有机薄膜晶体管直流仿真模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了当今被认可的几种有机薄膜晶体管模型的理论:多重俘获和释放理论、多晶晶界陷阱理论、蒙特卡罗统计理论等,并从中挑选出了一种比较合理且应用比较广泛的理论,即跳跃理论作为本论文中的理论模型。
     基于跳跃理论,本论文提出了一种有机薄膜晶体管的直流仿真模型公式。首先利用电流密度和电导率之间的关系得到了电流公式,再利用渗透理论得到了基于跳跃理论的电导率表达式,通过一系列的公式计算、近似分析、变量代换等,得到了一个基于跳跃理论的有机薄膜晶体管的模型公式。利用有机薄膜晶体管试验数据提取并计算了该仿真模型中所需要的一部分参数,并使用MATLAB软件画出了传输特性曲线。经过多次的拟合得到了一组与试验数据符合较好的参数值,也验证了本论文中得到的有机薄膜晶体管的直流公式的准确性。
     为了能够在某种仿真软件中对有机薄膜晶体管进行仿真,我们认为找到一个现有的TFT模型进行替代近似,也是目前一种比较实用的暂缓之计。本论文又探索了一种基于HSPICE仿真软件的有机薄膜晶体管的仿真模型。本论文选用了Level 62 RPI TFT模型,在该模型的基础上通过参数提取和参数拟合得到了输出特性曲线与试验数据相符合的一组参数,验证了基于Level62 RPI TFT模型的有机薄膜晶体管的仿真模型的有效性。利用该模型,对一种由全P型有机薄膜晶体管构成的反相器进行仿真,得到了较理想的结果,再次证实了基于Level62 RPI TFT模型的有机薄膜晶体管的仿真模型的实用性。
Field effect transistor is one of the most basic devices in the field of microelectronics, especially in the integrated circuits. The organic semiconductor materials take the world’s attention, because of low cost, simple processing technology, wide range of materials, good mechanical properties, and being compatible with traditional silicon-based technology. Organic thin film transistor based on organic semiconductor materials as a kind of field effect transistors becomes the object of research and development all over the world. The mobility of several organic polycrystalline thin films has achieved 1cm2/Vs. The performance has reached and exceeded the a-Si:H TFT. OTFT-based applied research develops gradually. Therefore, the research on the models of organic thin film transistors is significant.
     Without the models of silicon devices, inorganic semiconductor can not develop so fast. Similarly, as the applications of organic thin film transistors are more and more widely, the simulation models are more and more important. A precise model, can considerably improve the application of organic thin film transistors in the integrated circuits and verify the performance.
     The present paper mainly studies the DC model of organic thin film transistors. First of all, a great deal of literatures on analysis models of organic thin film transistors has been read. Several kinds of theories which are recognized, namely Multiple Trapping and Release model, grain boundary trapping model, Monte Carlo theory, et al. And from the existing numerous organic theories of thin film transistors, one kind of more reasonable theory is chosen as our research, namely variable range hopping theory. Each kind of influences to organic thin film transistors has been considered in the variable range hopping theory. So the using of the theory also becomes unusual widespread.
     Then, based on the variable range hopping theory, one kind of DC model of organic thin film transistor is proposed. By using current expression which is from the relationship between current density and conductivity, and the conductivity which is from the percolation theory, one DC current expression of organic thin film transistor based on the variable range hopping theory has been gained, via a series of integral transforms, mathematical calculations and approximations. Some parameters are from the experimental data. Through repetitious tries, a group of parameters are obtained which make a very good agreement between experimental data and the analytical model, with MATLAB. It verifies the accuracy of the current expression of organic thin film transistor. Therefore the DC simulation model of organic thin film transistors is obtained.
     At last, although the model based on variable range hopping theory is correct, it can not be used in some simulation software. One kind of DC model of organic thin film transistor based on HSPICE is proposed. In this paper, the Level 62 RPI TFT model is chosen. Through several tries, a group of parameters are gained which make a very good agreement between experimental data and the Level 62 RPI TFT model. It proves the validity of the model of organic thin film transistor based on Level 62 RPI TFT model. One kind of inverter which is made by p-type organic thin-film transistors is simulated by this model. And the result we get is not bad. This proves the practicability of the model of organic thin film transistor based on Level 62 RPI TFT model. This model provides a temporary solution for the designs and simulations of the integrated circuits based on organic thin film transistors.
