型钢混凝土节点非线性有限元分析与组合加固技术应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高层建筑结构的发展,新材料、新技术的应用,使得钢—混凝土组合结构体系发生了重大变化,其中型钢混凝土节点在整个结构体系中的性能显得尤为重要。在土木工程领域中开展这种新型结构的性能研究是很有必要的。
     由于型钢混凝土材料本身是非线性材料,本文根据研究的需要,通过将多种不同的本构关系在有限元模型上试算,建立了比较合理的非线性有限元模型。
     首先,推导了文中提出的型钢混凝土梁柱节点,处于轴向压力作用下,核心区混凝土平均抗压强度公式;并将该公式与其他文献指出的型钢混凝土整体抗压强度公式进行了对应分析。
     再次,通过ANSYS中的混凝土单元Solid65模拟型钢混凝土节点,共对五种不同混凝土强度等级节点进行了非线性有限元模拟分析,分别得出了初裂、破坏荷载、应力、位移、层间变形等结果。综合分析本文设计的型钢混凝土节点的抗裂度、抗剪承载力、型钢与混凝土剪应力、裂缝开展情况以及抗震性能,并与试验研究资料进行比较。与此同时,还对影响节点性能的重要因素进行了研究,包括混凝土强度和柱轴向压力等。
     本文的最后一部分,是利用超声检测分析仪检测桥梁的健康状况,分析桥梁的裂缝分布,为桥梁的加固分析计算提供理论依据。然后采用粘锚组合加固技术,对桥梁破坏处进行粘贴钢板加固修复,对节点处进行灌浆处理,并对受轴向压力拱肋进行周向粘锚钢板,从而形成套箍作用,提高承载力。这一工程实例说明了这种技术在实际工程应用中的可行性。
As the development of high-rise buildings and new materials, the steel reinforced concrete (SRC) structural system have had the tremendous change. Meanwhile, the capability of SRC Beam-Column Joints become more important in the whole structural system, therefore, it's necessary to study the new structural pattern.Because the materials in SRC are nonlinear structural materials, a new three-dimensional nonlinear finite element model of proposed SRC beam-column joints in this paper. mostly based on the content of research.Firstly, under triaxial compression,average compressive strength formula of concrete will be proposed in the central part of SRC beam-column jionts will be proposed in this paper.The formula with the whole compressive strength formulas of SRC is compeare,which are pointed out in other literaturesSecondly,by using 3-D Reinforced Concrete Solid in ANSYS, SRC joints of five strength grades have been nonlinear analyzed and achieved the cracking, extreme load, stress, displacement and interlaminar deformation respectively. With the SRC jionts model, the crack resistance capacity, the shear strength, shear stress of steel and concrete, cracks form and aseismic behavior have been synthetically analyzed, which are proposed in this paper. The results have been compared with the data of other reference tests. Also, the main influence factors of SRC beam-column joints including concrete strength and the axial pressure of column are studied in this paper.In the last part of the paper, health situation of bridges has been detected non-metal by ultrasonic tester, and distribution of structural fractures has been evaluated on, which could provide theoretical basis for reinforcement analysis. Then the cracking areas of bridge are reinforced and renovated by the composite reinforcement technique of anchoring bond, and jonts are also dealed with by concrete pouring technology. Meanwhile, arch rib, which is exerted axial pressure on, are bonded and anchored steel plates, thus created casing hoop effect and ehance bearing capability come into being. This example illustrates that the feasibility of the technique can work in the practical application of engineering.
