湘南白腊水锡矿含矿花岗岩的绿泥石化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘南白腊水矿床属绿泥石化花岗岩型锡矿,是近年来新发现的一种矿床类型。该矿床属芙蓉锡矿田,矿田的锡储量达60多万吨,其中90%以上的锡集中在白腊水矿床。矿床的绿泥石化与锡矿化关系密切,矿体产于强烈绿泥石化的花岗岩体内。
     研究表明,白腊水矿床与骑田岭多阶段花岗岩体的演化有关。该花岗岩体在不同阶段的演化过程中表现出一系列不同的地球化学特征,花岗岩中的Sn含量有随结晶分异程度的增加而减少的趋势,这可能与岩浆体系演化过程中氧逸度的降低有关。
     绿泥石的研究显示,绿泥石对花岗岩造岩矿物的交代顺序为:从角闪石、黑云母→斜长石、钾长石→石英;绿泥石形态特征的变化一方面与绿泥石化学成分的不同有关,另一方面与被绿泥石交代的花岗岩造岩矿物晶体结构有关;花岗岩的绿泥石交代作用越强烈,全岩的烧失量和Zn含量就越高,原岩的Cl丢失到蚀变流体中去的量也越多;绿泥石的Si含量在绿泥石交代过程中逐渐减少;长石遭受破坏溶解后释放出的Al在厘米尺度范围内发生迁移与再分配,引起绿泥石Al含量的升高;Fe从热液中带入,蚀变花岗岩中绿泥石矿物含量的多少与水-岩反应体系中Fe的多少有关;形成绿泥石所需的Mg主要来源于花岗岩暗色矿物内Mg的释放与再分配;Mn主要由外部流体带入;绿泥石化学成分特征的变化反映蚀变流体具有酸性、还原性的特征。
     流体包裹体的研究表明,成矿流体来源于高温高盐度的岩浆分异流体,成矿过程中有大量低温低盐度大气降水加入。富锡的岩浆分异流体与大气降水混合(可能还伴有压力的释放)而发生沸腾作用,从而导致锡矿的沉淀。成矿温度在280℃~420℃范围内,属中高温热液型矿床。
     根据上述花岗岩地球化学、绿泥石和成矿流体的特征,认为绿泥石化花岗岩型锡矿的最终形成,与具有高温、富含挥发份(H2O、CO2)、富K+、Na+、Cl-离子、呈酸性和还原性特征的热液流体引起的Sn、Fe的富集和迁移有关。这种热液流体与大气降水以及围岩发生反应,引起体系氧逸度、酸碱度和温度的变化,导致绿泥石的交代与锡矿的沉淀同时进行,最终形成绿泥石化花岗岩型锡矿。在南岭地区应注意在含锡钨花岗岩中寻找此类型锡矿。
Bailashui tin deposit named chloritized granite type tin deposit is a new type deposit which was found in recent years in southern Hunan province.The deposit is located in Furong tin ore field which reserves more than 60 million tons of tin.More than 90% tin reserves of this ore field is concentrated in Bailashui tin deposit,which is closely related to the chloritization.The orebody occurs in the strong chloritization granite.
     This research indicates that Bailashui tin deposit is associated with the evolution of Qitianling multi-stage composite batholith.The granites in different stages of evolution show a range of different geochemical characteristics.The Sn content in the granite and the degree of fractional crystallization are negatively correlated,that may be related to the decreasing oxygen fugacity in the process of magmatic evolution.
