CLASSⅠ新城疫病毒感染鸡成纤维细胞的时相变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫病毒(Newcastle disease virus, NDV)是副黏病毒科、禽腮腺炎病毒属唯一成员,可以感染200余种禽类和哺乳动物,一直是危害世界养禽业的最主要病患之一。根据系统发育进化树分析,可将不同基因组长度的NDV病毒分为两个群,即ClassⅠ(15198nt)和ClassⅡ(15192nt或15186nt)。其中,Class I毒株主要感染水禽和鸟类,这类毒株在该疫病的流行病学和致病机制研究中的重要性一直被人们忽视。本课题组在早期研究中发现一株水禽源NDV Class I毒株,经鸡体传代后,由无毒株(avirulent)演化为强毒株(velogenic),其基因组长度仍为15198nt。
     为了进一步研究该水禽源NDV对鸡的致病机制和进化适应机理,本文利用该ClassⅠ新城疫病毒强毒株定量感染鸡0系成纤维细胞系(DF-1),通过对感染后各时间点病毒滴度、结构蛋白定位、结构蛋白mRNA水平、细胞骨架和蛋白组学的变化,综合评价ClassⅠ新城疫病毒感染鸡体细胞后的时相情况,对系统地掌握NDV在鸡体细胞中的增殖过程和感染机制具有重要的理论意义。
     一、Class I新城疫病毒各结构蛋白抗体制备
     本研究以新城疫病毒(NDV)ClassⅠ强毒离株9a5b尿囊液以及原核表达的NP、P、M、HN、F五种重组蛋白为免疫原,接种6周龄BALB/c小鼠制备抗体,用血凝抑制试验(HI)、间接免疫荧光试验(IFA)、细胞中和试验、酶联免疫吸附试验(ELISA)和Western-blot方法共同检测所获得的抗体。结果显示,成功制备获得了NDV各结构蛋白多抗及12株NDV特异性单抗。免疫特性鉴定结果表明,在获得的12株单抗中,3株为抗ClassⅠNDV特异性单抗(2A8、3H7和3H9),其中,3H7和3H9为HN特异性单抗,仅具有IFA和HI效价;其他9株单抗均与ClassⅡ毒株存在交叉反应。
     二、ClassⅠN DV强毒株9a5b感染DF1后时相变化研究
     本研究将9a5b毒株按5m.o.i量感染DF-1细胞,分别于不同时间点收获细胞以及培养上清,利用荧光定量RT-PCR、Western-blot、IFA等方法对病毒结构蛋白mRNA转录水平、蛋白含量及蛋白定位情况进行系统研究。荧光定量RT-PCR结果显示:各结构蛋白mRNA变化与该病毒的生长曲线基本一致;Western-blot和IFA检测结果显示:9a5b病毒感染DF-1后1h就能在细胞浆中检测出NP、P蛋白的存在,其余4种主要蛋白(M、F、HN、L)出现的时间相对较晚,所有病毒蛋白在不同的时间点有着各自特定的定位方式;通过对细胞actin和内质网的染色发现:9a5b病毒感染对这两者的影响并不显著。
     三、ClassⅠNDV感染CEF蛋白组学初步研究
     本研究将9a5b、1a毒株按0.001M.O.I.量感染CEF细胞,于感染后12h收获细胞,进行差异蛋白组学研究,结果显示:对1a感染组与CEF对照组利用ImageMasterTM对2-D图谱比较后经质谱分析共检测到差异蛋白点41个其中上调蛋白点13个,下调蛋白点28个,选取其中的11个点进行初步鉴定,成功鉴定出7种蛋白质,对差异蛋白中有重要意义蛋白质的功能进行初步探讨。
     本研究首次对CLASSⅠNDV感染禽成纤维细胞的时相变化和蛋白组学进行研究,系统的阐述了NDV感染细胞后病毒增殖过程。这为深入开展各蛋白与该病毒的致病机制、毒力演化规律及其与宿主相互作用和进化适应性机制的研究工作奠定了基础。
Newcastle disease virus (NDV) is classified as a member of the newly defined genus Avulavirus in the family of Paramyxoviridae. It is the causative agent of Newcastle disease (ND), which is widely distributed in more than 200 types of birds and mammals and has inflicted substantial economic costs to poultry industry worldwide. Among the numerous strains, it can be divided into ClassⅠ(15198nt) and ClassⅡ(15192nt or 15186nt) by phylogentic analysis. Because classⅠNDV strains were avirulent and mainly isolated from waterfowls and birds, the epidemiology and pathogenicity of class I NDV in chickens were easy to be neglected. However, in our earlier research, we found a velogenic NDV was generated from a nonpathogenic waterfowl isolate by passaging in chickens. By sequencing the passages, the genomic length maintained with the size of 15198nt.
