Luminol-H_2O_2-HRP-BPB增强化学发光新体系的研究及其在磁酶免疫分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学发光分析法由于仪器设备简单,分析速度快,灵敏度高,线性范围宽等优点,越来越受到科研工作者的广泛关注。本工作研究了新型增强剂溴酚兰(BPB)对Luminol-H_2O_2-HRP化学发光反应的增强作用,提出了Luminol-H_2O_2-HRP-BPB化学发光新体系。在最佳实验条件下,分别测定了游离HRP和HRP标记物的线性范围及检测限。将此化学发光增强体系与磁性分离技术和酶联免疫分析相结合,对癌胚抗原(CEA)、甲状腺素(T4)等肿瘤标记物进行了测定。此外,采用纳米金作为酶标抗体标记物,利用化学发光增强体系对甲胎蛋白(AFP)进行检测。结果表明,该方法灵敏度高,分析快速、简便,在生物分析中具有广阔的应用前景。
     本文主要开展了以下几个方面的工作:
     一、Luminol-H_2O_2-HRP-BPB增强化学发光新体系的研究
     研究了Luminol-H_2O_2-HRP-BPB增强化学发光反应体系的增强作用。在最佳实验条件下,对游离HRP进行了测定,测定游离HRP的线性范围为1.0×10-11~5.0×10-10 g/mL,检测限为1.25×10-12 g/mL;并对HRP标记物进行了测定,检测限比Luminol-H_2O_2-HRP直接化学发光体系低1000倍,比四甲基联苯胺ELISA显色法低10倍。并对Luminol-H_2O_2-HRP-BPB增强化学发光体系机理进行了初步探讨。
     二、基于Luminol-H_2O_2-HRP-BPB增强化学发光磁酶免疫体系测定CEA和T4
     采用羧基修饰的磁性微球,经EDC/NHS活化处理后得到活化磁性微球,将AFP单克隆抗体固定于活化磁性微球表面,所制备的免疫磁性微球具有识别和捕获相应抗原的能力。将磁珠分离技术与Luminol-H_2O_2-HRP-BPB增强化学发光体系相结合,分别对癌胚抗原(CEA)和血清总甲状腺素(T4)进行了测定。采用双抗体夹心法对CEA进行了测定,测得CEA的线性范围为1.0~40.0 ng/mL,检测限为1.0 ng/mL,比四甲基联苯胺ELISA显色光度法低5倍;采用竞争法对T4进行了测定,测得T4的线性范围为1.0~30.0 ng/mL,检测限为1.0 ng/mL,比四甲基联苯胺ELISA光度法低5倍。该方法操作简单、快速,用所建立的方法对病人血清样品进行了测定,并与酶联免疫吸附测定光度法(ELISA)进行了对照,二者相关性良好。
     三、基于纳米粒子标记的Luminol-H_2O_2-HRP-BPB增强化学发光磁免疫体系测定AFP
     采用柠檬酸三钠还原法制备纳米金粒子,通过控制还原剂柠檬酸三钠的加入量,制得不同粒径的纳米金粒子。通过静电作用将HRP标记的甲胎蛋白(AFP)抗体连接到纳米金粒子上。利用紫外-可见吸收光谱和荧光光谱分析确定纳米金粒子与抗体连接时所需抗体的最佳浓度为0.6μg/mL。
     以纳米金作为酶标记物,将磁分离技术与Luminol-H_2O_2-HRP-BPB增强化学发光体系相结合,采用双抗体夹心法,对AFP进行了测定,并与直接加入酶标抗体的方法相比较。酶标抗体标记方法测定AFP的线性范围为1.0~50.0 ng/mL,检测限为1.0 ng/mL;纳米金作为酶标抗体标记物测定AFP的线性范围为0.1~50.0 ng/mL,检测限为0.1 ng/mL,比四甲基联苯胺ELISA显色光度法低50倍。用所建立的方法对病人血清样品进行了测定,并与酶联免疫吸附测定光度法(ELISA)进行了对照,相关性良好。
Chemiluminescence (CL) has become a more and more popular analytical technique owing to its simple instrumentation, high sensitivity, wide dynamic range, reproducibility, simplicity and rapidity. This thesis studied a novel CL enhancer, bromophenol blue (BPB), in the system of Luminol-H_2O_2-HRP, and proposed a new enhanced CL system of Luminol-H_2O_2-HRP-BPB. Under the optimum conditions, the linear ranges and detection limits of free horseradish peroxidase (HRP) and labeled HRP were determined. This established enhanced CL system was also used to detect carcino enbryonic antigen (CEA) and T4 which integrates this method with magnetic separation technique. Furthermore, this new enhanced CL system was also applied to detect aloha-fetal protein (AFP) using Au nanoparticles (AuNPs) as the HRP-antibody (HRP-Ab) labels. The results showed that this method is of high sensitivity, rapidity and simplicity, and could be widely used in the field of biological analysis.