     The study of chlorite shows that, the sequence of rock-forming minerals of the granite replaced by chlorite is:from amphibole and biotite to plagioclase and potassium feldspar,then to quartz.The variations of the chlorite shape were, on the one hand, related to the change of chlorite composition, on the other hand, related to the crystal texture of rock-forming minerals of the granite which were replaced by chlorite.The stronger the chloritization of granite was, the higher the LOI and Zn contents of whole-rock sample were.And also more Cl was lost from granite into hydrothermal liquid.The Si content of chlorite was decreasing with the increasing degree of chloritization.The Al content was released after the alteration of feldspar. The mobilization and redistribution of Al on the thin-section scale caused the Al content of chlorite increased.Fe was brought in by hydrothermal fluid.The amounts of chlorite formed are largely a function of how much Fe has been introduced into the hydrothermal system.The Mg needed for the formation of chlorite were primarily related to the redistribution of Mg which were released by mafic minerals.The Mn of chlorite was mainly brought in by the outer hydrothermal fluid.The changes of chlorite chemical composition characteristics reflect that the alteration fluid was acidic and reductive.
     Study on fluid inclusion shows that the ore-forming fluid was derived from high temperature and high salinity magmatic fluid during magmatic differentiation.In the process of mineralizing,a lot of low temperature and low salinity meteoric water had been brought in.The mixing of the tin-rich magmatic fluid and the meteoric water (possibly accompanied by the release of pressure)led to the boiling, which resulted in the precipitation of tin.The ore-forming temperature is in the range of 280℃to 420℃.This tin deposit belongs to medium-high temperature hydrothermal deposit.
     According to the features of granite geochemistry,chlorite and ore-forming fluid,we can got some conclusions:the forming of chloritized granite type tin deposit in Bailashui is related to the enrichment and migration of Sn and Fe introduced by hydrothermal fluids.The hydrothermal fluids have the characteristics of high tempera-ture, rich in volatiles (H2O, CO2), K+, Na+, Cl-,acidic and reductive.When the hydrothermal fluids reacted with the meteoric water and wall rock, the oxygen fugacity, pH and temperature in the system would changed,and then the chloritization and cassiterite precipitation were simultaneously occurred, which led to the forming of chloritized granite type tin deposit.An attention to searching for this type tin deposit in W-Sn-bearing granites in the Nanling Range should be especially paid.
引文
Battaglia S.1999.Applying X-ray diffraction geothermometer to a chlorite[J].Clay Clay Min,47(1): 54-63.
    Beaumont E.1884.Note sur les emanations volcaniques et metalliferes.Bull.Soc. Geol. France,4, 1249-1334.
    Bevins R E, Mcrriman R J.1988.Compositional controls on co-existing prehnite-actinolite and prehnite-pumpellyite facies assemblages in the Tal Y Fan metabasite intrusion, North Wales: implications for Caledonian metamorphic field gradients[J].Journal of Metamorphic Geology,6,17-39.
    Bodnar R J.1993.Revised equation and table for determining the freezing point depression of H2O-NaCI solutions[J].Geochimica et Cosmochimica Acta,57:683-684.
    Brauhart C W, Huston D L, Andrew A S.2000.Oxygen isotope mapping in the Panorama VMS district, Pilbara Craton, Western Australia:applications to estimating temperatures of alteration and to exploration[J].Mineralium Deposita,35:727-740.
    Bryndzia L T, Steven D S.1987a.The composition of chlorite as a function of sulfur and oxygen fugacity:an experimental study[J]. American Journal of science,287:50-76.
    Bryndzia L T, Scott S D.1987b.Application of chlorite-sulphide-oxide equilibria to metamorpho-sed sulphide ores, Snow Lake area, Manitoba[J]. Econ. Geol.82:963-970.
    Burke E A J.2001.Raman microspectrometry of fluid inclusions[J].Lithos.,55:139-158.
    Burnham C W, Ohmoto H.1980.Late-stage processes of felsic magmatism:Soc.Mining Geologists Japan Spec. Issue 8, p.1-11.
    Cathelineau M, Nieva D A.1985.Chlorite solid solution geothermometer:The Los Azufres (Mexico) geothermal system[J].Contrib. Mineral Petrol,91:235-244.
    Cathelineau M, Nieva D A.1988.Cationsite occupancy in chlorites and illites as a function of temperature[J].Clay Min,23:471-485.
