掺杂铌酸锂晶体结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从晶体化学键理论出发,利用简单径向力模型考查了杂质离子进入铌酸锂(LiNbO3)晶体后引起的局部晶格弛豫,在此基础上提出晶格能方法判断离子在LiNbO3晶体中的占位情况,进而研究不同杂质离子对LiNbO3晶体的光学吸收边及光折变性能的影响。
     由于杂质离子MV+与LiNbO3晶体中的Li+(或Nb5+)的离子半径有所差异,掺杂到晶体中后会导致局部晶格结构的畸变,从而影响晶体的宏观物理性质。我们从微观结构角度出发,将化学键假设成无质量的弹簧,通过成键原子的性质计算键的力常数,进而研究杂质离子周围局部范围内的弹性形变,根据弹性力学最小势能原理分析杂质离子的介入引起的与其相连的氧离子的位置变化。研究表明杂质离子在LiNbO3晶体中形成的M-O键键长是在其本征氧化物中的键长基础上略有偏移,而与基质晶体中的Li-O(或Nb-O)键键长相差很大。在确定掺杂LiNbO3晶体结构后,我们研究了杂质离子对改变晶体紫外光学吸收边的作用机理。
     晶格能反映了晶体中离子间结合力的大小,可以用来表征杂质离子掺杂到LiNbO3晶体后的晶格结构稳定性。我们通过金属氧化物MmOn热力学哈勃循环建立了晶格能与M-O键键价的关系式,从而比较杂质离子分别占据锂位和铌位时的晶格能变化,分析掺杂LiNbO3晶体的结构稳定性,判断杂质离子在晶体中的占位状况。研究表明抗光折变离子和稀土离子都优先占据锂格位,光折变离子在LiNbO3晶体占位方式不统一,我们的理论分析与已有实验结果有很好的一致性。根据杂质离子在LiNbO3晶体的占位方式和离子自身的性质,分析不同离子对晶体光折变性能的影响。
In the formwork of chemical bonds, a simple radial force constant model is used to study the lattice relaxation produced upon doping metal ions to lithium niobate (LiNbO3) crystals. And then a lattice energy model is proposed to study the occupancy of dopants in the LiNbO3 crystal on the basis of establishing the impurity bond length relaxation. Finally, we investigate the effect of various dopants on the optical absorption and photorefractive properties of LiNbO3 crystal.
     The local distortions of LiNbO3 lattice is occur when the doping ions enter the LiNbO3 matrix due to the difference of the ionic radius between doping ion and Li+(or Nb5+), which will have an impact notably on the macroscopic properties of material. Considering the chemical bond as a spring without mass, we calculate its force constant according to the properties of bonding atoms, to analyze the elastic deformation around the dopant. And thus the displacement of O2- joined by doping ion in the LiNbO3 crystal can be evaluated by the principle of minimum potential energy in the theory of elasticity. It shows that the bond length of impurity in LiNbO3 matrix only slightly deviates from its nature one, but has large difference from that of Li-O or Nb-O. Based on above research, the rule of doping ions in the change of optical absorption of LiNbO3 crystal is discussed.
     The lattice energy which is related to the cohesion of the crystal can typify the structural stability of doped LiNbO3 crystal. It can be described as the function of bond valence considering the Born-Haber cycle for the formation of an ionic oxide MmOn. The dopant occupancy in the LiNbO3 matrix can be determined by comparing the deviation of its lattice energy in different locations at both Li+ and Nb5+ sites. It shows that the optical damage resistant dopants and rare earth ions preferentially occupy the Li sites, and there is no regular rule for the occupancy of photorefractive ions, which well agree with the experiment results. Considering the occupancy and properties of dopants, we analyze the influence of doping ions on the photorefractive properties of LiNbO3 crystal.
引文
[1]Pertsch T, Peschel U, Lederer F. All-optical switching in quadratically nonlinear waveguide arrays [J], Optics Letters,2003,28(2):102-104.
    [2]Schiek R, Baek Y, Krijnen G, et al. All-optical switching in lithium niobate directional couplers with cascaded nonlinearity [J], Optics Letters,1996,21(13): 940-942.