     The main jobs of this thesis can be concluded as follows:
     1. The studies on the new enhanced CL system of Luminol-H_2O_2-HRP-BPB
     This thesis studies a new enhanced CL system of Luminol-H_2O_2-HRP-BPB. Under the optimum conditions, the free HRP was detected with a linear range of 1.0×10-11~5.0×10-10 g/mL and a detection limit of 1.25×10-12 g/mL. The labeled HRP was also detected with the detection limit 1000 folds lower than that of direct CL system of Luminol-H_2O_2-HRP and 10 folds of the traditional ELISA absorptionmetric method using 3,3’,5,5’-Tetramethylbenzidine (TMB) as the chromogenic agent. The mechanism of this new enhanced CL system of Luminol-H_2O_2-HRP-BPB was discussed preliminarily.
     2. The detection of CEA and T4 based on the system of Luminol-H_2O_2-HRP-BPB chemiluminescent magnetic enzyme-linked immunoassay
     Carboxyl-modified magnetic beads were activated by EDC/NHS, and then conjugated monocloning antibody which were endowed with the capacity to capture and detect target antigens. CEA was detected by double antibody sandwish immunoassay method by integrating the magnetic separation technique with this new enhanced CL system of Luminol-H_2O_2-HRP-BPB with the linear range of 1.0~40.0 ng/mL and the detection limit of 1.0 ng/mL, which was 5 folds lower than that of ELISA. T4 was detected by competitive immunoassay method with the linear range of 1.0~30.0 ng/mL and the detection limit of 1.0 ng/mL, which was 5 folds lower than that of ELISA. Under the optimum conditions, the human serum samples were detected, and the results showed good corresponding relationship with those of ELISA absorptionmetric method.
     3. The detection of AFP based on the system of Luminol-H_2O_2-HRP-BPB chemiluminescent magnetic enzyme-linked immunoassay using AuNPs as HRP labels
     Uniformly and excellent dispersivity AuNPs were prepared by water phase synthetical method. Different preparation conditions were chosen, and different size AuNPs were gotten. HRP-labeled AFP antibody were bound on the surface of AuNPs by electrostatic at special pH condition. The optimum concentration of HRP-labeled antibody was 0.6μg/mL based on UV-Vis and fluorescence spectrum. Using AuNPs as HRP labels, AFP was detected by integrating the system of Luminol-H_2O_2-HRP-BPB with magnetic separation. Based on the double antibody sandwich immunoassay method, the linear range of AFP was 0.1~50.0 ng/mL and the detection limit was 0.1 ng/mL, which was 10 folds lower than that of the system without using AuNPs as the labels and 50 folds of ELISA.
引文
[1]李美佳,化学发光免疫分析,当代免疫学技术与应用,北京:北京医科大学中国协和医科大学联合出版社, 1998. 549-561
    [2]韩佩珍,化学发光免疫分析,国外医学·放射医学核医学分册, 2000, 24: 196-200
    [3] Kricka L. J., Chemiluminescence and bioluminescence analysis by. In: Ency. Mol. Biol. Mol. Med, 1996, 1: 322-332
    [4]焦奎,张书圣,酶联免疫分析技术及应用,北京:化学工业出版社, 2004, 20-26
    [5]陶义训,免疫学和免疫学检验,北京:人民卫生出版社, 1997.
    [6] Kellner R, Mermet J M, Otto M. et .al,分以化学,李克安,金钦汉等译.北京:北京大学出版社, 2001.
    [7]尹伯元,标记免疫临床应用手册,北京:北京原子能出版社, 1994.
    [8]尹学念,免疫学核免疫学检验实验指导,北京:人民卫生出版社, 1999.
    [9]赵永芳,生物化学技术原理及应用,北京:科学出版社, 2002.