    Cerny P, Povondra P.1972.An Al,F-rich metamict titanite from Czechoslovakia[J].Neues Jahrb. Mineral.Monatsh.,400-406.
    Chappell B W, White A J R.1974.Two contrasting granite types. Pacific Geology,8:173-174.
    Clayton R N, Mayeda T K, O'Neil J R.1972.Oxygen isotope exchange between quartz and water [J].Geophys. Res.,77(17),3057-3067.
    Collins P L F.1979.Gas hydrates in CC2-bearing fluid inclusions use of freezing data for estimation of salinity[J].Econ. Geol.,74:1435-1444.
    De Caritat P, Hutcheon L, Walshe J L.1993. Chlorite geothermometry:a review. Clay Clay Min, 40:470-479.
    Deer W A, Howie R A, Iussman J.1966.Rock-Forming Minerals:Sheet Silicates[M].London: Longman.270p.
    Dubessy J, Geisler D, Kosztolanyi C, Vernet M.1983.The determination of sulphate in fluid inclusions using the M.O.L.E. Raman microprobe. Application to a keuper halite and geochemical consequences[J].Geochim.Cosmochim.Acta,47:1-10.
    Eggleton R A, Banfield J F.1985.The alteration of granitic biotite to chlorite[J].Am. Mineral.70, 902-910.
    Eugster H P.1985.Granites and hydrothermal ore deposits:A geochemical framework:Mineralog. Mag., v.49, p.7-23.
    Foster M D.1962.Interpretation of the composition and classification for the chlorite [J].US Geology Survey Prof. Paper,414 A:33,
    Groves D 1.1972.The geochemical evolution of tin bearing granites in the Blue Tier Batholith, Tasmania. Econ. Geol.,67,445-457.
    Groves D I,McCarthy T S.1978.Fractional crystallization and the origin of tin deposits in granitoids. Mineral Deposit.,13,11-26.
    Harlter W E, Williams-Jones A E, Kontak D J.1998.Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit:implication for mineralization. Chem. Geol., 150,1-17.
    Heinrich C A.1990.The chemistry of hydrothermal tin(-tungsten) ore deposition[J].Economic Geology,85(3), p.457-481.
    Heinrich C A.1995. Geochemical evolution and hydrothermal mineral deposition in Sn (-W-base metal) and other granite-related ore systems:some conclusions from Australian examples. In: Magmas, Fluids, and Ore Deposits (J.F.H. Thompson, eds.), Mineralogical Association of Canada, Short course series, Victoria, British Columbia,203-220.
    Hu X Y, Bi X W, Hu R Z, et al.2008. Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid[J].Geochemical Journal,42(2):141-150.
    Ishihara S.1977.The magnetite-series and ilmenite-series granitic rocks[J].Mine Geology,27, 293-305.
    Jowett E C.1991.Fitting iron and magnesium into the hydrothermal chlorite geothermometer[J]. GAC/MAC/SEG Joint Annual Meeting, Program with Abstracts,16:A62.
    Keppler H, Wyllie P J.1991.Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J].Contributions to Mineralogy and Petrology,109:139-150.
    Kontak D J, Clark A H.2002. Genesis of the giant, bonanza San Rafael lode tin deposit, Peru: Origin and significance of alteration[J].Economic Geology,97:1741-1777.
    Kranidiotis P, MacLean W H.1987. Systematics of chlorite alteration at the Phelps Dodge massive sufide deposit, Matagami, Quebec[J].Economic Geology,82:1898-1991.
    Laznicka P.2006.Giant Metallic Deposits, Future Sources of Industrial Metals.Springer, Heidelberg & Berlin,732 p.
    Lehmann B,1982.Metallogeny of tin:magmatic differentiation versus geochemical heritage[J]. Econ. Geol.,77,50-59.
