含锆中孔分子筛的合成、表征及其硫酸促进型超强酸性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中孔分子筛具有较高的比表面积,较大的孔容以及孔分布单一等特性,因而可以允许较大的分子或基团进入其孔道内,这对于很多在微孔沸石分子筛中难以完成的大分子催化、吸附与分离等过程无疑开拓了广阔的应用前景,为重油、渣油的催化裂化等加工奠定了基础,但纯硅中孔分子筛存在严重缺陷,它的酸性较弱、催化活性低,因此合成高酸性和高催化活性的中孔分子筛是人们追求的研究目标,而合成具有超强酸性的中孔分子筛对于石油化工更具重大意义。二氧化锆是唯一同时拥有表面酸性位和碱性位以及氧化还原性能的过渡金属氧化物,并且拥有优良的离子交换能力,而P-型半导体贡献于其表面丰富的氧缺位,近年来研究发现二氧化锆经SO_4~(2-)促进可以制成固体超强酸,具有卓越的酸催化特性,从而使得二氧化锆在催化领域倍受瞩目。因此将二氧化锆制成或引入中孔分子筛子,并制成固体超强酸具有重大的理论和实际意义。
     本研究在溶胶-凝胶法和自组装理论的基础上,以Zr(NO_3)_4·3H_2O为锆源,采用浸渍晶化法、一步晶化法和二步晶化法合成了一系列中孔ZrO_2和中孔Zr-SBA-15分子筛,采用XRD、TEM、N_2吸附-脱附、TG-DTA、UV-VIS、NMR和元素分析等手段进行了表征;并将所合成的含锆材料采用硫酸浸渍法和直接加硫酸合成法制成中孔超强酸分子筛,采用正戊烷低温(35℃)异构化、吡啶红外和NH_3-TPD等表征技术研究了其酸催化性能及酸性。通过实验和研究得到以下几方面的结果:
     (1)以廉价的硝酸锆为前驱体,十六烷基三甲基溴化铵为结构模板剂,在醇相中采用两步晶化法可以合成出中孔氧化锆分子筛,实验中模板剂量、预晶化温度和时间、pH值、三乙醇胺量及晶化温度和时间等是影响合成的重要因素,一般模板剂量在n(CTAB):n(Zr)(摩尔比)为0.18-0.48、pH值为8-11、预晶化温度为90℃、预晶化时间为4h、晶化温度为120℃、晶化时间为48h时可以合成出具有较大比表面和规整度较好的中孔氧化锆分子筛,最佳条件下合成的样品经450℃焙烧后比表面积为197m~2/g;纯组分中孔氧化锆分子筛在550℃下其中孔结构能够稳定存在,说明其热稳定性较高,同时,样品也具有较好的水热稳定性;在合成过程中加入铝、锌、钇、镧、铈和钍等金属元素在不同程度上改善了中孔材料的热稳定性,650℃下中孔结构仍能够稳定存在,其中加入铝、镧和钍所合成的掺杂中孔氧化锆的热稳定性较好,尤其是铝的掺入使所合成的掺铝中孔氧化锆分子筛样品纳米化程度提高,经450℃焙烧后BET比表面积达到250m~2/g,同时也提高了热稳定性和水热稳定性;研究表明所合成的中孔氧化锆材料都存在着不同程度的高温晶化现象,即样品在高温焙烧时,随着焙烧温度和焙烧时间的变化样品的晶体结构及孔结构在不断地变化,且这种现象越严重,样品的热稳定性就越差,这主要与氧化锆晶体的稳定性相关,加入铝、镧和钍等元素提高了氧化锆四方相的热稳定性,从而也就提高了所合成中孔氧化锆材料的稳定性。但总体来说氧化锆作为自组装体骨架组分的热稳定性较差,这是其晶体的性能所决定的。
     (2)采用浸渍晶化法,将焙烧后的SBA-15分子筛用硝酸锆的醇溶液浸渍后,在乙醇蒸汽下进行晶化,合成出了一系列中孔Zr-SBA-15的材料,实验结果表明:当Zr/Si小于2.1时都可以合成出具有中孔特征的Zr-SBA-15分子筛,元素分析结果显示当Zr/Si=1.34时,所合成的Zr-SBA-15中ZrO_2的含量可达50.54%,600℃焙烧后比表面积仍高达356m~2/g,优于传统浸渍法制备的样品;合成中加入适量的CTAB或三乙醇胺可以提高Zr-SBA-15的有序度;TEM及UV-VIS分析结果表明采用本浸渍晶化法所合成的Zr-SBA-15中Zr组分主要存在于SBA-15的孔道内,呈高度分散状态,且有相当部分进入了骨架。
     (3)在水热体系中,以Zr(NO_3)_4·3H_2O为锆源,通过一步晶化法可以直接合成出了Zr-MCM-41和Zr-SBA-15中孔分子筛:①合成Zr-MCM-41的Zr/Si的摩尔比最大为0.25。随着Zr/Si摩尔比的增加,2θ=2°附近的100晶面的衍射峰强度逐渐降低。500℃焙烧6h后的样品在100晶面和110晶面的衍射峰强度普遍比焙烧前的增强,焙烧后的样品在2θ=20-70°范围内的XRD图上无ZrO_2的特征峰出现,说明样品中Zr化合物为高分散状态;②合成Zr-SBA-15的Zr/Si摩尔比最大为2.3。随硝酸锆加入量的增加,中孔特征峰强度逐渐下降,BET表面积也随之下降。在Zr/Si=1.5之前,样品都具有高的比表面积(600℃焙烧后BET比表面积大于398m~2/g),孔径均保持在7.40nm左右,属于中孔材料的范围,高分辨电镜图显示这种新材料具有较厚的孔壁。从元素分析的测试结果得出,锆的实际载量不是很高,虽然增加了锆的加入量,但实际上ZrO_2的含量都小于30%,没有达到理论上ZrO_2形成超强酸要求的含量(大于50%)。
     (4)在醇水两种体系下,以Zr(NO_3)_4·3H_2O为锆源,采用两步晶化法通过中性模板组装路线成功地合成出了孔道规整、锆含量高的中孔Zr-SBA-15:①在盐酸体系下,可合成Zr-SBA-15的最大Zr/Si摩尔比为2.3。虽然随硝酸锆加入量的增加,SBA-15的特征峰强度、BET比表面积均呈下降趋势,但是,Zr-SBA-15样品的孔径均保持在5-6.4nm,仍属于中孔材料的范围。同时,从高分辨电镜图可看出这种新材料具有较厚的孔壁,预示其具有高的热稳定性和水热稳定性。元素分析的测试结果显示,锆的实际载入量很高,当Zr/Si摩尔比为0.7时,样品中ZrO_2含量已高达54.18%,锆有效上载率达91.9%,600℃焙烧后BET表面积可达431m~2/g;当Zr/Si摩尔比为1.3时,ZrO_2含量为63.28%,锆有效上载率为88.9%,600℃焙烧后BET表面积仍可达226.8m~2/g;这一结果优于一步晶化法和浸渍晶化法所合成样品的性能。TEM、NMR及UV-VIS结果表明锆组分在样品中高度分散,且大部分进入了骨架,Zr/Si摩尔比超过0.7后有聚集态ZrO_2四方相存在。XRD及孔分布结果表明所合成的Zr-SBA-15样品具有双中孔特征,孔径分别为3.5nm和5-6.4nm。