     In current study, to research the pathogenicity and evolution mechanism of this waterfowl origin NDV in chickens, Chicken Embryo Fibroblast cell ine (DF-1) was chosed to propagate the velogentic isolate. To systematically know the propagation process and pathogenic mechanism of class I NDV infecting chicken cells, the monolayer of DF1 cell was quantitatively inoculated with classⅠNDV velogenic strain. Cells and cultural supernatant were collected at intervals post infection. Virus titre was evaluated by determination of TCID50, localization of structure proteins in DF1 cells was identified by indirect immunofluorescence assay (IFA), mRNAs level of interest genes was quantitated by real-time RT-PCR and conformation change of cytoskeleton was stained by special dyes.
     1 Preparation of antibodies against structure proteins of NDV
     In the study, several mice were immuned with the virus strain (ClassⅠNDV virulent strain 9a5b) or recombinant proteins expressed in E. coli BL21 (DE3), including Nucleoprotein (NP), Phosphoprotein (P), Matirx (M), Hemagglutinin-neuraminidase (HN), and Fusion (F) proteins. Following by three immunation, the sera were collected. Monoclonal antibodies against NDV were developed by the hybridoma technology. And then the antibodies were identified by hemagglutination inhibition (HI), indirect immunofluorescence assay (IFA), cell neutralization test, ELISA and western-blot analysis. The results showed that, besides anti-sera against each protein, a panel of 12 hybridoma cell lines was successfully prepared. Among them, mAbs 2A8, 3H7 and 3H9 were specific to Class I NDV HN protein in the experiment. All of the other mAbs specific to P or NP protein had a cross-reaction with ClassⅡNDV strains.
     2 Dynamic properties of interaction of ClassⅠNDV with DF-1 cells
     DF-1 cells were inoculated with 9a5b strains at a dose of 5 m.o.i, the cells and cultural supernatant were collected at intervals post infection. Virus titre was evaluated by determination of TCID50, localization of structure proteins in DF1 cells was identified by indirect immunofluorescence assay (IFA), mRNAs level of interest genes was quantitated by real-time RT-PCR and conformation change of cytoskeleton was stained by special dyes. The result shows that, the accumulation of mRNAs were in accordance with the growth curve of the virus. NP and P proteins could be observed in cytoplasm early at 1h post infection, while other proteins were accumulated later relatively. Otherwise, we found that the virus had little effect upon the cytoskeleton by stained of cell actin and Endoplasmic Reticulum with special dyes.
     3 Preliminary study on proteomics of avian cells infected with ClassⅠNDV.
     DF-1 cells were inoculated with 9a5b and 1a strains at a dose of 0.001 m.o.i, and then the cells were collected at 12h post infection for proteomics research. Comparison of 2-DE image between 1a infection team and CEF control team revealed that 41 differentially expression protein spots, including 13 up-regulated protein spots, 28 down-regulated protein spots. The 11 protein spots were analyzed by matrixassociated laser dissociation /ionization time of flightmass spectrometry (MALDI-TOF-MS). 7 proteins were successfully identified, among which the protein spots with great importance were preliminary studied.
     In conclusion, the dynamic properties and proteomics of interaction of ClassⅠNDV with chicken cells were firstly investigated. The propagation mechanism of NDV infection with chicken cells was systematically explained, which is benefit for further study on the mechanism of the virulence evolution and interaction of the class I NDV with avian cells.
引文
[1]敖艳华,陈晓春,廖明,等.新城疫病毒F蛋白免疫活性片段的原核表达[J].中国兽医科学,2008,38(5):374-379.