引文
[1] K. Flaga. Advances in materials applied in civil engineering. Journal of Materials Processing Technology, 2000, 106: 173~183
    [2] Gall F. Kogut, Karen C. Chou. Partial resistance factor design on steel-concrete beamcolumns. Engineering Structures, 2004, 26: 857~866
    [3] Reoeder C W. Composite and Mixed Construction. New York: ASCE. 1984
    [4] Johnson R. P. Composite Structure of Steeel and Concrete: Beams, Columns and Prames for Building. 2nded. OXFORD: Blackwell Scientific Publications, 1995, Volume 1, 115~230
    [5] Lee S L, Shanmugan N E. Composite steel structures-recent research and development. In: Proceeding of the International Conference on Steel and Aluminum Structures, London & New York: Elsevier Applied Science, 1991. 23-39, 157~168
    [6] Moore W P. Composite Construction in Steel and Concrete. New York: ASCE, 1987
    [7] Ivan M. Viest, Lawrence G. Griffis and so on. Composite Construction Design for Buildings. New York: McGraw-Hill Co-published by ASCE, 1997
    [8] ECCS. Composite Structures. London and New York;the Construction Press, 1981
    [9] 白国良等,型钢钢筋混凝土原理与设计.上海:上海科学技术出版社,2001年1月
    [10] Koichi Minami, Beam to Column Stress Transfer in Composite Structures, Architectural Institute of Japan, 3rnd Edition. Nov, 1975
    [11] Johnson R. P. and Buckby R J. Composite Structures of Steel and Concrete. Volume 2— Bridges, with a Commentary on BS 5400 Part 5. 1977
    [12] 田守瑞.圆形截面钢骨混凝土柱—钢梁节点抗震性能的试验研究:[学位论文].北京:北京工业大学 2001
    [13] 上海环球金融中心结构实验报告.清水建设株式会社,1996
    [14] 赵红梅.钢梁—钢骨混凝土柱节点的非线性有限元分析,北京工业大学学位论文,2001
    [15] Mohamad Mansour, Jung-Yoon Lee and Thomas T. C. Hsu. Cyclic Stress-Strain Curves of Concrete and Steel Bars in Membrane Elements. Journal of Structural Engineering. DECEMBER 2001, 1402~1411
    [16] Prof. H. Noguchi. Prof. C Deierlein. Report of the Working Group on Reinforced Concrete Column and Steel Beam Systems. RCS Technical Sub-Commitee, TSC-2
    [17] Bimal, B. Adhikary and Hiroshi Mutsuyoshi: Numerical Simulation of Steel-plate Strengthened Concrete Beam by a Non-linear Finite Element Method Model, Construction and Building Materials, 2002, Vol. 16, 291~301
    [18] Laura N. Lowesl and Arash Altoontash. Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading. Journal of Structural Engineering (?) ASCE, Decemeber, 2003,1686~1697
    [19] E. J. Sapotmtzakis. Dynamic analysis of composite steel-concrete structures with deformable connection. Computers and Structures, 2004, 82, 717~729
    [20] 金伟良,袁伟斌,干钢.离心钢管混凝土的等效本构关系,工程力学学报,2005,Vol.22(2):110~115
    [21] 金伟良等.薄壁离心钢管混凝土扭转全过程简化计算研究.浙江大学学报,2003,Vol.37(1):5~9
    [22] 金伟良,袁伟斌.离心钢管混凝土轴压构件的有限元分析.浙江大学学报,2005,Vol.39(10):1571~1575
    [23] 聂建国,余志武.钢-混凝土组合梁在我国的研究及应用,土木工程学报,1999,32(2)
    [24] 王力,扬大光,孙世均.钢—混凝土组合梁滑移及掀起的理论分析方法.哈尔滨建筑大学学报,1998,37~42
    [25] 中国建筑科学研究院混凝土结构研究报告选集 3.第一版.中国建筑工业出版社,1994.6
    [26] 唐九如,陈雪红.劲性硷梁柱节点与抗剪强度.建筑结构学报,1990
    [27] 孙慧中等.劲性钢筋硅梁柱节点受剪承载力和延性研究.中国建筑科学研究院,1990
    [28] 赵鸿铁,等.劲性配筋混凝土梁柱节点西安冶金建筑工程学报,1988(2):31-3
    [29] 中国建筑科学研究院混凝土结构研究报告选集 3.第一版.中国建筑工业出版社,1994(6).
    [30] 型钢混凝土组合结构技术规程JGJ 138—2001.
    [31] Weng C C, Yen S I, Chen C C. Shear Strength of Concrete Encased Composite Structural Members. ASCE Journal of Structural Engineering, 2001, 127 (10)
    [32] Lee Tai2kuang, Austin D E Pan. Analysis of Composite Beam2Columnsunder Lateral Cyclic Loading. ASCE Journal of Structural Engineering, 2001.2.
    [33] A. Rajah Anandarajah, Majid T. Manzari, Victor N. Kaliakin. Constitutive Modeling of Geomaterials. Journal of Engineering Mechanicas (?) ASCE, June 2004, 621
    [34] Iswandi Imranl and S. J. Pantazopoulou. Plasticity Model for Concrete under Triaxial Compression. Journal of Engineering Mechanics, MARCH 2001, 281-290.