    Lehmann B.1990.Metallogeny of Tin[M].Springer Verlag, New York,1-211.
    Linnen R L, Pichavant M, Holtz F, et al.1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar[J].Geochim. Cosmochim. Acta,59: 1579-1588.
    Linnen R L, Pichavant M, Holtz F.1996. The combined effects of the fO2 and meltcomposition on SnO2 solubility and tin diffusivity in haplogranitic melts[J].Geochim Cosmochim. Acta,60: 4965-4976.
    Liu C S, Ling H F, Xiong X L, et al.,1999. An F-rich, Sn-bearing volcanic-intrusive complex in Yanbei, South China. Econ. Geol., 94,325-342.
    Li Z L,Hu R Z, Yang J S, et al.2007. He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China[J].Lithos, 97:161-173.
    Lu Jianjun, Chen Weifeng, Zhu Jinchu, et al.2008. The characteristics of chloritized granite type tin deposit in the Furong tin deposit district in Hunan province, China[J].Geochimica et Cosmochimica Acta,72 (12), Suppl.,1:A 570.
    Materikov MP. 1977.Deposits of tin, in Smirnov, V. I., ed., Ore deposits of the USSR:London, Pittman, v.3, p.229-294.
    Mlynarczyk M S J,Sherlock R L,Williams-Jones A E.2003. San Rafael, Peru:geology and structure of the world's richest tin lode[J]. Mineralium Deposita,38:555-567.
    Muller B, Frischknecht R, Seward T, et al.2001.A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia),using LA-ICP-MS micro-analysis. Mineralium Deposita, V36(7):680-688.
    Pasterisa J D, Wopenkaa B, Seitz J C.1988.Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J]. Geochim.Cosmochim.Acta,52: 979-988.
    Roedder E.1984.Fluid inclusions[J].Reviews in Mineralogy,12:413-473.
    Sadoon M, Mohamed A K,Miguel A C,et al.2009.Hydrothermal alteration of magmatic titanite: evidence from proterozoic granitic rocks, Southeastern Sweden[J].The Canadian Minera-logist Vol.47, pp.801-811.
    Sainsbury C L.1969.Tin resources of the world.Bull.United States Geological Survey,1301,55pp.
    Sanchez-Espana J,Velasco F,Yusta 1.2000.Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain) [J]. Applied Geochemistry,15:1265-1290.
    Sheppard S M F,Nielsen R L,Taylor J H P.1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits[J].Econ.Geol.,64:755-777.
    Shimazaki H.1980.Characteristics of skarn deposits and relateacid magmatism in Japan:ECON. GEOL., v.75, p.173-183.
    Shirozu H.1978.Developments in sedimentalogy (chlorite minerals)[M].New York Elsevier. 243-246.
    Shriver N A,MacLean W H.1993.Mass, volume and chemical changes in the alteration zone at the Norbec mine, Noranda, Quebec[J].Mineralium Deposita,28:157-166.
    Sillitoe R H, Halls C, Grant J N,1975. Porphyry tin deposits in Bolivia. Econ. Geol.,70, 913-927.
    Stemprok, M.1963. Distribution of Sn-W-Mo formation deposits around granites.In:Stemprok, M. (Editor) Symposium, Problem of post magmatic ore deposition volume 1, Geological Survey of Czechoslovakia, Prague,69-72.
    Stmprok M.1990.Solubility of tin,tungsten and molybdenum oxides in felsic magmas [J].Mineralium Deposita,25(3),205-212.
    Sun ss, McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London, Special Publications 1989,42:313-345.
    Taylor H P.1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hvdrothemal Alteration and Ore Deposition[J].Economic Geology,69(6):843-883.
    Taylor J R, Wall V J.1992. The behavior of tin in granitoid magmas[J]. Econ. Geol.,87:403-420.
    Taylor J R, Wall V J.1993. Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase [J]. Econ. Geol.,88,437-460.