②在加硫酸体系下,可合成Zr-SBA-15最大Zr/Si摩尔比为3.0。虽然随硝酸锆加入量的增加,所合成样品的各种特性的变化规律与在盐酸体系下的大致相同,但同一锆硅比的样品的比表面积一般比在盐酸体系下所合成样品的都大,尤其是Zr/Si摩尔比大于0.7以后更为明显,直到Zr/Si摩尔比高达3.0时,600℃焙烧后BET比表面积仍可达184 m~2/g,但孔径降为3.74nm,不过仍属于中孔材料的范围;在同一锆硅比时不同硫酸盐酸比下所合成的Zr-SBA-15样品的比表面积不尽相同,以单一硫酸体系下所合成样品的表面积最大,但孔径变化不大,说明加入硫酸后所合成的Zr-SBA-15材料的热稳定性更好。TEM、NMR及UV-VIS结果表明锆组分在样品中高度分散,且大部分进入了骨架,即使Zr/Si摩尔比超过0.7也没有明显的聚集态ZrO_2四方相存在,证明了硫酸对锆组分有很好的稳定作用。与盐酸体系相似,XRD及孔分布结果表明所合成的Zr-SBA-15样品具有双中孔特征,孔径分别为3.5nm和5-6nm。更重要得是在加硫酸体系下所合成的Zr-SBA-15中孔分子筛可直接经焙烧后制成SO_4~(2-)/Zr-SBA-15固体超强酸,省去了二次浸渍硫酸和干燥过程,为工业应用奠定了基础。在两步晶化合成Zr-SBA-15过程中,不论在盐酸体系还是加硫酸体系,预晶化过程对后续形成中孔材料的自组装过程影响很大。
     (5)实验中所制备的中孔SO_4~(2-)/ZrO_2和SO_4~(2-)/Zr-SBA-15超强酸分子筛在正戊烷低温(35℃)异构化反应中都表现出了高的催化活性,但不同方法和条件下制备的中孔超强酸分子筛催化剂的性能有所不同:①中孔SO_4~(2-)/ZrO_2超强酸分子筛催化剂催化正戊烷异构化反应3 h正戊烷的摩尔转化率为47.3%,稍低于沉淀法制备的催化剂(52.2%),铝或锌掺杂后催化活性略有提高(55.3%);NH_3-TPD分析结果表明所制备的催化剂存在强酸位。②由两步晶化法在盐酸体系下合成的Zr-SBA-15制备的SO_4~(2-)/Zr-SBA-15超强酸催化剂的正戊异构化催化活性受脱模板方法、浸渍硫酸的浓度、焙烧温度、活化温度及样品Zr/Si摩尔比的影响,Zr/Si摩尔比为1.1-1.3的Zr-SBA-15样品不经预脱除模板剂处理直接浸渍硫酸,当硫酸浸渍液浓度为1.0M,焙烧温度为600℃,活化预处理温度在300℃时,SO_4~(2-)/Zr-SBA-15催化剂的正戊烷异构化催化活性最高,3h正戊烷的摩尔转化率为52.9%~57.6%,此时催化剂样品的S/Zr摩尔比达0.28-0.35,远大于沉淀法制备的超强酸催化剂样品中的硫含量(S/Zr摩尔比约0.061)。③由两步晶化法在加硫酸体系下合成的Zr-SBA-15制备的SO_4~(2-)/Zr-SBA-15超强酸催化剂在正戊异构化反应中也表现出了好的催化活性,其催化活性受合成时硫酸的加入量、焙烧温度、活化温度及样品Zr/Si摩尔比的影响,Zr/Si摩尔比为1.5-2.5的Zr-SBA-15样品经600℃焙烧,活化预处理温度在300℃时,SO_4~(2-)/Zr-SBA-15催化剂的正戊烷异构化催化活性最好,3h正戊烷的摩尔转化率为30.8%~50.6%,同一Zr/Si摩尔比时催化剂的催化活性受合成时硫酸与盐酸的摩尔比影响较大,一般在Zr/Si摩尔比大于1.5后硫酸的量较大时合成样品的催化活性较高,此时催化剂样品的S/Zr摩尔比大于0.06。④由浸渍晶化法合成的Zr-SBA-15制备的SO_4~(2-)/Zr-SBA-15超强酸催化剂在正戊异构化反应中的催化活性也很好,其催化活性受浸酸浓度、焙烧温度、活化温度及样品Zr/Si摩尔比的影响,Zr/Si摩尔比为1.96-2.15的Zr-SBA-15样品当硫酸浸渍液浓度为1.0M,焙烧温度为600℃,活化预处理温度在300℃时,SO_4~(2-)/Zr-SBA-15催化剂的正戊烷异构化催化活性最好,3h正戊烷的摩尔转化率为40.0%~46.6%。⑤吡啶-红外光谱分析结果表明SO_4~(2-)/Zr-SBA-15样品同时具有L酸和B酸中心,而且L酸的量大于B酸的量。⑥SO_4~(2-)/Zr-SBA-15超强酸分子筛的XPS分析结果表明,能与SO_4~(2-)牢固结合形成超强酸位的主要是样品表面的锆组分,与本体中的锆和硅关系不大;异构化反应过程中存在积碳现象;样品的Zr3d、S2p、O1s和Si2pXPS图显示浸渍硫酸后焙烧前后的样品中Zr、S、O和Si的结合能都增大了,这说明样品焙烧过程中由于各组分间的强相互作用影响了其结合能。
Mesoporous molecular sieves can be able to make huge moleculers or groups enter into their pores because of their high specific surface area, large pore volume and pore diameter as well as narrow pore size distribution. So they can be widely used in the area which microporous molecular sieves are impracticable to perform such as the process of catalysis, adsorption or separation which require macromolecules, especially for heavy oil or residual oil catalytic cracking process. But pure silicon mesoporous molecular sieves lack in acidity and stability. So synthesis of mesoporous molecular sieves with strong acidity and high stability is the key aim which researchers go in for. And synthesis of mesopocous molecular sieves with super acidity has more important value for petrochemical processing.