    [35] Taijun Wang, Thomas T. C. Hsu. Nonlinear finite element analysis of concrete structures using new constitutive models. Computer and Structure, 2001, 79: 2781~2791.
    [36] W. F. Chen. Plasticity in reinforced concrete [M]. Graw-hill book company, New York,1982
    [37] Budianski. B. et al. Elastic module of cracked solids. International Journal. of Solids and Structures, 1976 Vol.12, 81~97.
    [38] Elwi. A. A. et al. Hypoelastie concrete comtRutive relationship. J. of the Eng. Mech Div ASCE, Vol. 105, No EM4, Paper 14746, Aug. 1977.623~641
    [39] Chert W. F. Plasticity in Reinforced Concrete. New York: McGraw-Hill Book Company, 1982
    [40] Vermeer. P. A. et al. Constitutive relations for concrete. J. Eng. Mech. Div. ASCE. Vol. 101. EM4. 1975
    [41] Buyukozturk, O. A. Constitutive model for concrete in compression. Proc. 3nd. Eng.Mech. Div. Spec. Confer. ASrF Austin TX. 1979
    [42] M. Lorrain. et al. Damage theory applied to concrete [M]. Fracture Mechanics of Concrete. Edited by F. H. wittman, 1983, 341~369
    [43] Loland K. E. Continuous Damage Model for Loadresponse Estimation of Concrete. Cement an Concrete Research, 1980. (10): 392~492.
    [44] Krajcinovic D., Fonseka G.. U.. Continuous Damage Theory of brittle materials. J. Appl. Mech., 1981 (48): 809~824.
    [45] Qian Jicheng, et al. Coupled Elastic-Plastic Damage Analysis in Concret. Advances in Constitutive Laws for Engineering Materials. Edited by Fan Jiughong and Murakami. Int. Academic Publishers, 1989
    [46] Li Zhaoxia, Qian Jicheng. Creep Damage Analysis and Its Application to Nonlinear Creep of Reinforced Concrete Beam. Eng. Frac. Mech. 1989. 34(4): 851~860
    [47] 宋玉普,赵国藩.昆凝土内时损伤本构模型.大连理工大学学报,1990,30(5):577~584
    [48] 谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学,1990
    [49] Hart D. J., Chen W. F.. Strain-Space Plasticity Formulationfor Hardening-Softening Materials with Elastoplastic Coupling. J. Solids Structures, 1986, 22(8): 935~950
    [50] Stevens D. J., et al.Strain-Based Constitutive Model with Mixed Evolution Rules for Concrete. ASCE. 1992. 118. (EM6): 1184~1200
    [51] Yoder P. J., Iwan W. D.. On the Formulation of Strain-Space Plasticity with Multiple Loading Surfaces. J. Appl. Mech, 1981, 48(48): 773~778
    [52] CaseyJ, Naghdi P. M. On the Nonequivalence of the Stress Space and Strain Space Formulations of Plasticity Theory. Appl. Mech. ASME, 1983, 50(2): 350~354.
    [53] Mizuno E., Hatanaka S. Compressive Softening Model for Concrete. ASME. 1992. 118(EMS): 1546~1563
    [54] Bazant, ZP and SS Kim. Plastic-fracturing theory for concrete, Journal of the Engineering Mechanics Division, ASCE, 1979, 105(3): 407~428
    [55] Mroz Z. An attempt to Describe the Behavior of Metals under Cyclic Loads Using a More General Workhardening Mode. Acta Mechanica, 1969, 7(1): 199~212.