    [2]蔡真.内质网--肿瘤治疗的新靶点[J].中国肿瘤生物治疗杂志, 2005, 12(1): 5-8
    [3]卡尔尼克BW·禽病学[M].第十版·高福等译·北京:中国农业出版社, 1999:692- 694.
    [4]刘秀梵,单克隆抗体在农业上的应用[M].安徽科学技术出版社,1995.
    [5]王嘉丽,陈炜,万颖杰,等。登革病毒感染后ECV304细胞骨架actin变化的研究[J].微生物学杂志,2004. 5.
    [6] Ahmad-Raus, R, et al. Localization of the antigenic sites of newcastle disease virus nucleocapsid using a panel of monoclonal antibodies[J]. Res Vet Sci, 2009. 86(1): p. 174-182.
    [7] Alexander, D. j. Newcastle disease and other avian Paramyxoviridae infection. Disease of Poultry, 10th ed[M]. 1997.541-569.
    [8] Angela Romer-Oberdorfer, Ortrud Werner, Jutta Veits, Teshome Mebatsion and Thomas C. Mettenleiter. Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. Journal of General Virology[J]. 2003. 84: 3121-3129.
    [9] Ben Peeters, Paul Verbruggen, Frank Nelissen and Olav de Leeuw. The P gene of Newcastle disease virus does not encode an accessory X protein[J]. Journal of General Virology. 2004.85: 2375-2378.
    [10] Blumberg, B. M., and D. Kolakofsky. Intracellular vesicular stomatitis virus leader RNAs are found in nucleocapsid structures[J]. J. Virol. 1981a.40:568-576.
    [11] Blumberg, B. M., M. Leppert, M, and D. Kolakofsky. Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication[J]. Cell. 1981b. 23: 837- 845.
    [12] Brattsand G. Correlation of oncop rotein 18 /Stathmin expression in human breast cancer with established prognostic factors[J]. Br J Cancer,2000, 83 (3): 311-318.
    [13] Cattaneo, R, G. Rebmann and A. Schmid. Altered transcription of a defective measles virus genome derived from a diseased human brain[J]. EMBO Journal. 1987.6:681-688.
    [14] Chambers, P., N. S. Millar, R. W. Bingham, and P. T. Emmerson.. Molecular cloning of complementary DNA to Newcastle disease virus, and nucleotide sequence analysis of the junction between the genes encoding the hemagglutinin-neuraminidase and the large protein[J]. J. Gen. Virol. 1986a 67: 2685-2694.
    [15] Chambers, P., N.S. Millar, and P. T. Emmerson. Nucleotide sequence of the gene encoding the fusion glycoprotein of Newcastle disease viru[J]. J. Gen. Virol. 1986b. 67: 475-486.
    [16] Curran, J., J. B. Marq, and D. Kolakofsky. The sendai virus non-structural C proteins specifically inhibit viral mRNA synthesis[J]. Virology. 1994. 189: 647-656.
    [17] Curmi PA, Nogues C, Lachkar S, et al. Overexpression of Stathmin in breast carcinomas points out to highly p roliferative tumours [J]. Br JCancer, 2000, 82 (1): 142-150.
    [18] Deng, R., Z. Wang, P. J. Mohan, M. Marinello, A. Mirza and R. M. Iorio. Mutations in the Newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion[J]. Virology. 1999. 253(1):43-54.
    [19] Doms, R. W., R. A. Lamb, J. K. Rose, and A. Helenius. Folding and assembly of viral membrane proteins[J]. Virology. 1993. 193:545-562.
    [20] Egelman, E. H. , Wu, S.-S. , Amrein, M. , Portner, A. & Murti, G.. The Sendai virus nucleocapsid exists in at least four different helical states[J]. Journal of Virology. 1989. 63, 2233-2243 .
    [21] Elankumaran, S., Rockermann, D., Samal, S. K. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death[J]. 2006. J. Virol. 80, 7522- 7534.
    [22] Garten, W., W. Berk, Y. Nagai, R. Rott, and H. D. Klenk. Mutational changes of the protease susceptibility of glycoproteins F of Newcastle disease virus: effects on pathogenicity[J]. J. Gen. Virol. 1980.50:135-147.