引文
[1] D. F. WILLIAMS and M. SCHADT. A Simple Organic Electroluminescent Diode [J]. PROCEEDINGS OF THE IEEE, 1970, 58:476
    [2] J. H. Barroughes, D. D. C. Bradley, and A. R. Brown et al. Light-emitting diodes based on conjugated polymers [J].Nature, 1990, 347:539.
    [3] A. Tsumura, H. Koezuka, and T. Ando. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film [J].Appl. Phys. Lett., 1986,49:1210-1212.
    [4] G Horowitz, D Fichou, X Peng, Z Xu, and F Garnier. A field-effect transistor based on conjugated alpha-sexithienyl [J].Solid state communications, 1989, 72:381-384
    [5] Francis Garnier, Ryad Hajlaoui, Abderrahim Yassar, and Pratima Srivastava, All-Polymer Field-Effect Transistor Realized by Printing Techniques [J]. Science, 1994, 265:1684-1686
    [6] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. Laduca, R. Sarpeshkar, H. E. Katz, and W. Li. Large-scale complementary integrated circuits based on organic transistors [J].Nature, 2000, 403:521-523
    [7] Gilles Horowitz. Organic Field-Effect Transistors [J].Adv. Mater. 1998, 10:365-377
    [8] Barry P. Rand, Diana P. Burk, and Stephen R. Forrest. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells [J].A Physical Review B, 2007, 75:115327
    [9] G. H. Heilmeier, and L. A. Zanoni. Surface studies of alpha-copper phthalocyanine films [J]. J. Phys. Chem. Solids, 1964, 25: 603-611
    [10] F. Ebisawa, T. Kurokawa, and S. Nara. Electrical properties of polyacetylene/polysiloxane interface [J].Appl. Phys. Lett., 1983, 54 :3255-3259
    [11] Kazuhiro Kudo, Masakazu Yamashina and Toyosaka Moriizumi. Field Effect Measurement of Organic Dye Films [J].Jpn. J. Appl. Phys., 1984, 23:130
    [12] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom. Pentacene organic thin-film transistors-molecular ordering and mobility [J]. Electron Device Letters, IEEE, 1997, 18:87-89
    [13] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson. Stacked pentacene layer organic thin-film transistors with improved characteristics [J]. Electron Device Letters, IEEE, 1997, 18:606-608
    [14] A. Tsumura, H. Koezuka, and T. Ando. Polythiophene field-effect transistor: ist characteristics and operation mechanism [J]. Synthetic metals, 1988, 25:11-23
    [15] H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H. Sakaki. Field-effect transistors using alkyl substituted oligothiophenes [J]. Appl. Phys. Lett., 1991, 58:1500-1502
    [16] A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon. Organic Heterostructure Field-Effect Transistors [J]. Science, 1995, 269:1560-1562
    [17] J. G. Laquindanum, H. E. Katz, A. J. Lovinger, and A. Dodabalapur. Morphological origin of high mobility in pentacene thin-film transistors [J]. Chem. Mater, 1996, 8:2542-2544
    [18] Gilles Horowitz, Francis Garnier, Abderrahim Yassar, Riadh Hajlaoui, and Fay?al Kouki. Field-effect transistor made with a sexithiophene single crystal [J]. Advanced Materials, 1996, 8:52-54
    [19] Z. Bao, A. J. Lovinger, A. Dodabalapur. Organic field-effect transistors with high mobility based on copper phthalocyanine [J]. Appl. Phys. Lett., 1996, 69:3066-3068
    [20] A. R. Brown, C. P. Jarrett, D. M. De Leeuw, and M. Matters. Field-effect transistors made from solution-processed organic semiconductors [J]. Synthetic Metals, 1997, 88:37-55
    [21] A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. Rogers. Organic smart pixels [J]. Appl. Phys. Lett., 1998,73:142-144
    [22] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw. Low-cost all-polymer integrated circuits [J]. Appl. Phys. Lett., 1998, 73:108-110
    [23] W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk. Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor [J]. Appl. Phys. Lett., 1998, 73:3884-3886
    [24] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw. Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators [J]. Science, 1999, 283:822-824
    [25] Gilles Horowitz, Riadh Hajlaoui, Denis Fichou, and Ahmed El Kassmi. Gate voltage dependent mobility of oligothiophene field-effect transistors [J].J. Appl. Phys., 1999, 85:3202-3206