    [56] Besseling J. F. A Theory of Elastic, Plastic and Creep Deformation of an Initially Isoropic Material Showing Strain Hardening, Creep Recovery, and Secondary. J. Appl.Mech, 1958, 25(4): 529~536
    [57] Mroz Z. Hardening and Degradation Rules for Metals Under Monotonic and Cyclic Loading. J. Eng. Mat. Techn, 1983, 105(2): 113~118
    [58] Dafalias Y. F., Herrman L. R. Bounding Surface Formulation of Soil Plasticity. Soil Mechanics. John Wiley and Sons. New York, 1982: 113~118
    [59] Chaboche J. L. Time-Independent Constitutive Theories for Cyclic Plasticity. Int. J. Plasticity. 1986, 2(2): 149~188
    [60] Dafaliasy. F. Bounding Surface Plasticity. Asce, 1986, 112(EM9): 966~987
    [61] Valanis K. C., Lee C. F. Endochronic Theory of Cyclic Plasticity with Application. J. Appl. Mech. 1984, 51(2): 367~374
    [62] Bresler B. and Pister K. S. Strength of Concrete Under Combined Stresses. ACI.1958, 55(9): 321~345
    [63] Willam K. J., Warnke E. P. Constitutive Models for the Triaxial Behavior of Concrete. Int. Assoc. Bridge Struct. Eng. Sem. Concr. Struct. Subjected Traixial Stresses. Bergamo, Italy. 1974, Int. Assoc. Bridge Struct. Eng. Proc. 1975, 19: 1~30
    [64] Ottosen N. S. A Failure Criterion for Concrete. ASCE, 1977, 103(EM4): 527~535
    [65] Hsieh S. S., et al. An Elastic-Fracture Model for Concrete. Proceedings of 3rd Eng. Mech. Div. Spec. Conf. ASCE. Austin, Tex., 1979: 437~440
    [66] Podgorski J. General Failure Criterion for Isotropic Media. Proceedings of ASCE, 1985,111(EM2): 188~201
    [67] 于骁中等.混凝土的二轴强度及其在拱坝设计中的应用.水利水电科学研究院编.科学研究论文集.第19集(结构、材料).北京:水利电力出版社.1982:17~23.
    [68] 宋玉普,赵国藩等.多轴应力下多种混凝土材料的通用破坏准则.土木工程学报.1996.29(1):25~32.
    [69] 过镇海.混凝土的强度和变形试验基础和本构关系.北京:清华大学出版社,1997
    [70] 俞茂宏.强度理论新体系.西安:西安交通大学出版社,1992
    [71] Bazant Z. P., et al. Slip-dilatancy Model for Cracked Reinforced Concrete. ASCE, 1980,106(ST9): 1974~1966.
    [72] Hsieh S. S., et al. An Elastic-Fracture Model for Concrete. Proceedings of 3rd Eng. Mech. Div. Spec. Conf. ASCE. Austin, Tex., 1979: 437~440
    [73] 宋玉普等.钢筋混凝土疲劳性能的非线性有限元分析.海洋学保.1993.15(3):116~125
    [74] Romstad K. M., et al. Numberical Biaxial Characterization for Concrete. ASCE. 1974, 100(EM5): 935~948
    [75] 宋玉普,赵国藩等.应变空间混凝土的破坏准则.大连理工大学学报.1991.31(4):455~462
    [76] H. M. Gomes, A. M. Awruch. Some aspects on three-dimensional numerical modelling of reinforced concrete structures using the finite element method. Advances in Engineering Software, 2001, 32, 257~277
    [77] 《混凝土结构设计规范》(GB50010-2002).中国建筑业出版社,2002
    [78] 江见鲸,钢筋混凝土结构非线性分析[M].北京:清华大学出版社,2005年3月 JIANG Jianjing, Non-linear Finite Element Analysis on Reinforced-Concrete Structure [M]. Beijing: Tsing hua University Press, 2005
    [79] 赵鸿铁.钢与混凝土组合结构,北京:科学出版,2001年3月
    [80] 郭兆璞,陈浩然.含分层损伤复合材料层合板的压缩强度研究,固体力学学报,Vol.21.No.220
    [81] 郝文化,ANSYS上土木工程应用实例,中国水利水电出版社.2005年1月
    [82] Zhong Shanton. The Continuity of Axial Compressive Behaviors of Concrete Filled Steel Tube(CFST)for Circular, Octagonal, Square and Rectangular Form, Progress in Steel Building Structures. 2004. Vol. 6 No.2
    [83] 陈勇.型钢混凝土梁柱节点低周反复荷载下的抗震性能试验及理论研究,湖南大学,硕士学位论文,2004年6月
    [84] 林娜.钢筋混凝土框架异型节点抗震性能试验研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学,2003
    [85] 何方思.钢筋混凝土梁—钢骨混凝土柱框架边节点抗剪性能的试验研究:[华南理工大学硕士学位论文].广州:华南理工大学,2000,46~58
    [86] 过镇海.钢筋混凝土原理.北京:清华大学出版社,2001:254-275
    [87] 《混凝士结构加固技术规范》:GB50367-2006
    [88] 《公路桥涵设计通用规范》:JTG D60-2004
    [89] 金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社.2002.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700