    [10] Avramens S., Nakane P. K., Papamichall M., 25 Years of Immunoenzymatic Techniques. Amsterdam: Elsevier, 1992
    [11] Gosling J P, Clin Chem, A decade of development in immunoassay methodology, 1990, 36: 1408-1427
    [12] Yalow R S, Berson S A, Nature, 1959, 19: 691
    [13] Rilo L., Takashi H., Direct determination of plasma endothelin-1 by chemiluminescence enzyme immunoassay, Clin. Chem., 1996, 42: 1155-1158
    [14] Helen L., Larry J. K., Influence of different Luminols on the characteristics of the chemiluminescence reaction in human neutropjils, J. Biolumin, Chemilumin., 1995, 10: 353-359
    [15] Metelitxa D. I., Eryomin A. N., Enhanced chemiluminescence in the oxidation of Luminol and an isoLuminol cortisol conjugate by hydrogen peroxide in reversed micells, J. Biolumin. Chemilumin., 1992, 7: 21-26
    [16] Whitehead T. P., Thorpe G. H. G., Carter T. J. N., Polymorphism near the rat prolatin gene caused by insertion of an Alu-like element, Nature, 1983, 305: 158-159
    [17] Matthews J. A., Batki A., Hynds C., Enhanced chemiluminescent method for the detection of DNA Dot-hybridization assays, Anal. Biochem., 1985, 151: 205-209
    [18] Dotsikas Y., Loukas Y. L., Employment of 4-(1-imidazoyl)phenol as a Luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigen-horseradish peroxidase conjugate-based assay, Anal. Chim. Acta., 2004, 509:103-109
    [19] Kricka L. J., Chemiluminescence and bioluminescence techniques, Clin, Chem., 1991, 37: 1471-1481
    [20] Mayer A., Neuenhofer S., Luminscent labels-More than just an alternative to radioisotopes, Angew. Chem. Int. Ed. Engl., 1994, 33: 1044-1072
    [21] Dodeigne C., Thunus L., Lejeune R., Chemiluminescence as a diagnostic tool, Talant, 2000, 51: 415-439
    [22] Litting J. S., Nieman T. A., Flow injection chemiluminescence study of acridinium eater stability and kinetics and kinetics of decomposition, J. Biolumin. Chemilumin., 1993, 8: 25-31
    [23] Mccapra F., Chemical mechanisms in Bioluminescence, Acc. Chem. Res., 1976, 9: 201-208
    [24] Vidziunaite R., M ikulskis P., Kulys J., Chemiluminescence immunoassay (CLIA) for the detection of brucellosis and tularaemia antigens, J. Biolumin. Chemilumin., 1995, 10: 199-203
    [25] Ito H., Suzuki H., Miki Y. et.al, Jpn. Patent, 08, 038: 196(1996)
    [26] Mitoma Y., Hara K., Kumakura, S., Jpn. Patent, 07, 311: 197(1995)
    [27] Thorpe G. H., Kricka L. J., Gillespie E. et.al, Enhanced of the horseradish peroxidase-catalyzed chemiluminescent oxidation of cyclic diacyl hydrazides by 6-hydroxybenzothiazoles, Anal. Biochem., 1985, 145: 96-100
    [28] Kricka L J., US Patent, 5, 512, 451(1996)
    [29] Nozaki O., Kricka L. J., Campbell, L. J. et.al, Bioluminescnece and chemiluntinescene: Fundamental and applied aspects, Wiley, Chichester, 1994, 52
    [30] Mssel T. R., Friedman A.E., Fingar S.A., US patent 5, 705, 357(1998)
    [31] Sasamoto K., Deng G., Ushijima T.et.al, Benzothiazole deriva- tives as substrates for alkaline phosphatase assay with fluorescence and chemiluminescence detection, Analyst, 1995, 120: 1709-1714
    [32] Christofides N. D., Sbeehan C. P., Enhanced chemiluminescence labeled-anti- body immunoassay (Amerlite-MAB) for free thyroxcine: design, development, and Technical valiation, Clin. Chem., 1995, 41: 17-23
    [33] Bronstein L., McGrath P., Chemiluminescence lights up, Nature, 1989, 338: 599- 600
    [34] Bronstein L, Voyta J. C., Edwards B., Acomparision of chemiluminescent and co lorimetric substrates in a hepatitis B virus DNA hybridization assay, Anal. Biochem., 1989, 180: 95-98