    [3]Tartara L. Simple and versatile dual-signal wave optical parametric oscillator [J], Optics Letters,2007,32(9):1105-1107.
    [4]Figen Z G, Aytur 0. Nanosecond sum-frequency generating optical parametric oscillator using simultaneous phase matching [J], Optics Express,2005,13(13): 4896-4902.
    [5]Abu-Safe H H. Investigation of multiconversion processes in periodically poled LiNbO3-based optical parametric oscillators [J], Applied Optics,2005,44(34): 7458-7466.
    [6]Lifante G, Cantelar E, Munoz J A, et al. Zn-diffused LiNbO3:Er3+/Yb3+ as a waveguide laser material [J], Optical Materials,1999,13(1):181-186.
    [7]Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals [J], Nature,1998,393(6686):665-668.
    [8]Capmany J, Bermudez V, Dieguez G. Bulk periodically poled lithium niobate doped with Yb3+ ions:Growth and characterization [J], Applied Physics Letters,1999, 74(11):1534-1536.
    [9]Xue D, Kitamura K, Wang J. Atomic packing and octahedral linking model of lithium niobate single crystals [J], Optical Materials,2003,23(1-2):399-402.
    [10]Xue D, Kitamura K. Crystal structure and ferroelectricity of lithium niobate crystals [J], Ferroelectrics,2003,297:19-27.
    [11]Iyi N, Kitamura K, Izumi F, et al. Comparative study of defect structures in lithium niobate with different compositions [J], Journal of Solid State Chemistry,1992, 101(2):340-352.
    [12]Donnerberg H, Tomlinson S M, Catlow C R A, et al. Computer-simulation of intrinsic defects in LiNbO3 crystals [J], Physical Review B,1989,40(17):11909-11916.
    [13]Kostritskii S M, Moretti P. Comparative study of defects induced by proton and helium implantation in LiNbO3 crystal [J], Radiation Effects and Defects in Solids,1999, 150(1-4):151-156.
    [14]Fay H, Alford W J, Dess H M. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt-composition [J], Applied Physics Letters, 1968,12(3):89-92.
    [15]Fernandez-Ruiz R, Bermudez V. Determination of Li and Nb in congruent lithium niobate by ICP-MS [J], Chemistry of Materials,2004,16(19):3593-3596.
    [16]Peterson G E, A. C. 93Nb NMR linewidths in nonstoichiometric lithium niobate [J], The Journal of Chemical Physics,1972,56:4848.
    [17]Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate [J], Acta Crystallographica Section B-Structural Science,1986,42(1):61-68.
    [18]Lerner P, Legras E, Dumas J P. Stoichiometry of single crystal of lithium niobate [J], Journal of Crystal Growth,1968,3-4:231-235.
    [19]Sidorov N V, Palatnikov M N, Serebryakov Y A, et al. Effect of nonstoichiometry on the structure, properties, and Raman spectra of lithium niobate crystals [J], Inorganic Materials,1997,33(4):419-427.
    [20]Yatsenko A V. NMR study of Li-6 in LiNbO3 [J], Physics of the Solid State,1998, 40(1):109-111.
    [21]Wilkinson A P, Cheetham A K, Jarman R H. The defect structure of congruently melting lithium niobate [J], Journal of Applied Physics,1993,74(5):3080-3083.
    [22]Kong Y F, Xu J J, Chen X J, et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra [J], Journal of Applied Physics,2000,87(9):4410-4414.
    [23]Abdi F, Fontana M D, Aillerie M, et al. Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties [J], Applied Physics a-Materials Science& Processing,2006,83(3):427-434.
    [24]Schirmer O F, Thiemann O, Wohlecke M. Defects in LiNbO3-I. experimental aspects [J], Journal of Physics and Chemistry of Solids,1991,52(1):185-200.
    [25]Merschjann C, Schoke B, Imlau M. Influence of chemical reduction on the particular number densities of light-induced small electron and hole polarons in nominally pure LiNbO3 [J], Physical Review B,2007,76(8)
    [26]Schirmer O F, von der Linde D. Two-photon and X-ray-induced Nb+and 0-small polarons in LiNbO3 [J], Applied Physics Letters,1978,33(1):35-38.