    Taylor R G.1979, Geology of tin deposits:Elsevier, Amsterdam,543 p.
    Tiwary A and Deb M.1997.Geochemistry of hydrothermal alteration at the Deri massive sulphide deposit, Sirohi district,Rajasthan,NW India[J].Journal of Geochemical Exploration,59: 99-121.
    Veblen D R, Ferry J M.1983.A TEM study of the biotite-chlorite reaction and comparison with petrological observations[J].Am. Mineral.68,1160-1168.
    Willis-Richards J, Jackson N J,1989. Evolution of the Cornubian ore field, Southwest England: Part I. Batholith modeling and ore distribution. Econ. Geol.,84,1078-1100.
    Wilson G A, Eugster H P,1990. Cassiterite solubility and tin speciation in supercritical chloride solutions. In:Fluid-Mineral Interactions:A Tribute to H.P. Eugster (R.J. Spencer and I.M. Chou, eds.), Geochem. Soc. Special Publication,20,179-195.
    Wones D R.1981.Mafic silicates as indicators of intensive variables in granitic magmas:Mining Geology, v.31, p.191-212.
    Yamamoto J, Kagi H, Kaneoka I, et al.,2002.Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals:implications for the geobarometry of mantle minerals using micro-Raman spectroscopy[J].Earth Planet.Sci.Lett.,198:511-519.
    Zang W, Fyfe W S.1995.Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposite, Carajas, Brazil[J].Mineralium Deposita,30:30-38.
    Zhao K D, Jiang S Y, Jiang Y H, et al.2005. Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan province, South China:implication for the genesis of granite and related tin mineralization[J].European Journal of Mineralogy,17 (4):635-648.
    毕献武,李鸿莉,双燕,等.2008.骑田岭A型花岗岩流体包裹体地球化学特征—对芙蓉超大型锡矿成矿流体来源的指示[J].高校地质学报.14(4):539-548.
    蔡锦辉,韦昌山,孙明慧.2004.湘南芙蓉矿田白腊水锡矿床包裹特征[J].化工矿产地质,26(2):76-82.
    陈骏,陆建军,陈卫锋,等.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报.14(4):459-473.
    陈骏,王汝成,周建平,等.2000.锡的地球化学[M].南京大学出版社,1-320.
    陈毓川,裴荣富,张宏良,等.1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社,1-508.
    陈子龙,彭省临.1994.钨、锡流-熔分配实验结果及其矿床成因意义[J].地质论评,40(3)274-282.
    地矿部南岭项目花岗岩专题组.1989.南岭花岗岩地质及其成岩和成矿作用[M].北京:地质出版社,1-471.
    丁俊英,倪培,饶冰,等.2004.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评,50(2):203-209.
    黄革非,曾钦旺,魏绍六,等.2001.湖南骑田岭芙蓉矿田锡矿地质特征及控矿因素分析[J].中国地质,28(10):30-34.
    黄革非,龚述清,蒋希伟,等.2003.湘南骑田岭锡矿成矿规律探讨[J].地质通报,22(6),445-451.
    华仁民,李晓峰,张开平,等.2003.金山金矿热液蚀变粘土矿物特征及水-岩反应环境研究[J].矿物学报,23(1):23-30.
    胡受奚.1980.交代蚀变岩成因学[M].北京:地质出版社,p1-18.
    胡受奚,叶瑛,方长泉.2004.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社,p83-85.
    蒋少涌.2000.加拿大Sullivan超大型Pb-Zn-Ag矿床中几个指示成矿环境的特征矿物研究[J].高校地质学报,6(02):173-177.
    蒋少涌,赵葵东,姜耀辉,等.2006.华南与花岗岩有关的一种新类型的锡成矿作用:矿物化 学、元素、和同位素地球化学证据[J].岩石学报,22(10):2509-2516.
    蒋少涌,赵葵东,姜耀辉,等.2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J].高校地质学报,14(4):496-509.