    [35] Schaap A. P., Akhavan H., Romano L.J., Chemiluminescence substrates for alk- aline phosphatase: application to ultrasensitive enzyme-linkedi mmunoassays and DNA probes, Clin. Chem., 1989, 35: 1863-1864
    [36] Thorpe G. H., Bronstein I., Kricka L. J. et.al, Chemiluminescence enzyme immunoassay ofalpha-fetoprotein based on an adamantly dioxetane phenylphosphate substrate, Clin. Chem., 1989, 35: 2319-2321
    [37] Nishizono L, Lida S., Suzuki N. et.al, Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markers, Clin. Chem., 1991, 37: 1639-1644
    [38] Bronstein I., Edwards B., Voyta J. C., 1, 2-dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays, J. Biolumin. Chemilumin, 1989, 4: 99-111
    [39] Rongen H. A. H., Hoetelmans R. M. W., Bult A. V. et.al, Chemilu minescence and immunoassays, J . Pharm. Biomed. Anal., 1994, 12: 433-467
    [40] Duford R. T., Nightingale D., Gaddum L. W., Luminescence of grignard com- pounds in electric and magnetic fields and related electrical phenomena, J. Am. Chem. Soc., 1927, 49: 1858-1864
    [41] Harvey N., Luminescence during electrolysis, J. Phys. Chem., 1929, 33: 1456-1459
    [42] Knight A. W., Greenway G. M., Occurrence, Mechanisms and analytical applica- tions of electrogenerated chemiluminescence, Analyst, 1994, 119: 879-890
    [43] Ioana S., Juraj S., Lei Y. et.al, Development of a flow injection capilary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Anal. Chem., 2001, 73: 4388-4392
    [44] Lin J. H ., Yan F., J u H. X., Noncompetitive enzyme immunoassay for carcino-embryonic antigen by flow injection chemiluminescence, Clin. Chim. Acta., 2004, 41: 109-115
    [45] Luo J-X., Yang X-C., Flow injection chemiluminescent immunoassay with para- phenylphenol and sodium tetraphenylborate as synergistic enhancers, Anal. Chim. Acta., 2003, 485: 57-62
    [46] Wang J. H., Huang W. H., Liu Y. M. et.al, Capillaryelectrophoresis immuno- assay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells, Anal. Chem., 2004, 76: 5393-5398
    [47] Tamas K., Szegi., Immunoluminometric detection of human procalcitonin, J. Biochem. Biophys. Methods., 2002, 53: 157-164
    [48] He B., Tait N., Regnier F., F abrication of nanocolumns for liquid chromato- graphy, Anal. Chem., 1998, 70: 3790-3797
    [49] TsukagoshiK., Obata Y., Nakajima R., Miniaturization of batch- and flow-type Chemiluminescence detectors in capillary electrophoresis, J. Chromatogr. A ., 2002, 971: 255-260
    [50] Burns M. A., Everyone's a (future) chemist, Science, 2002, 296: 1818-1819
    [51] Schulte T. H., Bardell R. L., Weigl B. H., Microfluidic technologies in clinical diagnostics, Clin. Clim. Acta., 2002, 321: 1-10
    [52] Kakuta M., Bessoth F. G., Manz A., M icrofabricated devices for fluid mixing and theirapplication for chemical synthesis, Chem. Rec., 2001, 1: 395-405
    [53] Chovan T., Guttman A., Microfabricated devices in biotechnology and biochemi- cal processing, Trends Biotechnol., 2002, 20: 116-122
    [54] Jandik P., Weigl B. H., Kessler N. et.al, Initial study of using a laminar fluid diffusion interface for sample preparation in high-performance liquid chromatograp, J. Chromatogr. A., 2002, 954: 33-40
    [55] Khandurina J., Gutmian A., Bioanalysis in microfluidic devices, J. Chromatogr. A., 2002, 943: 169-183
    [56] Yakovleva J., Davidsson R., Lobanova A. et.al, Microfluidic enzyme immunoassay using silicon microchip with immobi- lized antibodies and chemiluminescence detection, Anal. Chem., 2002, 74: 2994-3004
    [57] Tsukagoshl K., Jinno N., Nakajima R., Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers, Anal. Chem., 2005, 77: 1684-1688