    [27]Malovichko G, Grachev V, Kokanyan E, et al. EPR, NMR and ENDOR study of intrinsic and extrinsic defects in disordered and regularly ordered lithium niobate crystals [J], Ferroelectrics,2000,239(1-4):1227-1236.
    [28]Vila M, De Bernabe A, Prieto C. EXAFS determination of the Nd3+ lattice position in Nd:LiNbO3:influence of lithium niobate stoichiometry and Mg2+ and Zn2+ co-doping [J], Journal of Alloys and Compounds,2001,323:331-335.
    [29]Kling A, Valdrez C, Marques J G. Incorporation of tungsten in lithium niobate by diffusion [J], Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2002,190(1-4):524-527.
    [30]Corradi G, Chadwick A V, West A R, et al. On the substitution site of Cr and Fe in LiNbO3:An EXAFS study [J], Radiation Effects and Defects in Solids,1995, 134(1-4):219-222.
    [31]Rebouta L, Smulders P J M, Boerma D 0, et al. Ion-beam channeling yields of host and impurity atoms in LiNbO3:computer simulations [J], Physical Review B,1993, 48(6):3600-3610.
    [32]Xue D, He X. Dopant occupancy and structural stability of doped lithium niobate crystals [J], Physical Review B,2006,73(6):064113.
    [33]He Y, Xue D. Bond-energy study of photorefractive properties of doped lithium niobate crystals [J], Journal of Physical Chemistry C,2007,111(35):13238-13243.
    [34]李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论[M].北京:科学出版社,2003.
    [35]Krainak M A, Yu A W. Evidence of electron compensation in a LiNbO3:Fe holographic optical filter [J], Ieee Photonics Technology Letters,1996,8(10):1343-1345.
    [36]Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage [J], Science,1998,282(5391):1089-1094.
    [37]Liu Y W, Liu L R, Xu L Y, et al. Experimental study of non-volatile holographic storage in doubly-and triply-doped lithium niobate crystals [J], Optics Communications,2000,181(1-3):47-52.
    [38]Xu Y H, Xu W S, Xu S W, et al. Effect of Li/Nb ratio on growth and photorefractive properties of Ce:Fe:LiNbO3 crystals [J], Optical Materials,2003,23(1-2): 305-308.
    [39]Sugak D Y, Matkovskii A O, Solskii I M, et al. Growth and optical properties of LiNbO3:MgO single crystals [J], Crystal Research and Technology,1997,32(6): 805-811.
    [40]Abdi F, Aillerie M, Fontana M, et al. Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals [J], Applied Physics B-Lasers and Optics,1999,68(5):795-799.
    [41]Nie Y R, Wang R, Wang B. Growth and optical damage properties of In:Zn:LiNbO3 waveguide substrate [J], Crystal Research and Technology,2007,42(1):23-26.
    [42]Volk T, Rubinina N M. A new optical damage resistant impurity in lithium niobate crystals:indium [J], Ferroelectrics Letters Section,1992,14(1-2):37-43.
    [43]Li S Q, Liu S G, Kong Y F, et al. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals [J], Journal of Physics-Condensed Matter,2006,18(13): 3527-3534.
    [44]Pavel N, Shoji I, Taira T, et al. Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal [J], Optics Letters,2004,29(8):830-832.
    [45]Kozlovsky W J, Nabors C D, Eckardt R C, et al. Monolithic MgO:LiNbO3 doubly resonant optical parametric oscillator pumped by a frequency-doubled diode-laser-pumped Nd:YAG laser [J], Optics Letters,1989,14(1):66-68.
    [46]Cao X, Wang Z G, He S L, et al. Optical and structural characterization of annealed proton exchange waveguides in Y-cut MgO:LiNbO3 [J], Optical Materials,2005,27(10): 1596-1601.