    [26] J. A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija. Organic smart pixels and complementary inverter circuits formed onplastic substrates by casting and rubber stamping [J]. Electron Device Letters, IEEE, 2000, 21:100-103
    [27] H. E. A. Huitema1, G. H. Gelinck1, J. B. P. H. van der Putten1, et al. Plastic transistors in active-matrix displays [J].Nature, 2001, 414:599
    [28] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates [J]. Appl. Phys. Lett., 2002, 80:1088-1090
    [29] D. J. Gundlach, C. C. Kuo, S. F. Nelson, T. N. Jackson. Organic thin film transistors with field effect mobility >2 cm2/Vs [J]. Device Research Conference Digest, 1999, 164-165
    [30] Tommie Wilson Kelley, Larry D. Boardman, Timothy D. Dunbar, Dawn V. Muyres, Mark J. Pellerite, and Terry P. Smith. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics [J]. J. Phys. Chem. B, 2003, 107:5877-5881
    [31] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. -H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk. Solution-processed ambipolar organic field-effect transistors and inverters [J].Nature Materials,2003, 2:678-682
    [32] Vikram C. Sundar, Jana Zaumseil, Vitaly Podzorov, Etienne Menard, Robert L. Willett, Takao Someya, Michael E. Gershenson, and John A. Rogers. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals [J]. Science, 2004, 303:1644-1646
    [33] Oana D. Jurchescu, Jacob Baas, and Thomas T. M. Palstra. Effect of impurities on the mobility of single crystal pentacene [J]. Appl. Phys. Lett., 2004, 84:3061-3063
    [34] Hisashi Fukuda, Yasuaki Yamagishi, Masafumi Ise, and Nobuhiro Takano. Gas sensing properties of poly-3-hexylthiophene thin film transistors [J]. Sensors and Actuators B: Chemical, 2005, 108:414-417
    [35] R. Zeis, T. Siegrist, and Ch. Kloc. Single-crystal field-effect transistors based on copper phthalocyanine [J]. Appl. Phys. Lett., 2005, 86:022103
    [36] Xuanjun Yan, He Wang, and Donghang Yan. An investigation on air stability of copper phthalocyanine-based organic thin-film transistors and device encapsulation [J]. Thin Solid Films, 2006, 515:2655-2658
    [37] A. Assadi, C. Svensson, M. Willander, and O. Ingan?s. Field-effect mobility of poly(3-hexylthiophene) [J]. Appl. Phys. Lett., 1988, 53:195-197
    [38] Zhenan Bao, Ananth Dodabalapur, and Andrew J. Lovinger. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J]. Appl. Phys. Lett., 1996, 69:4108-4110
    [39] L. Torsi, M. C. Tanese, N. Cioffi, M. C. Gallazzi, L. Sabbatini, P. G. Zambonin, G. Raos, S. V. Meille, and M. M. Giangregorio. Side-Chain Role in Chemically Sensing Conducting Polymer Field-Effect Transistors [J]. J. Phys. Chem. B, 2003, 107:7589–7594
    [40] H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga and E. W. Meijer. Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers [J]. Materials Science and Engineering: R: Reports, 2001, 32:1-40
    [41] Takeshi Yasuda, Takeshi Goto, Katsuhiko Fujita, and Tetsuo Tsutsui. Ambipolarpentacene field-effect transistors with calcium source-drain electrodes [J]. Appl. Phys. Lett., 2004, 85:2098-2100
    [42] Y. S. Lee, J. H. Park, and J. S. Choi. Electrical characteristics of pentacene-based Schottky diodes [J]. Optical Materials, 2003, 21:433-437
    [43] A. Babel, J. D. Wind, S. A. Jenekhe. Ambipolar charge transport in air-stable polymer blend thin-film transistors [J]. Advanced Functional Materials, 2004, 14:891-898
    [44] J. Reynaert, D. Cheyns, D. Janssen, R. Müller, V. I. Arkhipov, J. Genoe, G. Borghs, and P. Heremans. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts [J]. J. Appl. Phys, 2005, 97:114501
    [45] Constance Rost, David J. Gundlach, Siegfried Karg, et al. Ambipolar organic field-effect transistor based on an organic heterostructure [J]. J. Appl. Phys, 2004, 95:5782-5787
    [46] Liang Wang, Daniel Fine, Taeho Jung, Debarshi Basu, Heinz von Seggern, and Ananth Dodabalapur. Pentacene field-effect transistors with sub-10-nm channel lengths [J]. Appl. Phys. Lett., 2004, 85:1772-1774
    [47] Henning Sirringhaus, Nir Tessler, and Richard H. Friend. Integrated Optoelectronic Devices Based on Conjugated Polymers [J]. Science, 1998, 280:1741-1744