    [58] Faulk W P., Taylor G M., An immunocolloid method for the electron microscope , Immunochemistry, 1971, 8: 1081-1083
    [59] Lawrence D’Souza, Andreas Suchopar, Ryan M. et.al, In situ approaches to establish colloidal growth kinetics, Journal of Colloid and Interface Science, 2004, 279: 458-463
    [60] Murielle A., Watzky, Richard G. Finke.,Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth, J. Am. Chem. Soc., 1997, 119: 10382-10800
    [61]原弘,刘小玲,蔡汝秀.等,两亲分子有序组合体中纳米金的可控性合成,武汉大学学报(理学版), 2002, 48(2): 129-132
    [62]朱梓华,朱涛,刘忠范,大粒径单分散金纳米粒子的水相合成,物理化学学报, 1999, 15: 966-970
    [63] Hornysk G. L., Patdssi C. J., Martin C. R., Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit, J Phys Chem B, 1997, 101: 1548-1555
    [64] Bangs L B., Pure Appl Chem, 1996, 68: 1873
    [65] Medcalf E A, Newman D I, GomLan E C. et al, Rapid, robust method for measuring low concentrations of albumin in urine, Clin Chem., 1990, 36: 446-449
    [66] He L., Musick M D., Nicewarner S R. et al, Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization, J Am Chem Soc., 2000, 122: 9071-9077
    [67] Dequaire M., Degrand C., Limoges B., An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label, Anal Chem., 2000, 72: 5521-5528
    [68] Grubisha D S., Lipert R J., Park H Y. et al, Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels, Anal Chem., 2003, 75: 5936-5943
    [69]沈同,王镜岩,生物化学,高等教育出版社(第二版,上册), 1999, 74
    [70]沈关心,周汝麟,现代免疫学实验技术,湖北科学技术出版社(第二版), 2002
    [71]胡瑞省,刘善堂.等,金纳米离子通过形成Au-S键的组装,物理化学学报, 1999, 15(11): 961-965
    [72] Lyon L A., Musick M D., Surface plasmon resonance of colloidal Au-modified gold film, Sensors and Actuators B., 1999, 54:118-124
    [73] Janese C. O’Brien, Vivian W. Jones, Marc D. Porter., Immunosensing Platforms Using Spontaneously Adsorbed Antibody Fragments on Gold, Anal Chem., 2000, 72: 703-710
    [74] A.Robert Neurath, Nathan Strick. Enzyme-linked fluorescence immunoassays usingβ-galactosidase and antibodies covalently bound to polystyrene plates, Journal of Virological Methods, 1981, 3: 155-165
    [75] Julian R S., Duncan, Peter D. et.al, Roger Wrigglesworth, Analytical Biochemistry, 1983, 132: 68
    [76] Diaz, A., Navas, Sanchez. Gonzalez G. et.al, Enhancement and inhibition of luminol chemiluminescence by phenolic acids J. Biolumin.Chemilumin.,1995, 10: 175-184
    [77] Kricka L J., Stott R A W., Keukeleir D D. et.al, Luminescence techniques in chemical and biochemical analysis, New York: Marcel Dekker, 1991: 599
    [78] Thorpe G H G., Kricka L J., Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase, Meth Enzymol., 1986,133: 331-353
    [79] Whitehead T P., Thorpe G H G., Carter T J N. et.al, Enhanced chemiluminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay, Nature, 1983, 305: 158-159
    [80] Navas Díaz, García Sánchez F, González García JA, Chemical indicators as enhancers of the chemiluminescent Luminol-H2O2-horseradish peroxidase reaction, J Photochem Photobiol A.Chem .,1995, 87: 99-103
    [81] García Sanchez F, Navas Díaz A, González García JA, p-Phenols derivatives as enhancers of the chemiluminescent Luminol-peroxidase-H2O2 reaction: substituent effects, J Luminesc. ,1995, 65: 33-39
    [82] Hori H., Fujii T., Kubo A..et.al, Kih-201-a new enhancer of chemiluminescence in theLuminol-hydrogen peroxide-peroxidase system, Anal Lett, 1994, 27: 1109-1122
    [83]Lundin A, Hallander LOB. In: Scholmerich J, Andreesen R. et.al. Biolumine- scence and chemiluminescence: new perspectives, Chichester: Wiley ,1987, 555.