    [47]Song Q, Lu F, Ma X, et al. MgO:LiNbO3 planar waveguide formed by MeV O2+ implantation and its annealing characteristics [J], Laser Physics,2008,18(7):815-818.
    [48]Sakai K, Koyata Y, Hirano Y. Planar-waveguide quasi-phase-matched second-harmonic-generation device in Y-cut MgO-doped LiNbO3 [J], Optics Letters, 2006,31(21):3134-3136.
    [49]Ikeda A, Oi T, Nakayama K, et al. Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals [J], Japanese Journal of Applied Physics Part 2-Letters& Express Letters, 2005,44(46-49):L1407-L1409.
    [50]Lhomme F, Bourson P, Fontana M D, et al. Luminescence of Cr3+in lithium niobate: influence of the chromium concentration and crystal composition [J], Journal of Physics-Condensed Matter,1998,10(5):1137-1146.
    [51]Piramidowicz R, Pracka I, Wolinski W, et al. Blue-green emission of Pr3+ ions in LiNbO3 [J], Journal of Physics-Condensed Matter,2000,12(5):709-718.
    [52]Capmany J. Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate [J], Applied Physics Letters,2001,78(2):144-146.
    [53]Hreniak D, Strek W, Speghini A, et al. Infrared induced red luminescence of Eu3+-doped polycrystalline LiNbO3 [J], Applied Physics Letters,2006,88(16)
    [54]Amin J, Dussardier B, Schweizer T, et al. Spectroscopic analysis of Er3+ transitions in lithium niobate [J], Journal of Luminescence,1996,69(1):17-26.
    [55]Han T P J, Jaque F, Bermudez V, et al. Luminescence of the Cr3+ R-lines in pure and MgO co-doped near stoichiometric LiNbO3:Cr crystals [J], Chemical Physics Letters, 2003,369(5-6):519-524.
    [56]Torchia G A, Mendez C, Arias I, et al. Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals [J], Applied Physics B-Lasers and Optics,2006,83(4): 559-563.
    [57]Reddy J N B, Kamath K G, Vanishri S, et al. Influence of Nd:Zn codoping in near-stoichiometric lithium niobate [J], Journal of Chemical Physics,2008,128(24)
    [58]Maestre H, Torregrosa A J, Fernandez-Pousa C R, et al. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency-doubling in Nd3+-doped aperiodically poled lithium niobate [J], Optics Letters,2008,33(9):1008-1010.
    [59]Ferriol M, Foulon G, Brenier A, et al. Laser heated pedestal growth of pure and Nd3+-doped potassium lithium niobate single-crystal fibers [J], Journal of Crystal Growth,1997,173(1-2):226-230.
    [60]Cabrera J M, Olivares J, Carrascosa M, et al. Hydrogen in lithium niobate [J], Advances in Physics,1996,45(5):349-392.
    [61]Bryan D A, Gerson R, Tomaschke H E. Increased optical damage resistance in lithium niobate [J], Applied Physics Letters,1984,44(9):847-849.
    [62]Herrington J R, Dischler B, Rauber A, et al. An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3 [J], Solid State Communications,1973,12(5):351-354.
    [63]Kovacs L, Szalay V, Capelletti R. Stoichiometry dependence of the OH- absorption band in LiNbO3 crystals [J], Solid State Communications,1984,52(12):1029-1031.
    [64]Feng X Q, Ying J F, Wang J C, et al. The OH- absorption band in stoichiometric LiNbO3 crystals [J], Acta Phys. Sin.,1988,37:2062.
    [65]Zhang Y, Xu Y H, Li M H, et al. Growth and properties of Zn doped lithium niobate crystal [J], Journal of Crystal Growth,2001,233(3):537-540.
    [66]Volk T, Pryalkin V I, Rubinina N. Optical damage resistnat LiNbO3:Zn crystal [J], Optics Letters,1990,15:996.
    [67]Shimamura S, Watanabe Y, Sota T, et al. A defect structure model of LiNbO3:SC2O3 [J], Journal of Physics:Condensed Matter,1996,8(37):6825-6832.