    [23] Gravel, K A and T G Morrison, Interacting domains of the HN and F proteins of newcastle disease virus[J]. J Virol, 2003. 77(20): 11040-11049.
    [24] Huang, Z, et al. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence[J]. J Virol, 2004. 78(8): 4176-4184.
    [25] Hamaguchi, M., Yoshida, T., Nishikawa, K., Naruse, H., Nagai, Y. Transcriptive complex of Newcastle disease virus. 1. Both L and P proteins are required to constitute an active complex[J]. Virology. 1983. 128: 105-117.
    [26] Homma, M., and Ohucci, M. Trypsin activation on the growth of Sendai virus in tissue culture cells. IV. Structural difference of Sendai viruses grown in eggs and tissue culture cells[J]. J. Virol. 1973. 12: 1457-1465.
    [27] Hu, S L , et al. Attenuation of a genotype VIId Newcastle disease virus ZJI strain of goose origin by reverse genetics[J]. Wei Sheng Wu Xue Bao, 2007. 47(2): 197-200.
    [28] Hua Yue , Shu Deng, Fa-long Yang , Ding-fei Li et al. Short hairpin RNA targeting NP mRNA inhibiting Newcastle disease virus production and other viral structural mRNA transcription[J]. Virus gene. 2009.38: 143-148.
    [29] Huang, Z, et al., Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist[J]. J Virol, 2003. 77(16): 8676-8685.
    [30] Hiroki Sato, Reiko Honma, Misako Yoneda, et al. Measles virus induces cell-type specific changes in gene expression[J]. 2008.Virology. 375: 321-330.
    [31] Jane Parkinson and Roger D. Everett. Alphaherpesvirus Proteins Related to Herpes Simplex Virus Type 1 ICP0 Affect Cellular Structures and Proteins[J]. J Virol, 2005. 74(21): 10006-10017.
    [32] Jeha S, Luo XN, Beran M, et al. Antisense RNA inhibition of phosphop rotein p18 expression abrogates the transformed phenotype of leukemic cells [J]. Cancer Res, 1996, 56 (6):1445-1450.
    [33] Johnsen J I, Aurelio ON, Kwaja Z, et al. p53 mediated negative regulation of Stathmin /Op18 exp ression is associated with G (2)/M cell-cycle arrest [J]. Int J Cancer, 2000, 88 (5): 685-691
    [34] Karen L. Maxwell and Lori Frappier. Viral Proteomics[J]. Microbiology and Molecular BiologyReviews. 2007.71: 398-411.
    [35] Kato, H., O. Takeuchi, S. Sato, M. Yoneyama, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses[J]. Nature 2006. 441:101–105.
    [36] Kim LM, King DJ, D L Suarez, and C L Afonso, Detection of a broad range of class I and II Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay[J]. J Vet Diagn Invest, 2008. 20 (4): 414-425.
    [37] Kolakofsky, D., and B.M. Blumberg. A model for the control of non-segmented negative-strand viruses genome replication[M]. Presented at virus persistence Symposium 33, Society for General Microbiology. Cambridge: Cambridge University Press. 1982. 203-213.
    [38] Krishnamurthy, S., and Samal, S. K. Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence[J]. J. Gen. Virol. 1998. 79: 2419-2424.
    [39] Jianrong Li, Amal Rahmeh, Marco Morelli, et al. A Conserved Motif in Region V of the Large Polymerase Proteins of Nonsegmented Negative-Sense RNA Viruses That Is Essential for mRNA Capping[J]. Journal of Virology. 2008. 82: 775-784.
    [40] Lamb, R. A. Paramyxovirus fusion: A hypothesis for changes[J]. Virology. 1993. 197:1-11.
    [41] Lamb, R. A. and D. Kolakofsky. Paramyxoviridae: The Viruses and their replication[M]. In Fields Virology, 3rd edn, 1996. 1177-1203.
    [42] Lee, E K, et al. Molecular epidemiological investigation of Newcastle disease virus from domestic ducks in Korea[J]. Vet Microbiol, 2008. 134(3): 241-248.
    [43] LIU Xiu-fan, The application of Monoclonal antibody in agriculture[M]. Anhui science and technique press, 1995. (in Chinese).