    [84] Thorpe GHG, Kricka LJ. In: Scholmerich J, Andreesen R.et.al, Bioluminescence and chemiluminescence: new perspectives, Chichester: Wiley ,1987: 199
    [85] Cercek B, Roby K, Cercek L, Effect of oxygen abstraction on the peroxidase-Luminol-perborate system: relevance of the HRP enhanced chemiluminescence mechanism, J Biolumin Chemilumin, 1994, 9: 273-277
    [86] Segawa T, Kamidate T, Watanabe H, Determination of hydrogen peroxide with fluorescein chemiluminescence catalyzed by horseradish peroxidase, Anal. Sci., 1990, 6: 763-764
    [87] Segawa T, Kamidate T, Watanabe H, Role of 3-morpholino-1-propanesulfonic acid as energy transferer in chemiluminescence reaction of fluorescein catalyzed by horseradish peroxidase, Bull Chem Soc Jpn, 1993, 66: 2237-2241
    [88] Segawa T, Kamidate T, Watanabe H, Effect of buffer components on the determination of hydrogen peroxide using fluorescein chemiluminescence reaction, Nippon Kagaku Kaishi, 1992, 956-960
    [89] Regin VI, Chemiluminescence in the oxidation of Luminol-fluorescein mixtures by hydrogen peroxide, Zh Anal Chem., 1977, 32: 1925-1929
    [90] Hass Y, Würzberg E, Chemiluminescence of Luminol and related compounds under electron-beam excitation. Enhancement of light yields by addition of dyes, J Phys Chem., 1979, 83: 2692-2696
    [91] Hadjianestis J, Nikokavouras J, Luminol chemiluminescence in micellar media II: Energy transfer to fluorescein, J Photochem Photobiol A: Chem., 1993, 69: 337-343
    [92] Thorpe GHG, Kricka LJ, Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase, Meth Enzymol, 1986, 133: 331-353
    [93] Thornton, C. R., Detection and quantification of Rhizoctonia solani in soil by monoclonal antibody-based immuno-magnetic bead assay, Soil, Biol. Biochem., 1996, 28: 527-532
    [94] Yu, H. Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. J. Immunol. Methods 1998, 218, 1-8
    [95] Rashkovetsky, L. G., Lyubarskaya, Y. V., Foret, F. et al., Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. J. Chromatogra. A. 1997, 781, 197-204
    [96] Botchkareva, A. E., Fini, F., Eremin, S. et.al, Development of a heterogeneous chemiluminescent flow immunoassay for DDT and related compounds, Anal. Chim. Acta., 2002,453: 43-52
    [97] Leonard, M. New packing materials for protein chromatography, J., Chromatogr. B., Biomed. Sci. Appl, 1997, 699: 3-27
    [98] Rhemrev-Boom, M. M., Yates, M., Rudolph, M. et.al, (Immuno)affinity chromatography: a versatile tool for fast and selective purification, concentration, isolation and analysis, Biomed. Anal, 2001, 24: 825-833
    [99] Zhang, R. Q., Nakajima, H., Soh, N. et. al, Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnatic microbeads, Anal. Chim. Acta, 2007, 105-113
    [100] Soha, N., Nishiyama, H., Asano, Y. et.al, Chemiluminescence sequential injection immunoassay for vitellogenin using magnetic microbeads, Talanta, 2004, 64: 1160-1168
    [101] Kradtap, S., Wijayawardhana, C.A., Schlueter, K. T. et.al,“Bugbead”: an artificial microorganism model used as a harmless simulant for pathogenic microorganisms Anal. Chim. Acta, 2001, 444: 13-16
    [102] Alefantis, Tim.,Grewal, P., Ashton, J. et.al, A rapid and sensitive magnetic bead-based immunoassay for the detection of staphylococcal enterotoxin B for high-through put screening, Mole. Cell. Probe, 2004, 18: 379-382
    [103] Che, Y. H., Li, Y. B., Slavik, M., Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode, Biosens. Bioelectron, 2001, 16: 791-797