    [68]Kojima S. Raman scattering study of composition variation in the low-frequency A(l)(z) modes of LiNbO3 [J], Journal of the Korean Physical Society,1998,32: S552-S555.
    [69]Hu L J, Chang Y H, Yen F S, et al. Crystal growth and characterization of heavily MgO-doped LiNbO3 [J], Journal of Applied Physics,1991,69(11):7635-7639.
    [70]Furukawa Y, Kitamura K, Takekawa S, et al. The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure [J], Journal of Crystal Growth,2000,211(1-4):230-236.
    [71]Zhang X, Xue D. Bond energy prediction of curie temperature of lithium niobate crystals [J], Journal of Physical Chemistry B,2007,111(10):2587-2590.
    [72]Jin B M, Kim I W, White W B, et al. Modification of UV-VIS optical absorption properties caused by MgO incorporation in MgO-doped LiNbO3 crystals [J], Materials Letters,1997,30(5-6):385-388.
    [73]Peter A, Polgar K, Kovacs L, et al. Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals [J], Journal of Crystal Growth,2005,284(1-2): 149-155.
    [74]Kim K H, Shim K B, Auh K H. The effect of ZnO additions on the characteristics of LiNbO3 single crystals [J], Materials Letters,2002,55(1-2):116-120.
    [75]Sunarno S, Tomita Y, Zhang G. Light-induced absorption changes in in-doped congruent LiNbO3 [J], Applied Physics Letters,2002,81(24):4505-4507.
    [76]Nakamura M, Takekawa S, Liu Y W, et al. Crystal growth of Sc-doped near-stoichiometric LiNbO3 and its characteristics [J], Journal of Crystal Growth, 2005,281(2-4):549-555.
    [77]薛冬峰.晶体材料的设计与模拟[J],人工晶体学报,2007,36(4):743-749.
    [78]薛冬峰.化学键观点在寻找新型非线性光学晶体材料中的应用[J],化学研究,2001,12(1):5-7.
    [79]薛冬峰.晶体的化学键和非线性光学效应[D]:(博士论文).长春:中国科学院长春应用化学研究所,1998.
    [80]邵美成.鲍林规则与键价理论[M].北京:高等教育出版社,1993.
    [81]Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database [J], Acta Crystallographica Section B-Structural Science,1985,41:244-247.
    [82]0'Keeffe M, Hyde B G. Stoichiometry and the structure and stability of inorganic solids [J], Nature,1984,309(5967):411-414.
    [83]Pannetier J, Bassas-Alsina J, Rodriguez-Carvajal J, et al. Prediction of crystal structures from crystal chemistry rules by simulated annealing [J], Nature,1990, 346(6282):343-345.
    [84]McGibbon M M, Browning N D, Chisholm M F, et al. Direct Determination of Grain Boundary Atomic Structure in SrTiO3 [J], Science,1994,266(5182):102-104.
    [85]Xu D, Xue D. Morphology control of KDP crystallites [J], Physica B:Condensed Matter, 2005,370(1-4):84-89.
    [86]Zhang X, Xue D, Liu M, et al. Microscopically structural studies of lithium niobate powders [J], Journal of Molecular Structure,2005,754(1-3):25-30.
    [87]Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP [J], Journal of Crystal Growth,2006,286(1):108-113.
    [88]许东利,薛冬峰.结晶成长的化学键合理论[J],人工晶体学报,2006,35(3):598-603.
    [89]Zhang H, Li N, Li K, et al. Structural stability and formability of ABO3-type perovskite compounds [J], Acta Crystallographica Section B-Structural Science, 2007,63:812-818.
    [90]Li K, Wang X, Zhang F, et al. Electronegativity identification of novel superhard materials [J], Physical Review Letters,2008,100(23):235504.
    [91]Li K, Wang X, Xue D. Electronegativities of elements in covalent crystals [J], Journal of Physical Chemistry A,2008,112(34):7894-7897.
    [92]Yu D, Xue D. Bond analyses of borates from the inorganic crystal structure database [J], Acta Crystallographica Section B,2006,62(5):702-709.