    [44] M.A.K.Markwell, C.F.Fox. Protein-protein interactions within paramyxovirus identified by native disulfide bonding or reversible chemical cross-linking[J]. Journal of Virology, 1980, 33: 152-166.
    [45] Maria D. Gainey, Patrick J. Dillon, Kimberly M. Clark, et al. Paramyxovirus-Induced Shutoff of Host and Viral Protein Synthesis:Role of the P and V Proteins in Limiting PKR Activation[J]. J. Virol. 2008. 82: 828-839.
    [46] Marx, P. A., A. Portner and D. W. Kingsbury. Sendai virion transcriptase complex:polypeptide composition and inhibition by virion envelope proteins[J]. J. Virol. 1978. 13: 107-112.
    [47] Masters, P. S. and Banerjee, A. K. Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to non-specific RNA[J]. J. Virol. 1988. 63: 2658-2664.
    [48] Meulemans, G., Gonze, M., Carlier, M. C., Petit, A., Burny, A. and Long, L. Protective efforts of HN and F protein glycoprotein-specific monoclonal antibodies on experimental Newcastle disease. Avian Path[J]. 1986. 15: 761-768.
    [49] Miller, P J, et al. Evolutionary dynamics of Newcastle disease virus[J]. Virology, 2009. 391(1): 64-72.
    [50] Millar, N.S., P. Chambers and P. T. Emmerson. Nucleotide sequence of the fusion andhaemagglutinin-neuraminidase glycoprotein genes of Newcastle disease virus, strain Ulster: Molecular basis for variations in pathogenicity between strains[J]. J. Gen. Virol. 1988. 69:613-620.
    [51] Millar, N. S., P. Chambers, and P. T. Emmerson. Nucleotide sequence analysis of the hemagglutinin-neuraminidase gene of Newcastle disease virus[J]. J. Gen. Virol. 1986. 67: 1917-1927.
    [52] Minghao Sun, Sandra M. Fuentes, Khalid Timani, et al. Akt Plays a Critical Role in Replication of Nonsegmented Negative-Stranded RNA Viruses[J]. J. Virol. 2008. 82: 105-114..
    [53] Mistry S.J, Atweh G.F. Role of Stathmin in the regulation of the mitoticspindle: potential app lications in cancer therapy[J]. Mt Sinai J Med,2002, 69 (5) : 299-304
    [54] Morgan, R. W., Gelb, J. Schreurs, L. S., Lutticken, D., Rossenberger, J. K. and Sondermeijer, P. J. Protection of chickens from Newcastle and Marek’s diseases with a recombinant herpes virus of turkeys vaccine expressing the Newcastle disease virus fusion protein[J]. Avian Dis. 1992. 36: 858-870.
    [55] Nagai, Y., H-D Klenk, and R. Rott. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus[J]. Virology. 1976. 72: 494-508.
    [56] Nagai, Y. Paramyxovirus Replication and Pathogenesis. Reverse Genetics transforms inderstanding[J]. Rev. Med. Virol. 1999. 9:83-99.
    [57] Ortmann, D., M. Ohuchi, and H. Angliker. Proteolytic cleavage of wild type and mutants of the F protein of human parainfluenza virus type 3 by two subtilisin-like endoproteases, furin and KEX 2[J]. J. Virol. 1994. 68: 2772-2776.
    [58] Peeples, M. E. Paramyxovirus M proteins: pulling it all together and taking it on the road[M]. In: Kingsbury D. W. (ed), The Paramyxoviruses. 1991. 427-456.
    [59] Peeples, M. E. Newcastle disease virus replication. In Newcastle Disease[M], Edited by D. J. Alexander. Dordrecht: Kluwer Academic. 1988. 45-78. Portner A, Murti KG. Localization of P, NP, and M proteins on Sendai virus nucleocapsid using immunogold labeling. [J].
    [60] Virology. 1986 , 150(2):469-478. Portner A, Murti KG, Morgan EM, Kingsbury DW. Antibodies against Sendai virus L protein: distribution of the protein in nucleocapsids revealed by immunoelectron microscopy [J].
    [61] Virology. 1988. 163(1):236-9.
    [62] Price DK, Ball JR,Bahrani2Mostafavi Z, et al. The phosphoprotein Op18/Stathmin is differentially expressed in ovarian cancer[J]. CancerInvest, 2000, 18 (8): 722-730.
