesschlager, N., Schlee, M., Rothenfusser, S., Barchet, W., et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11,63-69.
    Rebsamen, M., Meylan, E., Curran, J., and Tschopp, J. (2008). The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases. Cell Death Differ 15,1804-1811.
    Roberts, T. L., Idris, A., Dunn, J. A., Kelly, G. M., Burnton, C. M., Hodgson, S., Hardy, L. L., Garceau, V., Sweet, M. J., Ross, I. L., et al. (2009). HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323,1057-1060.
    Ryzhakov, G., and Randow, F. (2007). SINTBAD, a novel component of innate antiviral immunity, shares a TBKl-binding domain with NAP1 and TANK. Embo J 26,3180-3190.
    Saha, S. K., Pietras, E. M., He, J. Q., Kang, J. R., Liu, S. Y., Oganesyan, G, Shahangian, A., Zarnegar, B., Shiba, T. L., Wang, Y, and Cheng, G. (2006). Regulation of antiviral responses by a direct and
    specific interaction between TRAF3 and Cardif. Embo J 25,3257-3263.
    Saito, T., Hirai, R., Loo, Y. M., Owen, D., Johnson, C. L., Sinha, S. C., Akira, S., Fujita, T., and Gale, M., Jr. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104,582-587.
    Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J., and Gale, M., Jr. (2008). Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454,523-527.
    Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K. P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7,598-605.
    Saitoh, T., Yamamoto, M., Miyagishi, M., Taira, K., Nakanishi, M., Fujita, T, Akira, S., Yamamoto, N., and Yamaoka, S. (2005). A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol 174,1507-1512.
    Sanada, T., Takaesu, G., Mashima, R., Yoshida, R., Kobayashi, T., and Yoshimura, A. (2008). FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. J Biol Chem 283,33858-33864.
    Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M., and Seya, T. (2005). Cutting Edge:NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 174,27-30.
    Sasai, M., Shingai, M., Funami, K., Yoneyama, M., Fujita, T., Matsumoto, M., and Seya, T. (2006). NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol 177,8676-8683.
    Satoh, T., Kato, H., Kumagai, Y, Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. LGP2 is a positive regulator of RIG-I-and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A.
    Schlee, M., Roth, A., Hornung, V., Hagmann, C. A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G, et al. (2009). Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34.
    Seth, R. B., Sun, L., Ea, C. K., and Chen, Z. J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122,669-682. Shahangian, A., Chow, E. K., Tian, X., Kang, J. R., Ghaffari, A., Liu, S. Y., Belperio, J. A., Cheng, G, and Deng, J. C. (2009). Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119,1910-1920.
    Shi, M., Deng, W., Bi, E., Mao, K., Ji, Y, Lin, G, Wu, X., Tao, Z., Li, Z., Cai, X., et al. (2008). TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 9,369-377.
    Shi, Z., Cai, Z., Wen, S., Chen, C., Gendron, C., Sanchez, A., Patterson, K., Fu, S., Yang, J., Wildman, D., et al. (2009). Transcriptional regulation of the novel Toll-like receptor Tlr13. J Biol Chem 284, 20540-20547.
    Smyth, D. J., Cooper, J. D., Bailey, R., Field, S., Burren, O., Smink, L. J., Guja, C., Ionescu-Tirgoviste, C., Widmer, B., Dunger, D. B., et al. (2006). A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIHl) region. Nat Genet 38, 617-619.
    Su, X., Li, S., Meng, M., Qian, W., Xie, W., Chen, D., Zhai, Z., and Shu, H. B. (2006). TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 36,199-206.
    Sun, Q., Sun, L., Liu, H. H., Chen, X., Seth, R. B., Forman, J., and Chen, Z. J. (2006). The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24,633-642.
    Sutterwala, F. S., Ogura, Y, Szczepanik, M., Lara-Tejero, M., Lichtenberger, G S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., and Flavell, R. A. (2006). Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24,317-327.
    Szretter, K. J., Samuel, M. A., Gilfillan, S., Fuchs, A., Colonna, M., and Diamond, M. S. (2009). The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J Virol 83,9329-9338.
    Tabeta, K., Hoebe, K., Janssen, E. M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S., Goode, J., et al. (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9. Nat Immunol 7,156-164.
    Takahasi, K., Kumeta, H., Tsuduki, N., Narita, R., Shigemoto, T., Hirai, R., Yoneyama, M., Horiuchi, M., Ogura, K., Fujita, T., and Inagaki, F. (2009). Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains:identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284,17465-17474.
    Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29,428-440.
    Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y, Miyagishi, M., Kodama, T., Honda, K., et al. (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448,501-505.
    Takeuchi, O., and Akira, S. (2009). Innate immunity to virus infection. Immunol Rev 227,75-86.
    Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K., and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13,933-940. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., and Akira, S. (2002). Cutting edge:role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169,10-14.
    Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26,535-584.
    Tenoever, B. R., Ng, S. L., Chua, M. A., McWhirter, S. M., Garcia-Sastre, A., and Maniatis, T. (2007). Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315,1274-1278.
    Thanos, D., and Maniatis, T. (1995). Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83,1091-1100.
    Theofilopoulos, A. N., Baccala, R., Beutler, B., and Kono, D. H. (2005). Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23,307-336.
    Thomas, P. G, Dash, P., Aldridge, J. R., Jr., Ellebedy, A. H., Reynolds, C., Funk, A. J., Martin, W. J., Lamkanfi, M., Webby, R. J., Boyd, K. L., et al. (2009). The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566-575.