    [93]Yu D, Xue D, Ratajczak H. Golden ratio and bond-valence parameters of hydrogen bonds of hydrated borates [J], Journal of Molecular Structure,2006,783(1-3):210-214.
    [94]Yu D, Xue D, Ratajczak H. Microscopic characteristics of hydrogen bonds of hydrated borates [J], Physica B:Condensed Matter,2006,371(1):170-176.
    [95]Lopez-Moraza S, Pascual J L, Barandiaran Z. Ab initio model potential embedded-cluster study of V2+-doped fluoroperovskites:Effects of different hosts on the local distortion and electronic structure of 4T2g-4A2g laser levels [J], The Journal of Chemical Physics,1995,103(6):2117-2125.
    [96]Seijo L, Barandiaran Z. Applications of the group-function theory to the field of materials science [J], International Journal of Quantum Chemistry,1996,60(1): 617-634.
    [97]Wang H, Kuang X Y, Dong D, et al. EPR investigation of substitution position for Fe3+in LiNbO3:Fe3+ system [J], Physica B-Condensed Matter,2005,367(1-4):53-60.
    [98]Chai R P, Kuang X Y, Zhang C X, et al. Theoretical study of EPR spectra and local structure for (NiO6)10- cluster in LiNbO3:Ni2+ and Al2O3:Ni2+ systems [J], Journal of Physics and Chemistry of Solids,2008,69(7):1848-1854.
    [99]Herschbach D R, Laurie V W. Anharmonic Potential Constants and Their Dependence upon Bond Length [J], Journal of Chemical Physics,1961,35(2):458-464.
    [100]Barriuso M T, Aramburu J A, Moreno M. Mn2+ impurities in fluoroperovskites:a test for theoretical calculations [J], Journal of Physics:Condensed Matter,1999, 11(48):L525.
    [101]Ziotkowski J, Dziembaj L. Empirical relationship between individual cation-oxygen bond length and bond energy in crystals and in molecules [J], Journal of Solid State Chemistry,1985,57(3):291-299.
    [102]Iyi N, Kitamura K, Yajima Y, et al. Defect structure model of MgO-doped LiNbO3 [J], Journal of Solid State Chemistry,1995,118(1):148-152.
    [103]Chernaya T S, Maksimov B A, Volk T, et al. Zn atoms in lithium niobate and mechanism of their insertion into crystals [J], JETP Letters,2001,73(2):103-106.
    [104]Prieto C, Zaldo C, Fessler P, et al. Lattice position of Hf and Ta in LiNbO3:An extended x-ray-absorption fine-structure study [J], Physical Review B,1991,43(3): 2594-2600.
    [105]Corradi G, Sothe H, Spaeth J M, et al. Mn2+ defects in LiNbO3:an electron nuclear double resonance (ENDOR) investigation of the Mn2+ site and the local disorder [J], Journal of Physics:Condensed Matter,1990,2(31):6603-6618.
    [106]Gog T, Schotters P, Falta J, et al. The lattice position of Fe in Fe-doped LiNbO3 [J], Journal of Physics:Condensed Matter,1995,7(35):3971-3980.
    [107]Zhao M B, Chiu M. Substitution site of the Fe3+ impurity in crystalline LiNbO3 [J], Physical Review B,1994,49(18):12556-12558.
    [108]Jaque D, Garcia-Sole J, Camarillo E, et al. Detection of Cr3+ sites in LiNbO3:MgO, Cr3+ and LiNbO3:Cr3+ [J], Physical Review B,1993,47(9):5432-5434.
    [109]Gog T, Griebenow M, Harasimowicz T, et al. Lattice location of Ti and Er atoms in LiNbO3:an X-ray standing wave stud [J], Ferroelectrics,1994,153(1):249-254.
    [110]Kling A, Marques J G, da Silva M F, et al. Incorporation of hexavalent impurities into LiNbO3 [J], Radiation Effects and Defects in Solids,1999,150(1-4):249-253.
    [111]Lorenzo A, Jaffrezic B, Roux B, et al. Lattice location of rare-earth ions in LiNbO3 [J], Applied Physics Letters,1995,67(25):3735-3737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700