     Zirconia is the only transition metal oxide with acid sites and alkali sites as well as oxidoreduction ability and good ion-exchange capacity. And as a p-type semiconductor, it rich in surface oxygen no-bit. In recent years, zirconia can form a solid super acid after sulfated, which have excellent acid catalysis characterization. Thereby zircenia is ocused attention upon in catalysis field. So synthesis of mesoporous zirconia or zirconium-doping meroporous molecular sieves with super-acidity has great meaning on theory and practical.
     In this study basing on sol-gel method and self-assembly theory, using Zr(NO_3)_4·3H_2O as zirconium source, a series of mesostructure zirconia and Zr-SBA-15 mesoporous molecular sieves with high zirconium loading were synthesized with impregnating crystallization method, one-step crystallization method or two-step crystallization method, and characterized with XRD, TEM, N_2 adsorption-desorption, TG-DTA, UV-vis, NMR and element analysis et al. The as-synthesized samples were prepared as super acid molecular sieves after sulfated with impregnating in sulfuric acid solution or adding sulfuric acid during the synthesis of samples. And the acid catalysis capacity and acidity of as-synthesized super acid molecular sieves were characterized with isomerization of n-pentane at low temperature (35℃), pyridine-IR and NH_3-TPD et al. The results obtained from experiments and studies were given in following.
     (1) Using cheaper Zr(NO_3)_4·3H_2O as precursor, cetyl trimethyl ammonium bromide (CTAB) as structure template agent, mesoporous zirconia molecular sieves were synthesized with two-step crystallization method in alcohol phase. The main factors were the dosage of template agent, pre-crystallization temperature and time, pH value, dosage of complexing agent triethanolamine, and crystallization temperature and time. Well ordered misoporous zirconia with high surface area had been synthesized at n_(CTAB)/n_(Zr) molar ratio 0.18-0.48, pH value 8-11, pre-crystallization temperature 90℃and time 4h, crystallization temperature 120℃and time 48h. BET specific surface area of the sample synthesized at optimum condition was 197m~2/g after calcinated at 450℃, and mesostructure of pure mesoporous zirconia was still existed after calcinated at 550℃that shows the as-synthesized samples had good thermal stabilities as well as good hydrothermal stabilities. The thermal stabilities of samples were improved at various degrees after doped with aluminum, zinc, yttrium, lanthanum, cerium or thorium. Mesostructure of samples doped with Al, La, TR could exist after calcinated at 650℃. BET surface area of sample doped with Al was 251m~2/g after calcinated at 450℃because of samples nanolization. At the same time, thermal stability and hydrothermal stability of samples doped with Al were improved. The results show that samples were crystallized continuously during calcinations process. This might be the key factor affecting the stabilities of samples. The stability of tetragonal phase of zirconia doped with Al was improved, and so the stability of mesostructrure zirconia was advanced too. But taking one with another, the stability of zirconia as a structural component of self-assembly material was rather poor, which was determinate by its crystal performance.
     (2) A series of Zr-SBA-15 mesoporous molecular were synthesized with impregnation-crystallization method by impregnating calcinated SBA-15 in zirconium nitrate alcoholic solution and then crystallizing at ethanol vapour. The results show: mesostructure Zr-SBA-15 can be synthesized when the Zr/Si molar ratio was less than 2.1. The element analysis results show: the zirconia content in Zr-SBA-15 could be 50.54% as Zr/Si molar ratio was 1.34, and the BET specific surface area was still as high as 356m~2/g after calcinated at 600℃, which was advantage over traditional impregnating method. The degree of order could be improved by adding an amount of CTAB or triethanolamine in during synthesis process. TEM and UV-vis analysis results show: zirconium component in Zr-SBA-15 was mainly in the channel of SBA-15 and at high dispersed condition, and was mostly incorporated into the framework.
     (3) At hydrothermal system using Zr(NO_3)_4·3H_2O as zirconium source, Zr-MCM-41 and Zr-SBA-15 mesoporous molecular sieves had been synthesized with one-step crystallization method. The results show:①Zr/Si molar ratio should been less than 0.25 for synthesis of Zr-MCM-41. The peak indexed to 100 in XRD pattern was decreased with Zr/Si molar ratio increasing, and got higher after calcinated at 600℃for 6h comparing with uncalcinated one. No characteristic peaks belonging to Zr compounds at 20=20-70 could be observed. This proved that Zr is fully dispersed in MCM-41 structure.②The maximum Zr/Si molar ratio was 2.3 for synthesis of Zr-SBA-15. The characteristic peaks belonging to mesostructure were gradually fall-off in intensity with increasing of Zr/Si molars ratio, and BET surface area decreased too. When Zr/Si molar ratio was less than 1.5, samples were with high surface area (BET specific surface area was over 398m~2/g after calcinated at 600℃) and pore diameter about 7.4nm, which were belong to mesoporous material. TEM images showed that the new materials possessed thick hole wall. But element analysis results showed that zirconia loading was not so high with Zr/Si molar ratio increasing, and less than 30% which came short of zirconia content in theory for forming super acid.