    李鸿莉,毕献武,胡瑞忠,等.2007.芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J].岩石学报,23(10):2605-2614.
    李桃叶,刘家齐.2005.湘南骑田岭芙蓉锡矿田流体包裹体特征和成分[J].华南地质与矿产,(3):44-49.
    李献华,刘颖,涂湘林,等.2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱溶分解样品方法的对比[J].地球化学,31(3):289-294.
    李兆丽,胡瑞忠,彭建堂,等.2006.湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪[J].地球科学,31(1):129-135.
    刘英俊,曹励明.1987.元素地球化学导论[M].北京:地质出版社,124-128.
    卢焕章,范宏瑞,倪培,等.2004.流体包裹体[M].北京:科学出版社:241-304.
    罗郧,蔡锦辉.2004.湖南芙蓉矿田成岩成矿时代[J].地球学报,25(2):239-242.
    毛景文,李晓峰,Bemd Lehmann,等.2004.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质,23(2):164-175.
    牟保磊.1999.元素地球化学[M].北京:清华大学出版社,38-41.
    莫柱孙,叶伯丹,潘维祖,等.1980.南岭花岗岩地质学[M].北京:地质出版社,1-363.
    南京大学地质学系.1981.华南不同时代花岗岩类及其与成矿关系[M].北京:科学出版社,1-395.
    彭建堂,胡瑞忠,毕献武,等.2007.湖南芙蓉锡矿床40Ar-39Ar同位素年龄及地质意义[J].矿床地质,26(3):237-248.
    双燕,毕献武,胡瑞忠,等.2006.芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J].矿物岩石,26(2):57-65.
    双燕,毕献武,胡瑞忠,等.2006.湖南芙蓉锡多金属矿床流体包裹体地球化学研究[J].矿床地质,25(增刊):367-370.
    双燕,毕献武,胡瑞忠,等.2009.湖南芙蓉锡多金属矿床成矿流体地球化学[J].岩石学报,25(10):2588-2600.
    王登红,陈毓川,李华芹,等.2003.湖南芙蓉锡矿的地质地球化学特征及找矿意义[J].地质通报,22(1):50-56.
    汪雄武,王晓地,刘家齐,等.2004.湖南骑田岭花岗岩与锡成矿的关系[J].地质科技情报,23(2):1-12.
    魏绍六,曾钦旺,许以明,等.2002.湖南骑田岭地区锡矿床特征及找矿远景[J].中国地质,29(1):67-75.
    徐克勤,孙鼐,王德滋,等.1984.华南花岗岩成因与成矿.南京国际学术讨论会论文集,花岗岩地质和成矿关系,南京:江苏科技出版社,1-20.
    许以明,侯茂松,廖兴钰,等.2000.郴州芙蓉矿田锡矿类型及找矿远景[J].湖南地质,19(2):95-100.
    张理刚.1985.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社.
    张文淮,陈紫英.1993.流体包裹体地质学[M].武汉:中国地质大学出版社.
    张展适,华仁民,季峻峰,等.2007.201和361铀矿床中绿泥石的特征及其形成环境研究[J].矿物学报,27(2):161-172.
    赵葵东.2005.华南两类不同成因锡矿床同位素地球化学及成矿机理研究[D].博士论文.南京大学.
    赵杏媛,张有瑜.1990.粘土矿物与粘土矿物分析[M].北京:海洋出版社,130—135.
    郑远川,顾连兴,汤晓茜,等.辽宁红透山块状硫化物矿床高级变质下盘蚀变带研究[J].岩石学报,2008,24(8).
    中国科学院贵阳地球化学研究所.1979.华南花岗岩类的地球化学[M].北京:科学出版社,1-421.
    朱金初,陈骏,王汝成,等.2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带[J].高校地质学报,14(4):474-484.
    朱金初,张佩华,谢才富,等.2007.骑田岭岩体[M]//周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,520-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700