    [63] Ravindra, P.V., Tiwari, A. K., Ratta, B., et al. Induction of apoptosis in Vero cells by Newcastle disease virus requires viral replication, de-novo protein synthesis and caspase activation[J]. Virus. Res. 2008. 133, 285-290.
    [64] Ravindra, P.V., Tiwari, A. K., Sharma, B., et al. HN protein of Newcastle disease virus causes apoptosis in chicken embryo fibroblasts cells[J]. Arch. Virol. 2008. 153, 749-754.
    [65] Rima, B. K., Alexander, D. J., et al. Paramyxoviridae. In virus taxonomy. Sixth Report of the International Communittee on Taxonomy of Viruses[M]. 1995. 268-274.
    [66] Rout, S N and S K Samal, The large polymerase protein is associated with the virulence of Newcastle disease virus[J]. J Virol, 2008. 82(16): 7828-7836.
    [67] Santanu Chattopadhyay, et al., Phosphoprotein, P of human parainfluenza virus type 3 prevents self-association of RNA-dependent RNA polymerase, L[J]. Virology. 2008. 383: 226-236.
    [68] Scheid, A and P. W. Choppin. Identification of biological activities of Paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus[J]. Virology. 1974. 57:475-490. Schuy W, Garten W, Linder D. The carboxyterminus of the hemagglutinin-neuraminidase of Newcastle disease virus is exposed at the surface of the viral envelope[J]. Virus Resaerch, 1984,1(5): 415-426.
    [69]
    [70] Se′bastien Plumet, W. Paul Duprex, and Denis Gerlier. Dynamics of Viral RNA Synthesis during Measles Virus Infection [J]. J Virol, 2005. 79(11): 6900-6908.
    [71] Shengqing Y, et al. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens[J]. Virology, 2002. 301(2): 206-211.
    [72] Steward, M., Vipond, I. B., Millar, N. S. et al., RNA editing in Newcastle disease virus[J]. J. Gen. Virology. 1993. 74:2539-2547.
    [73] Subrat N. Rout and Siba K. Samal. The Large Polymerase Protein Is Associated with the Virulence of Newcastle Disease Virus[J]. J. Virol. 2008. 82: 7828-7836.
    [74] Sunil K. Khattar, Yongqi Yan, Aruna Panda, Peter L. Collins, and Siba K. Samal1. A Y526Q mutation in the Newcastle disease virus HN protein reduces its functional activities and attenuates virus replication and pathogenicity. Journal of Virology[J]. 2009. 83: 7779-7782.
    [75] Surbhi Jain, Lori W. McGinnes, and Trudy G. Morrison. Over-expression of thiol/disulfide isomerases enhances membrane fusion directed by the Newcastle disease virus fusion protein[J]. J. Virol. 2008.
    [76] T.Sakaguchi, T.Toyada, et al. Newcastle disease virus evolutionⅠ.Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene[J]. Virology, 1989, 169: 260-271.
    [77] Weiss, S. R. and M. A. Bratt. Polyadenylate sequences on Newcastle disease virus mRNA synthesized in vivo and in vitro[J]. J. Virol. 1974. 13: 1220-1230.
    [78] Yongqi Yan, Subrat N. Rout, Shin-Hee Kim, and Siba K. Samal. Role of Untranslated Regions of Hemagglutinin-Neuraminidase Gene in Replication and Pathogenicity of Newcastle Disease Virus[J]. Journal of Virology. 2009. 83: 5943-5946.
    [79] Yongqi Yan and Siba K. Samal. Role of Intergenic Sequences in Newcastle Disease Virus RNA Transcription and Pathogenesis[J]. J. Virol. 2008. 82: 1323-1331.
    [80] Yu, S. et al. Galactose residues on the lipooligosaccharide of Moraxella catarrhalis 26404 form the epitope recognized by the bactericidal antiserum from conjugate vaccination[J]. Infect Immun, 2008. 76(9): 4251-4258.
    [81] Zanetti, F, A Berinstein, and E Carrillo, Effect of host selective pressure on Newcastle disease virus virulence[J]. Microb Pathog, 2008. 44(2): 135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700