     (4) Using Zr(NO_3)_4·3H_2O as zirconium source, well-ordered Zr-SBA-15 mesoporous molecular sieves with high zirconium loading were synthesized successfully with two-step crystallization method and neutral template self-assembly route. The results show:①The maximum Zr/Si molar ratio was 2.3 for synthesis Zr-SBA-15 at only hydrochloric acid system. The intensity of characteristic peak belonging to SBA-15 was decreasing with Zr/Si molar ratio increasing, and BET specific surface area decreasing too. But pore size of samples were 5-6.4nm belonging mesopore. TEM image showed that the new materials possessed thick hole wall which indicated they had good thermal stabilities and hydrothermal stabilities. Element analysis results showed the samples with high zirconium loading. Zircomia content in sample was as high as 54.18% at Zr/Si molar ratio 0.7, and virtual rating of zirconium loading was 91.9%, and BET area was 431m~2/g after calcinated at 600℃. Zirconia content in sample was 63.28% when Zr/Si molar ratio was 1.3, and virtual rating of zirconium loading was still 88.9%, and BET surface area was 226.8m~2/g after calcinated at 600℃. These results were better than that of as-synthesized samples prepared with on-step crystallization method or impregnation-crystallization method. TEM, NMR and UV-vis results showed that zirconium was fully dispersed in SBA-15 structure when Zr/Si molar ratio less than 0.7. After that, the single particles of tetragonal ZrO_2 phase appeared in the samples. XRD and pore size distribution indicated that as-synthesized Zr-SBA-15 possessed two types mesopore, one 3.5nm and another 5-6.4nm.②The maximum Zr/Si molar ratio for synthesis of Zr-SBA-15 was 3.0 at adding sulfuric acid system. The variation regulars of characteristics of samples were similar to that of only hydrochloric acid system when added sulfuric acid in during synthesis process. At the same Zr/Si molar ratio, the BET surface area of the sample was bigger than that of only hydrochloric acid system, especially Zr/Si molar ratio at 3.0, and pore size down to 3.74nm which still belong to mesostructure. At the same Zr/Si molar ratio, the BET surface areas of samples were different with sulfuric acid to hydrochloric acid molar ratio changing. The samples synthesized at only sulfuric acid system had the biggest surface area. But pore sizes of samples changed little with sulfuric acid to hydrochloric acid molar ratio changing. This proved the thermal stability of sample was improved after adding sulfuric acid in during synthesis process. TEM, NMR and UV-vis results indicated that zirconium was fully dispersed in sample, and mostly incorporated into the framework. Even Zr/Si molar ratio over 0.7 no bulk particles of ZrO_2 appeared that proved sulfuric acid had good stabilization to zirconium compounds. Being similar to only hydrochloric acid system, XRD and pore size distribution indicate that the as-synthesized Zr-SBA-15 had two types mesopore, one 3.5nm and the other one 5-6nm. More important, Zr-SBA-15 synthesized at adding sulfuric acid system could form SO_4~(2-)/Zr-SBA-15 super acid after cacinated directly without impregating with sulfuric acid solution and drying procedure, which established bases for industrial application. During synthesis of Zr-SBA-15 process with two-step crystallization method, pre-crystallization process had great influence up on the self-assembly progress of formation of mesoporous material.
     (5) As-synthesized mesostructure SO_4~(2-)/ZrO_2 and SO_4~(2-)/Zr-SBA-15 super acid molecular sieves had high catalytic activities on isomerization of n-peutare at low temperature (35℃). The catalytic activities were changed with preparing methods or conditions.①Using mesostructure SO_4~(2-)/ZrO_2 as a catalyst, conversion of n-pentane was 47.3% after reacting for 3h which was less than that (50.2%) of bulk SO_4~(2-)/ZrO_2, and increased a little after doped with Al or Zn. NH_3-TPD results showed mesoporous SO_4~(2-)/ZrO_2 had strong acid site.②The catalytic activities of SO_4~(2-)/Zr-SBA-15 prepared in only hydrochloric acid system on isomerization of n-pentane were influenced by removing method of template agent, concentration of impregnating sulfuric acid solution, calcination temperature, activation temperature and Zr/Si molar ratio. When Zr/Si molar ratio was 1.1-1.3, Zr-SBA-15 impregnated with 1M sulfuric acid solution without pre-removing of template agent, calcination temperature was 600℃, and activation temperature was 300℃, the catalytic activity of SO_4~(2-)/Zr-SBA-15 on n-pentane reaction was the highest, conversion of n-pentane were 52.9%-57.6%, and S/Si molar ratio of catalysis were 0.28-0.35 which was much higher than that (about 0.061) of bulk SO_4~(2-)/ZrO_2 prepared with precipitation method.③The catalytic activities of SO_4~(2-)/Zr-SBA-15 prepared in adding sulfuric acid system on isomerization of n-pentane were higher too, and influenced by dosage of sulfuric acid during synthesis process, calcinations temperature, activation temperature and Zr/Si molar ratio of samples. When Zr/Si molar ratio was 1.5-2.5, calcinations temperature was 600℃, and activation temperature was 300℃, the conversions of n-pentane were 30.8%-50.6%. At the same Zr/Si molar ratio, the catalytic activities were influenced greatly by sulfuric acid to hydrochloric acid molar ratio, and raised with increasing of dosage of sulfuric acid after Zr/Si molar ratio over 1.5. And S/Zr molar ratio were more than 0.06.④The catalytic activities of SO_4~(2-)/Zr-SBA-15 prepared with impregnating crystallization method on isomerization of n-pentane were good too, and influenced by concentration of impregnating sulfuric acid, calcinations temperature, activation temperature, and Zr/Si molar ratio. When Zr/Si molar ratio was 1.96-2.15, Zr-SBA-15 impregnated with 1M sulfuric acid solution, calcination temperature was 600℃and activation temperature was 300℃, the conversion of n-pentane were 40.0%-46.6% after reacting 3h.⑤Pyridine-IR analysis results showed that SO_4~(2-)/Zr-SBA-15 possessed L-acid and B-acid at the same time, and the quantity of L-acid was more than that of B-acid.⑥XPS analysis results show that SO_4~(2-) was mostly compaginate with zirconium components on the surface of Zr-SBA-15 to form strong acid sites, and was less concern with zirconium and silicon in body. Carbon deposition formed during isomerization reaction. XPS curves of Zr3d, S2p, O1s and Si2p of samples show that the binding energies of Zr, S, O and Si were increased after calcinated, which indicated the strong interaction of components in samples influenced the binding energies.
引文
[1] Davis M. E., Lobo R. F. Zeoliteand Molecular Sieve Synthesis. Chem. Mater. 1992, 4, 756-768.
    [2] Ozin G. A. Nanochemistry: Synthesis in Diminishing Dimensions. Adv. Mater. 1992, 10, 612-649.
    [3] Smith J. V. Topochemistry of Zeolite and Related Materials. 1.Topology and Geometry. Chem. Rev. 1988, 88, 149-182.
    [4] Chen N. Y., Garwood W. E., Dwyer F. G. Shape SelectiveCatalysis in Industrial Applications, Marcel Dekker: New York, 1989.
    [5] Corma A., Martinez A. Zeolites and Zeotypes as Catalysts. Adv.Mater. 1995, 137-144.
    [6] Armor J. N. Environmental Catalysis. Appl. Catal. 1992, B1,221-256.
    [7] Tabata T., Kokisu M., Okada O. Study on Patent Literature of Catalysts for a New NOx Removal Process. Catal. Today 1994,22, 147-169.
    [8] Mann S. Molecular Tectonics in Biomineralization and Biomimetic Materials Chemistry. Nature 1993, 365, 499-505.
    [9] Yanagisawa Y., Schimizu T., Kiroda K. et al. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and their Conversion to Mesoporous Materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992.
    [10] Beck J. S., Vartuli C., Roth W. J. et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
    [11] Kresge C. T., Leonowicz M. E., Roth W. J. et al. Ordered Mesoporous Molecular Sieves Synthesisd by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710-712.
    [12] McBain J. W. The Sorption of Gases and Vapors by Solids, Routledge and Sons: London, 1932.