    [104] Chapman, P. A., Siddons, C. A., Evaluation of a commercial enzyme immunoassay (EHEC-Tek) for detectingEscherichia coliO157 in beef and beef products, Food Microbio., 1996, 13: 175-182
    [105] Yu H., Rapid, robust method for measuring low concentrations of albumin in urine, Anal. Chim. Acta., 1998, 376: 77-81
    [106]Pale?ek, E., Kizek, R., Havran, L. et.al, Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor, Anal. Chim. Acta., 2002, 469: 73-83
    [107] Aleijung, P., Nilssion, H. O., Wang, X. et. al, Gastrointestinal colonisation of BALB/cA mice by Helicobacter pylori monitored by heparin magnetic separation, FEMS Immunol. Med. Microbio., 1996, 13: 303-309
    [108] Schlageter, M. H., Larghero, J., Cassinat, B. et.al, Serum Carcinoembryonic Antigen, Cancer Antigen 125, Cancer Antigen 15-3, Squamous Cell Carcinoma, and Tumor-associated Trypsin Inhibitor Concentrations during Healthy Pregnancy, Clin. Chem., 1998, 44: 1995-1998
    [109] Gold, P., Freedman, S. O., Exp. Med., 1965, 121: 439
    [110] Alumanda, M. D. R., Minoru, K., Trapping method of antibodies on surfaces of polymerizing discs for enzyme immunoassay, Anal. Chim. Acta., 1995, 312: 85-94
    [111] Eckert, K., Fuhrmann-Selter, T., Maurer, H. R. et.al, A colorimetric immunoassay for the detection of E-cadherin and carcinoembryonic antigen (CEA) expression on human colon carcinoma cell lines in vitro, Cancer Lett., 1996, 105: 1
    [112] Oh. Kim B K, Park K W, Lee W H. et al, Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium, Biosens. Bioelectron., 2004, 19(11): 1497-1504
    [113] Kaiser, T., Gudat, P., Stock.W., et.al, Biotinylated Steroid Derivatives as Ligands for Biospecific Interaction Analysis with Monoclonal Antibodies Using Immunosensor Devices, Anal. Biochem., 2000, 282(2): 173-185
    [114] Penalva J, Puchades R, Maquieira A., Analytical Properties of Immunosensors Working in Organic Media, Anal. Chem., 1999, 71(17): 3862-3872
    [115] Hendriks, H. A., Kortlandt, W. L., Verweij, W. M., Standardized Comparison of Processing Capacity and Efficiency of Five New-Generation Immunoassay Analyzers, Clin. Chim., 2000, 46: 105-111
    [116] Smith, J., Osikowicz, G., Tayi, R. et.al, Abbott AxSYM random and continuous access immunoassay system for improved workflow in the clinical laboratory, Clin. Chem., 1993, 39: 2063-2069
    [117] Sahin, B., Paydak, V., Paydas, S., hepatosteatosis and alterations of CA15.3 and CEA in patients with breast cancer receiving tamoxifen, Eur. J. Cancer., 1996, 32(1001): 24-42(1)
    [118] Kramer S., Jager W., Lang N., Early treatment of metastatic breast cancer patients after increase of CEA and CA15-3 serum levels, Eur. J. Cancer, 1998, 34(1005): 42-42(1)
    [119] Hernadez L., Espasa A., Fenandez C. et al, CEA and CA 549 in serum and pleural fluid of patients with pleural effusion, Lung. Cancer., 2002, 36(11): 83-89
    [120] Engelen ,M J A., Bruijnde H W A., Hollema H. et al, Serum CA 125, Carcinoembryonic Antigen, and CA 19-9 as Tumor Markers in Borderline Ovarian Tumors, Gynecil. Oncol., 2000, 78(11): 16-20
    [121] Duffy M. J., Dalen van A., Haglund C. et al, Clinical utility of biochemical markers in colorectal cancer: European Group on Tumor Markers (EGTM) guidelines, Eur. J. Cancer., 2003, 39(6): 718-727
    [122] Sand T. T., Zielinski J. E., Arthur C. et al, Development of an immunosensor based on pressure transduction, Biosens. Bioelectron., 2003, 18(5-6): 797-804
    [123] Dai Z, Yan F, Yu, H. et al, Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen, J. Immunol. Methods., 287, 2004(1-2): 13-20