    Tian, Y, Zhang, Y., Zhong, B., Wang, Y Y, Diao, F. C., Wang, R. P., Zhang, M., Chen, D. Y, Zhai, Z. H., and Shu, H. B. (2007). RBCK1 negatively regulates tumor necrosis factor-and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 282, 16776-16782.
    Town, T., Bai, F., Wang, T., Kaplan, A. T., Qian, F., Montgomery, R. R., Anderson, J. F., Flavell, R. A., and Fikrig, E. (2009). Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30,242-253.
    Triantafilou, K., and Triantafilou, M. (2004). Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol 78,11313-11320.
    Uehara, A., Fujimoto, Y, Fukase, K., and Takada, H. (2007). Various human epithelial cells express functional Toll-like receptors, NODI and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 44,3100-3111.
    Uehara, A., Sugawara, Y, Kurata, S., Fujimoto, Y, Fukase, K., Kusumoto, S., Satta, Y, Sasano, T., Sugawara, S., and Takada, H. (2005). Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell Microbiol 7,675-686.
    Uematsu, S., Sato, S., Yamamoto, M., Hirotani, T., Kato, H., Takeshita, F., Matsuda, M., Coban, C., Ishii, K. J., Kawai, T., et al. (2005). Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 201, 915-923.
    Vallabhapurapu, S., Matsuzawa, A., Zhang, W., Tseng, P. H., Keats, J. J., Wang, H., Vignali, D. A., Bergsagel, P. L., and Karin, M. (2008). Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9,1364-1370.
    Venkataraman, T., Valdes, M., Elsby, R., Kakuta, S., Caceres, G., Saijo, S., Iwakura, Y, and Barber, G. N. (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178,6444-6455.
    Wang, C., Chen, T., Zhang, J., Yang, M., Li, N., Xu, X., and Cao, X. (2009). The E3 ubiquitin ligase Nrdpl'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol 10, 744-752.
    Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E., and Flavell, R. A. (2004a). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366-1373.
    Wang, Y., Zhang, H. X., Sun, Y. P., Liu, Z. X., Liu, X. S., Wang, L., Lu, S. Y, Kong, H., Liu, Q. L., Li, X. H., et al. (2007). Rig-I-/-mice develop colitis associated with downregulation of G alpha i2. Cell Res 17,858-868.
    Wang, Y. Y, Li, L., Han, K. J., Zhai, Z., and Shu, H. B. (2004b). A20 is a potent inhibitor of TLR3-and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 576, 86-90.
    Watanabe, T., Kitani, A., Murray, P. J., and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5,800-808.
    Wathelet, M. G., Lin, C. H., Parekh, B. S., Ronco, L. V, Howley, P. M., and Maniatis, T. (1998). Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1,507-518.
    Werner, S. L., Barken, D., and Hoffmann, A. (2005). Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309,1857-1861.
    Woodgett, J. R., and Ohashi, P. S. (2005). GSK3:an in-Toll-erant protein kinase? Nat Immunol 6, 751-752.
    Xu, L., Xiao, N., Liu, F., Ren, H., and Gu, J. (2009). Inhibition of RIG-I and MDA5-dependent antiviral response by gClqR at mitochondria. Proc Natl Acad Sci U S A106,1530-1535.
    Xu, L. G., Wang, Y. Y, Han, K. J., Li, L. Y, Zhai, Z., and Shu, H. B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19,727-740.
    Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301,640-643.
    Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S. (2002). Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169,6668-6672.
    Yang, K., Shi, H. X., Liu, X. Y, Shan, Y. F., Wei, B., Chen, S., and Wang, C. (2009). TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 182, 3782-3792.
    Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29,178-181.
    Yoneyama, M., and Fujita, T. (2009). RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227,54-65.
    Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175,2851-2858.
    Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5,730-737.
    You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z., and Jiang, Z. (2009). PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 10,1300-1308.
    Younger, J. M., Chen, L., Ren, H. Y, Rosser, M. F., Turnbull, E. L., Fan, C. Y, Patterson, C., and Cyr, D. M. (2006). Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126,571-582.
    Zarnegar, B. J., Wang, Y, Mahoney, D. J., Dempsey, P. W., Cheung, H. H., He, J., Shiba, T., Yang, X., Yeh, W. C., Mak, T. W., et al. (2008). Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAPl, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9,1371-1378.
    Zhang, D., Zhang, G., Hayden, M. S., Greenblatt, M. B., Bussey, C., Flavell, R. A., and Ghosh, S. (2004). Atoll-like receptor that prevents infection by uropathogenic bacteria. Science 303,1522-1526.
    Zhang, M., Tian, Y, Wang, R. P., Gao, D., Zhang, Y, Diao, F. C., Chen, D. Y, Zhai, Z. H., and Shu, H. B. (2008a). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18,1096-1104.
    Zhang, M., Wu, X., Lee, A. J., Jin, W., Chang, M., Wright, A., Imaizumi, T., and Sun, S. C. (2008b). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem 283,18621-18626.
    Zhang, S. Y, Jouanguy, E., Ugolini, S., Smahi, A., Elain, G., Romero, P., Segal, D., Sancho-Shimizu, V., Lorenzo, L., Puel, A., et al. (2007). TLR3 deficiency in patients with herpes simplex encephalitis. Science 317,1522-1527.
    Zhao, C., Denison, C., Huibregtse, J. M., Gygi, S., and Krug, R. M. (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 102,10200-10205.
    Zhong, B., Yang, Y, Li, S., Wang, Y Y, Li, Y, Diao, F., Lei, C., He, X., Zhang, L., Tien, P., and Shu, H. B. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29,538-550.
    Zhong, B., Zhang, L., Lei, C., Li, Y, Mao, A. P., Yang, Y, Wang, Y Y, Zhang, X. L., and Shu, H. B. (2009):The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30,397-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700