    [13] Mitchell P. C. H. Zeolite-Encapsulated Metal Complexes: Biomimetic Catalysts. Chem. Ind. 1991,308-310.
    [14] Wilson S. T., Lok B. M., Messina C. A. et al. Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids. J. Am. Chem. Soc. 1982,104,1146-1147.
    [15] Davis M. E., Saldarriaga C, Montes C. et al. A Molecular Sieve with Eighteen-Membered Rings. Nature 1988, 331, 698-702.
    [16] Estermann M., Mccusker L. B., Baerlocher Ch. et al. A Synthetic Gallophosphate Molecular Sieves with a 20-Tetrahedral-Atom Pore Opening. Nature 1991, 352, 320-323.
    [17] Jones R. H., Thomas J. M., Chen J., Xu R., Huo Q., Li S., Ma Z., Chippindale A. M. Structure of an Unusual Aluminium Phosphate ([ Al_5P_6O_(24)H]_2~-2[N(C_2H_5)3H]~+ 2H_2O) JDF-20 with Large Elliptical Apertures. J. Solid State Chem. 1993, 102,204-208.
    [18] Tanev P. T., Pinnavaia T. J., A neutral templating route to mesoporous molecular sieves,Science, 1995,267: 865-867.
    [19] Tanev P. T., Chibwe M., Pinnavaia T. J. Titanium-containing mesoporous molecular sievesfor catalytic oxidation of aromatic compounds, Nature,1994, 368: 321-323.
    [20] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of mesoporous molecular sieves bynonionic polyethylene oxide surfactants, Science, 1995, 269: 1242-1244.
    [21] Attard G. S., Glyde J. C., Goltner C. G. Liquid-crystalline phases as templates for thesynthesis of mesoporous silica, Nature, 1995, 378: 366-368.
    [22] Huo Q. S., Margolese D. I., Ciesla U. et al. Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368: 317-321.
    [23] Huo Q. S., Margolese D. I., Ciesla U. et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays, Chemistry of Materials, 1994, 6(8):1176-1191.
    [24] Huo Q. S., Leon R., Petroff P. M., Stucky G. D., Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array, Science, 1995, 268:1324-1327.
    [25] Monnier A, Schuth F, Huo Q et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 1993, 261: 1299-1303.
    [26] Whittingham M S, Hydrothermal synthesis of transition metal oxides under mild condi- tions,Current Opinion in Solids State & Materials Sci, 1996, 1(2): 227-232.
    [27] Ulagapan N., Neeraj, Raju B. V. N. et al. Prepartion of lamellar and hexagonal forms of mesoporous silica and zirconia by the neutral amine route: lamellar-hexagonal transformation in the sol-gel state. Chem. Comm. 1996.2243-2244.
    [28] Zhang Z. R., Suo J. S., Zhang X. M. et al. New vistas for silica-based mesoporous molecular sieves, Progress in Chemistry, 1999, 11(1): 11-20.
    [29] Oliver S, Kuperman A, Coombs N et al. Lamellar aluminophosphates with surface patterns that mimic diaom and radiolarian microskeletons. Nature, 1995, 378:47
    [30] Ogawa M. Formation of novel oriented transparant films of layered silica-surfactant nanocomposites. J. Am. Chem. Soc, 1994, 116: 7941
    [31] Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science, 1994, 264: 1757
    [32] Edler K J, White J W. Room-temperature formation of molecular sieve MCM-41. J Chem Soc,Chem Commun, 1995:155—156
    [33] Chatterjee M, Iwasaki T, Hayashi H et al. Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41. Catal Lett, 1998, 52: 21—23
    [34] Wu C-G, Bein T. Microwave synthesis of molecular sieve MCM-41. J Chem Soc, Chem Commun, 1996: 925-926
    [35] Lin W, Chen J, Sun Y et al. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel. J Chem Soc, Chem Commun, 1995,2367—2368
    [36] Fyfe C A, Fu G. Structure organization of silicate polyanions with surfactants: a new approach to the syntheses, structure transformations, and formation mechaniams of mesostructural materials. J Am Chem Soc, 1995, 117: 9709-9714
    [37] Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformation process. Chem Mater, 1997, 9:2035-2038
    [38] Yang P, Zhao D, Margolese D I et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396: 152—155
    [39] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4- clusters. Nature, 1999, 397:681-684
    [40] 戴劲草,萧子敬,叶玲等.粘土的层间交连和多孔材料的形成条件.无机材料学报,1999,14(1):89~93
    [41] 何宏平,谢先德,郭九皋.离子交换蒙脱石的热稳定性研究.矿物岩石,2000,20(1):1~3
    [42] 吴平宵,张慧芬,郭九皋等.柱撑蒙脱石的微结构变化研究。无机材料学报,1999,14(1):95~100
    [43] 朱金华,沈伟等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究.化学学报,2003,61(2):202~207
    [44] 吴庆生,郑能武.分子自组装与纳米材料的制备。化学世界,1999,5:232~235
    [45] 何静,冯桃,段雪.原位自组装形成二氧化硅/十六烷基三甲基溴化铵纳米网络粒子.高分子学报,2001,5:639~644
    [46] Vartuli J C, Schmitt K D, Kresge C T et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem Mater, 1994, 6:2317~2326
    [47] Ryoo R, Kim J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. J Chem Soc, Chem Commun 1995, 711~712
    [48] Chen X, Ding G, Chen H et al. Effect of synthesis temperature on structural transformations of mesoporous molecular sieves M41S materials-characterization of different structural materials. Chem J of Chinese Univ, 1997, 18(4): 519~524
    [49] Chen X, Ding G, Chen H et al. Effect of crystallization temperature on structural transformations of mesoporous molecular sieves M41S materials. Chem J of Chinese Univ, 1997, 18(2): 186~189
    [50] Ryoo R, Jun S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process. J Phys Chem B, 1997, 101: 317~320
    [51] Schmidt R, Akporiaye D, St cker M et al. Synthesis of Al-containing MCM-41 materials: template interaction and removal. Stud Surf Sci Catal, 1994, 84: 61~68
    [52] Reddy K M, Song C. Effect of Al sources on the synthesis and acidic characteristics of mesoporous aluminosilicates of MCM-41 type. Stud SurfSci Catal, 1998, 117: 291~299
    [53] Vartuli J C, Schmitt K D, Kresge C T et al. Development of a formation mechanism for M41S materials. Stud. Surf. Sci. Catal. 1994: 84: 53~60
    [54] Chen C Y, Burkett S L, Li H X, Davis M. E. Studies on mesoporous materials. Ⅱ, Synthesis mechanism of MCM-41. Microporous Mater. 1993, 2: 27
    [55] Firouzi A, Kumar D, Bull L M et al. Cooperative organization of inorganic- surfactant and biomimetic assemblies. Science 1995, 267: 1138.