    [48] K. N. Narayanan Unni, Remi de Bettignies, Sylvie Dabos-Seignon, and Jean-Michel Nunzi. A nonvolatile memory element based on an organic field-effect transistor [J]. Appl. Phys. Lett., 2004, 85:1823-1825
    [49] Zheng-Tao Zhu, Jeffrey T. Mason, Rüdiger Dieckmann, and George G. Malliaras. Humidity sensors based on pentacene thin-film transistors [J]. Appl. Phys. Lett., 2002, 81:4643-4345
    [50] A. Dodabalapur, J. Laquindanum, H. E. Katz, and Z. Bao. Complementary circuits with organic transistors [J]. Appl. Phys. Lett., 1996, 69:4227-4229
    [51] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw. High-performance all-polymer integrated circuits [J]. Appl. Phys. Lett., 2000, 77:1487-1489
    [52] T. N. Jackson, Y. Y. Lin, D. J. Gundlach, H. Klauk. Organic thin-film transistors for organic light-emitting flat-panel display backplanes [J]. Selected Topics in Quantum Electronics, IEEE, 1998, 4:100-104
    [53] Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, and Thomas N. Jackson. All-organic active matrix flexible display [J]. Appl. Phys. Lett., 2006, 88:083502
    [54] A. R. Brown, A. Pomp, C. M. Hart, D. M. de Leeuw. Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators [J]. Science, 1995, 270:972-974
    [55] Y.Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz. Organic complementary ring oscillators [J]. Appl. Phys. Lett., 1999, 74:2714-2716
    [56] M. G. Kane, J. Campi, M. S. Hammond, et al. Analog and digital circuits using organic thin-film transistors on polyester substrates [J]. Electron Device Letters, IEEE, 2000, 21:534-536
    [57] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits [J]. Science, 2000, 290:2123-2126
    [58] Eugenio Cantatore, Thomas C. T. Geuns, Gerwin H. Gelinck, et al. A 13.56-MHz RFID System Based on Organic Transponders [J]. Journal of Solid-State Circuits, IEEE, 2007, 42:84-92
    [59] Behzad Razavi. Design of Analog CMOS Integrated Circuits [M]. McGraw-Hill Companies. Inc, 2001
    [60] U. Wolf, S. Barth, and H. B?ssler. Electrode versus space-charge-limited conduction in organic light-emitting [J]. Appl. Phys. Lett., 1999, 75:2035-2037
    [61] G. Horowitz, M. E. Hajlaoui. Grain size dependent mobility in polycrystalline organic field-effect transistors [J]. Synthetic Metals, 2001, 122:185-189
    [62] J. W. Orton, and M. J. Powell. The Hall effect in polycrystalline and powdered semiconductors [J]. Rep. Prog. Phys., 1980, 43:1263-1307
    [63] C. W. Tang and S. A. Van Slyke. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51:913-915
    [64] H Bassler. Charge transport in disordered organic photoconductors : a Monte carlo simulation study [J]. Physica status solidi. B. Basic research, 1993, 175:15-56
    [65] M. C. J. M. Vissenberg, and M. Matters. Theory of the field-effect mobility in amorphous organic transistors [J]. Physical Review B, 1998, 57:12964-12967
    [66] E. Calvetti, L. Colalongo, and Zs. M. Kovacs-Vajna. Organic thin film transistors: a DC/dynamic analytical model [J]. Solid-State Electronics, 2005, 49:567–577
    [67] Ling Li, and Hans Kosina. An analytical model for organic thin film transistors [J]. Electron Devices and Solid-State Circuits, IEEE, 2005, 571-574
    [68] Luigi Colalongo, Fabio Romano, and Zsolt Miklbs Kovacs Vajna. Organic Thin Film Transistors: a DC Model for Circuit Simulation [J]. Solid-State Device Research conference, 2004, 417-420
    [69] Scott Kirkpatrick. Percolation and Conduction. [J]. Rev. Mod. Phys., 1973, 45:574-588
    [70] V. Ambegaokar, B. I. Halperin, J. S. Langer. Hopping Conductivity in Disordered Systems. [J]. Phys. Rev. B, 1971, 4:2612-2620
    [71] M. Matters , D. M. de Leeuw, M. J. C. M. Vissenberg, C. M. Hart, P. T. Herwig, T. Geuns, C. M. J. Mutsaers, and C. J. Drury. Organic field-effect transistors and all-polymer integrated circuits [J]. Optical Materials, 1999, 12:189-197
    [72] Takeo Minari, Takashi Nemoto, and Seiji Isoda. Fabrication and characterization of single-grain organic field-effect transistor of pentacene. [J].Journal of Applied Physics, 2004, 96:769-772
    [73] HSPICE Reference Manual: MOSFET Models, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700