    [124] Yu H, Yan F, Dai Z. et al, A disposable amperometric immunosensor forα-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode, Anal. Biochem, 2004, 331(1): 98-105
    [125] Sahin, B., Paydak, V., Paydas, S., hepatosteatosis and alterations of CA15.3 and CEA in patients with breast cancer receiving tamoxifen, Eur. J. Cancer., 1996, 32(1001): 24-42(1)
    [126] Kramer S., Jager W., Lang N., Early treatment of metastatic breast cancer patients after increase of CEA and CA15-3 serum levels, Eur. J. Cancer., 1998, 34(1005): 42-42(1)
    [127] Hernadez L., Espasa A., Fenandez C. et al, CEA and CA 549 in serum and pleural fluid of patients with pleural effusion, Lung. Cancer., 2002, 36(11): 83-89
    [128]张书圣,焦奎,陈洪渊, OAP-H2O2-HRP伏安酶联免疫分析新体系测定人血清总甲状腺素,分析实验室, 1999, 18: 5
    [129]郭清癸,黄俊傑,牟中原,物理双月刊(台湾), 2001, 6: 614-624
    [130] Banfi G.., Degiorgio V., Ricard D., Nonlinear optical properties of semiconductor nanocrystals, Adv. Phys., 1998, 47(3): 447-519
    [131] Supriya Devarajan, B.,Vimalan, S., Sampath, Phase transfer of Au-Ag alloy nanoparticles from aqueous medium to an organic solvent: effect of aging of surfactant on the formation of Ag-rich alloy compositions, Journal of Colloid and Interface Science, 2004, 278: 126-132
    [132] Tao Zhu, Krasimir Vasilev, Maximilian Kreiter. et.al, Surface Modification of Citrate-Reduced Colloidal Gold Nanoparticles with 2-Mercaptosuccinic Acid, Langmuir, 2003, 19: 9518-9525
    [133] Nidhi Nath, Ashutosh Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in teal time on a surface, Anal Chem, 2002, 74: 504-509
    [134]陈克正,刘兴斌,纳米微粒在生物医学领域的应用研究进展,青岛化工学院学报, 2000, 21(1): 39-42
    [135] Mirkin,C.A., Letsinger,R.L., Mucic,R.C. et.al, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382: 607-609
    [136] Elghanian, R., Storhoff, J. J., Mucic,R. C. et.al, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997, 277: 1078- 1080
    [137] Rosi, N. L., Mirkin,C. A., Nanostructures in biodiagnostics, Chem Rev., 2005, 105: 1547-1562
    [138] Nam, J. M., Stoeva, S. I., Mirkin, C. A., Bio-Bar-Code-Based DNA detection with PCR-like sensitivity, J.Am.Chem.Soc., 2004, 126: 5932-5933
    [139] Georganopoulou,D. G , Chang, L., Nam, J. M. et.al, Nanoparticle-based detection in cerebralspinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease, P.Natl.Acad.Sci.USA. (Proceedings of the National Academy of Sciences), 2005, 102(7): 2273-2276
    [140] Yuichi Oku, Kumiko Kamiya, Hisanori Kamiya. et al, Development of oligonucleotide lateral-flow immunoassay for multi-parameter detection, Journal of Immunological Methods, 2001, 258: 73-84
    [141] Kathryn L., Brogan, Kristie N. et al, Direct oriented immobilization of F(ab′) antibody fragments on gold, Analytica Chimica Acta, 2003, 496: 73-80
    [142]李永勤,杨瑞馥,以膜为固相载体的免疫胶体金快速试验,微生物学免疫学进展, 2003, 31(1): 74-78
    [143]黄永莉,程维兴,邢颜超,胶体金免疫层析技术检测HBsAg临床应用评价,临床军医杂志, 2003, 3: 89-91
    [144] Thanh N T K, Rosenzweig Z., Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles, Anal. Chem.,2002, 74: 1624-1628
    [145] Jwa-Min Nam, C.,Shad Thaxton, Chad A., Mirkin.Nanoparticle-Based Bio-Bar Codes for the Ultra sensitive Detection of Proteins, Science, 2003, 301: 1884-1886
    [146] Ambrosi A., Casta?eda M. T., Killard A. J. et.al, Double-codified gold nanolabels for enhanced immunoanalysis, Anal. Chem., 2007, 79: 5232-5240
    [147] Navas Díaz. A. F., García Sánchez, J. A., González García, Chemical indicators as enhancers of the chemiluminescent luminol-H2O2-horseradish peroxidase reaction, J. Photochem. Photobio. A., 1995, 87: 99-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700