    [56] Firouzi A, Atef F, Oertli A G et al. Alkaline lyotropic silicate-surfactant liquid crystals. J Am chem Soc, 1997, 119: 3596~3610
    [57] Chen X Y, Ding G Z, Chen H Y et al. Formation at low surfactant concentrations and characterization of mesoporous MCM-41. Science in China, Series B, 1997, 40(3): 278~285
    [58] Chen F X, Yah X, Li Q. Effect of hydrothermal conditions on the synthesis of siliceous MCM-48 in mixed cationic-anionic surfactants systems. Stud Surf Sci Catal, 1998, 117: 273~280
    [59] Knowles J A, Hudson M J. Preparation and characterization of mesoporous, hign surface area zirconium(Ⅳ) oxides[J]. J Chem S Chem Commun, 1995: 2083-2084
    [60] Hudson M J, Knoeles J A. Preparation and characterization of mesoporous, hign-surface-area zirconium(Ⅳ) oxides[J]. Joumal of Materials Chemistry, 1996, 6(1): 89-95
    [61] Pacheco G, Zhao E, Garcia A et al. Mesoporous zirconia obtained with anionic templates[J]. Chem Commun, 1997:491-492
    [62] Pacheco G, Zhao E, Garcia A et al. Syntheses of mesoporous zirconia with anionic surfactants[J]. J Mater Chem, 1998, 8(1): 219-226
    [63] Stucky G D, Huo Q, Firouzi A et al. Directed synthesis of organic/inorganic composites. Stud SurfSci Catal, 1996, 105: 3~28
    [64] Zhao X S, Lu G Q, Millar G J. Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res, 1996, 35:2075~2090
    [65] Steel A, Carr S W, Anderson M W. 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates. J Chem Soc, Chem Commun, 1994:1571~1572
    [66] Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 1996, 271:1267~1269
    [67] Tanev P T, Liang Y, Pinnavaia T J. Assembly of mesoporous lamellar silicas with hierarchical patticle architectures. J Am Chem Soc, 1997, 119: 8616~8624
    [68] Sims S D, Walsh D, Mann S. Morphosynthesis of macroporous silica frameworks in bicontinuous microemulsions. Adv Mater, 1998, 10(2): 151~154
    [69] McGrath K M, Dabbs D M, Yao N et al. Formation of a silicate L3 phase with continuously adjustable pore sizes. Science, 1997, 277: 552~556
    [70] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature, 1997, 389: 948~951
    [71] Schacht S, Huo Q, Voigt-Martin I G et al. Oil-water interface templating of mesoporous macroscale structures. Science, 1996, 273: 768~771
    [72] Ciesla U., Demuth D., Leon R. et al. Surfactant Controlled Preparation of Mesostructured Transition-metal Oxide Compounds. Chem. Common. 1994, 1387.
    [73] 王晓钟,窦涛,萧墉壮.中孔分子筛晶化过程的初步研究.太原理工大学学报,1998,29(1):24
    [74] 王晓钟,窦涛,萧墉壮.晶化温度即pH值调节对中孔MCM-41分子筛合成的影响.太原理工大学学报,1998,29(2):145
    [75] 董晋湘,董平,刘光焕等.阳离子(Li~+,Na~+,K~+)对MCM-41中孔分子筛合成及性质的影响.石油学报(石油加工),1997,13(2):68
    [76] 刘光焕,周峰,徐红等.阴离子(F~-,Cl~-,Br~-)对MCM-41中孔分子筛合成及性质的影响.燃料化学学报,1997,25(1):539
    [77] 窦涛,冯芳霞,萧墉壮.中孔分子筛MCM-41合成因素的研究Ⅰ.阳离子Na~+、K~+的影响.燃料化学学报,1997,26(2):175
    [78] 窦涛,冯芳霞,萧墉壮.中孔分子筛MCM-41合成因素的研究Ⅱ.表面活性剂的影响.燃料化学学报,1998,26(3):243
    [79] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 1996, 8: 1147
    [80] 高雄厚,毛学文,唐荣荣等.晶化条件对MCM-41孔壁厚度与性能的影响.石油学报(石油加工),1998,14(3):17
    [81] Hitz S, Kogelbauer A, Lindolar B et al. influence of pH adjustment on structure, stability and catalytic activity of A1-MCM-41 mesoporous molecular sieves. Stud. Surf. Sci. Catal., 1998, 117: 519
    [82] Rathousky J. Parameters on the synthesis of siliceous MCM-41 from collidat silicas. Coll. Czehoslovas Chem. Commum., 1998, 63(2): 271
    [83] Lanrence M. Surfactant systems: their uses in drug delivery. J. Chem. Soc. Rev., 1994, 23: 417
    [84] Luca V, Maclachlar D J, Morgan K. Synthesis and characterization of porous vandium silicates in organic medium. Chem. Mater., 1997, 9: 2720
    [85] Aptel G, Petrakis D, Jones D et al. Mesoporous Al-Fe-P-O solids prepared in non-aqueous medium: structure and surface acid catalytic behavior. Stud. Surf. Sci Catal., 1998, 118: 931
    [86] Gao Q, Chen J, Xu R et al. Synthesis and characterization of a family of amine-intercatalated lamellar aluminophosphates from alcoholic system. Chem. Mater., 1997, 9: 457
    [87] 李福祥,吴岚,秦梦庚等.中孔分子筛MCM-41在微孔沸石ZSM-5上的附晶生长的研究.燃料化学学报,1998,26(2):102
    [88] Tanev P T, Pinnavaia T J. Mesoporous molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem. Mater., 1996, 8: 2068
    [89] Antonelli D M, Ying J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel Ligand-assisted templating mechanism. Angew. Chem. Int Ed. Engl., 1996, 35(4): 426
    [90] Zhao D, Huo Q, Feng J et al. Tri-, tetra-, and octablock copolymer and nonionic surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc, 1998, 120: 6024~6036
    [91] Zhao D, Feng J, Huo Q et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548~552
    [92] Templin M, Franck A, Chesne A D et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science, 1997, 278: 1795~1798
    [93] Goltner C G, Henke S, Weissenberger M C et al. Mesoporous silica from lyotropic liquid crystal polymer templates. Angew Chem Int Ed Engl, 1998, 37(5): 613~616
    [94] Kim S S, Zhang W, Pinnavaia T J. Ultrastable mesostructured silica vesicles. Science, 1998, 282: 1302~1305
    [95] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281: 538~540
    [96] Davis S A, Burkett S L, Mendelson N H. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385: 420~423
    [97] Chen F X, Huang L, Li Q. Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates. Chem Mater, 1997, 9(12): 2685~2686
    [98] Chen F X, Song F, Li Q. Mixed cationic-anionic templating route to Al-MCM-48. Microporous and Mesoporous Mater, 1999, 29: 305
    [99] 陈逢喜,陈海鹰,颜学武,等.混合阴阳离子表面活性剂为模板剂合成MCM-48型中孔分子筛.中国专利,CN1188689A(1998)
    [100] Ryoo R, Kim J M, Ko C H et al. Disordered molecular sieve with branched mesoporous channel network. J Phys Chem, 1996, 100: 17718~17721
    [101] Corma A, Fornes V, Navarro M T et al. Acidity and stability of MCM-41 crystalline aluminosilicates. J Catal, 1994, 148: 569~574
    [102] Chen X Y, Huang L M, Ding G Z et al. Characterization and catalytic performance of mesoporous molecular sieves Al-MCM-41 materials. Catal Lett, 1997, 44: 123~128
    [103] Tuel A, Gontier S. Synthesis and characterization of trivalent metal containing mesoporous silicas obtained by a neutral templating route. Chem Mater, 1996, 8: 114~122
    [104] Romero A A, Alba M D, Klinowski J. Aluminosilicate mesoporous molecular sieve MCM-48. J Phys Chem B, 1998, 102: 123~128
    [105] Eswaramoorthy M N, Rao C N R. High catalytic efficiency of transition metal complexes encapsulated in a cubic mesoporous phase. J Chem Soc, Chem Commun, 1998, 615~616
    [106] Corma A, Navarro M T, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc, Chem Commun, 1994, 147~148
    [107] Zhang W-Z, Pinnavaia T J. Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves. Catal Lett, 1996, 38:261~265
    [108] Yuan Z Y, Liu S Q, Chen T H et al. Synthesis of iron-containing MCM-41. J Chem Soc, Chem Commun, 1995, 973~974
    [109] Kosslick H, Lischke G, Landmesser H et al. Acidity and catalytic behavior of substituted MCM-48. J Catal, 1998, 176:102~114
    [110] Reddy K M, Moudrakovski I, Sayari A. Synthesis of mesoporous vanadium silicate molecular sieves. J Chem Soc, Chem Commun, 1994, 1059~1060
    [111] Tuel A, Gontier S, Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase. J Chem Soc, Chem Commun, 1996, 651~652
    [112] Zhao D, Goldfarb D. Synthesis of mesoporous manganosilicates Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L at low surfactant/Si ratio. Stud Surf Sci Catal, 1995, 97: 181~188
    [113] Das T K, Chaudhari K, Chandwadkar A J et al. Synthesis and catalytic properties of mesoporous tin silicate molecular sieves. J Chem Soc, Chem Commun, 1995, 2495~2496
    [114] Ulagappan N, Rao C N R. Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41. J Chem Soc, Chem Commun, 1996, 1047~1048
    [115] Ziolek M, Nowak I. Synthesis and characterization of niobium-containing MCM-41. Zeolites, 1997, 18: 356~360
    [116] Takeguchi T, Kim J-B, Kang M et al. Synthesis and characterization of alkali-free, Ga-substituted MCM-41 and its performance for n-hexane conversion. J Catal, 1998, 175: 1~6
    [117] Rana R K, Viswanathan B. Mo incorporation in MCM-41 type zeolite. Catal Lett, 1998, 52: 25~29
    [118] Zhao D, Luan Z, Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. J Chem Soc, Chem Commun, 1997, 1009~1010
    [119] Holland B T, Isbester P K, Blanford C F et al. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J Am Chem Soc, 1997, 119: 6796~6803
    [120] Chakraborty B, Pulikottil A C, Das S et al. Synthesis and characterization of mesoporous SAPO. J Chem Soc, Chem Commun, 1997, 911~912
    [121] Valange S, Guth J-L, Gabelica Z. Synthesis strategies leading to pure alumina mesophases in aqueous solution. Stud Surf Sci Catal, 1998, 117: 517~518
    [122] Huang Y, Sachtler W M H. Preparation of mesostructured lamellar zirconia. J Chem Soc,Chem Commun, 1997, 1181-1182
    [123]Ciesla U, Schacht S, Stucky G D et al. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew Chem Int Ed Engl, 1996, 35(5):541-543
    [124]Reddy J S, Sayari A.Nanoporous zirconium oxide prepared using the supramolecular templating approach. Catal Lett, 1996, 38: 219—223
    [125]Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves. Angew Chem Int Ed Engl, 1996, 35(10): 1102-1105
    [126]Vaudry F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesoporous materials.Chem Mater, 1996, 8: 1451-1464
    [127]Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed Engl, 1995, 34(18): 2014—2017
    [128]Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorg Chem, 1996, 35:3126—3136
    [129]Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chem Mater, 1996, 8: 874—881
    [130]Luca V, MacLachlan D J, Hook J M et al. Synthesis and characterization of mesostructured vanadium oxide. Chem Mater, 1995, 7: 2220—2223
    [131] Liu P, Liu J, Sayari A. Preparation of porous hafnium oxide in the presence of a cationic surfactant. J Chem Soc, Chem Commun, 1997, 577—578
    [132]Tolbert H, Sieger P, Stucky G D et al. Control of inorganic layer thickness in self-assembled iron oxide/surfactant composites. J Am Chem Soc, 1997, 119(37): 8652—8661
    [133]Shen Y F, Zerger R P, DeGuzman R N et al. Manganese oxide octahedral molecular sieves:preparation, characterization and applications. Science, 1993, 260: 511—515
    [134]Attard G S, Bartlett P N, Coleman N R B et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science, 1997, 278: 838—840
    [135]Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380: 325—328
    [136]Froba M, Oberender N. First synthesis of mesostructured thiogermanates. J Chem Soc, Chem Commun, 1997, 1729-1730
    [137]Zhao D, Yang P, Huo Q et al. Topological construction of mesoporous materials. Current Opinion in Solid State & Materials Science, 1998, 3: 111 —121
    [138]Sellinger A, Weiss P M, Nguyen A et al. Continuous self-assembly of organic- inorganic nanocomposite coatings that mimic nacre. Nature, 1998, 394: 256—260
    [139]Ryoo R, Ko C H, Cho S J et al. Optically transparent, single-crystal-like oriented mesoporous silica films and plates. JPhys Chem B, 1997,101: 10610—10613
    [140]Gimon-Kinsel M E, Balkus K J Jr. Mesoporous molecular sieve thin films. Stud Surf Sci Catal,1998,117: 111 — 118
    [141] Yang H, Coombs N, Sokolov I et al. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature, 1996,381: 589—592
    [142]Huo Q, Zhao D, Feng J et al. Room temperature growth of mesoporous silica fibers: a new high-surface-area optical waveguide. Adv Mater, 1997, 9(12): 974—978
    [143]Bruinsma P J, Kim A Y, Liu J et al. Mesoporous silica synthesized by solvent evaporation:spun fibers and spray-dried hollow spheres. Chem Mater, 1997, 9: 2507—2512
    [144]Huo Q, Feng J, Schuth F et al. Preparation of hard mesoporous silica spheres. Chem Mater,1997,9:14-17
    [145]Griin M, Lauer I, Unger K K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater, 1997, 9(3): 254—257
    [146] Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386: 692-695
    [147] Liu P, Moudrakovski I L, Liu J et al. Mesostructured vanadium oxide containing dodecylamine. Chem Mater, 1997, 9: 2513—2520
    
    [148] Sun T, Ying J Y. Synthesis of microporous transition metal oxide molecular sieves with bifunctional templating molecules. Angew Chem Int Ed Engl, 1998, 37(5): 664—667
    [149]Zhao X S, Lu G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J Phys Chem B, 1998, 102: 1556—1561
    [150] Corma A, Kan Q, Navarro M T et al. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics. Chem Mater, 1997, 9:2123~2126
    [151] Zhao D Y, Sun J Y, Li Q Z et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem Mater, 2000, 12(2): 275-279.
    [152] Sauer J, Marlow F, Spl iethoff B et al. Rare earth oxide coating of the walls of SBA215 [J]. Chem Mater, 2002,14(1): 217-224.
    [153] Yue Y H, Gedeon A, Bonardet J L et al. Direct synthesis of AISBA mesoporous molecular sieves: characterization and catalytic activities [J]. Chem Commun, 1999, 1967-1968.
    [154] Hartmann M, Bischof C, Luan Z H et al. Preparation and characterization of ruthenium clusters on mesoporous supports [J]. Micropor Mesopor Mater, 2001,44: 385-394.
    [155] Shah P, Ramaswamy V, Lazar K et al. Synthesis and characterization of tin oxide modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction[J]. Appl Catal A: General, 2004, 273 (1-2): 239-248.
    [156] Yang C M, Kalwei M, Schbth F et al. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation [J]. Appl Catal A: General, 2003, 254 (2): 289-296.
    [157] Galarneau A, Cambon H, Renzo F D. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis[J]. New J Chem, 2003, 27: 73-79.
    [158] Bharat L, Olanrewaju J, Komarneni S. Direct synthesis of titanium substituted mesoporous, SBA-15 molecular sieve under microwave2hydrothermal conditions [J]. Chem Mater, 2001, 13(2): 552-557.
    [159] Sun J H, Jacob A, Moulijn et al. Alcothermal synthesis under bacic conditions of a SBA-15 with tong-range order and stability.Adv Mater, 2001, 13(5): 327-330
    [160] Dae G C, Seung M Y. Effect of two-step sol-gel reaction on the mesoporous silica structure. Journal of Colloid and Interface Science, 2003, 261: 127-132
    [161] 聂聪,孔令东,李全芝.后铝化的Al-SBA-15稳定性研究.复旦学报,2002.41(4):444-449
    [162] Margolese D, Melero J A, Christiansen S C et al. Direct syntheses of ordered SBA-15 Mesoporous silica containing sulfonic acid groups. Chem. Mater, 2000, 12: 2448-2459
    [163] Hino M, Kobayashi S, Arata K Solid catalyst treated with anion(2): Reactions of butane and isobutene catalyzed by zirconium oxide treated with sulfate ion solid superacid catalyst. J. Am. Chem. Soc., 1979, 101(21): 6439-6441.
    [164] Ganapati D Y, Jayesh J N. Sulfated Zirconia and Its Modified Versions as Promising Catalysts for Industrial Processes. Micropor. Mesopor. Mater., 1999, 33: 1~48.
    [165] 日野诚,荒田一志.硫酸处理金属酸化物-固体超强酸合成.触媒,1979,(4),217.
    [166] Yamaguchi T., Tanabe K. Mechanism of Acidity Generation on Sulflur-promoted Metal Oxide. J Phys Chern,1986,90:4794~4796.
    [167] Hino M., Arata K. Synthesis of solid superacid catalyst with acid strength of H0≤-16.04. J. Chem. Soc. Chem. Comm., 1980, 18:851-853.
    [168] Wang G. W., Hattori H., Tanabe K., chem. Lett., 1983:277.
    [169] Ino M., Arata K., Chem Lett. 1979:477.
    [170] Srinitasan R., Taulbe D., Davis B. H. Influence of zirconium salt precursors on the crystal structures of zirconia. Catal. Lett., 1992, 14(2), 165-170.
    [171] Chen C L, Li T, Cheng S F et al. Direct Impregnation Method Forpreparing Sulfated Zirconia Supported on Mesoporous Silica. Micropor. Mesopor. Mater., 2001, 50(2-3): 201-208.
    [172] Manish. K., Mishra M K, Tyagi B, Jasra R V. Effect of Synthetic Parameters on Structural, Textural, and Catalytic Properties of Nanocrystalline Sulfated Zirconia Prepared by Sol-Gel Technique. Ind. Eng. Chem. Res., 2003, 42: 5727-5736.
    [173] Klose B S, Jentoft R E, Hahn Aet al. Mechanical stress induced activity and phase composition changes in sulfated zirconia catalysts. J. Catal., 2003, 217(2): 487~490.
    [174] Choo S T, Nam I S, Ham S W et al. Effect of Calcination Temperature on the Characteristics of SO_4~2-/TiO_2 Catalysts for the Reduction of NO by NH_3. Korean J. Chem. Eng., 2003, 20(2):273~278.
    [175] Serra J M, Chica A, Corrna A. Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Appl. Catal. A, Gen., 2003, 239(1-2): 35~42.
    [176] 潘晖华,于中伟,濮仲英.水热改性氢氧化锆制备PtSO42-/ZrO2固体酸催化剂[J].催化学 报,2003,24(3):193~197.
    [177] Morterra C, Cerrato G, Pinna F et al. On the acid-catalyzed isomerization of ligh paraffins over a SO_4~(2-)/ZrO_2 system:the effect of hydration. J. Catal., 1994, 149(1): 181~188.
    [178] Lopez T, Navarrete J, Gomez R et al. Preparation of sol-gel sulfated ZrO_2-SiO_2 and characterization of its surface acidity. Appl. Catal. A, Gen., 1995,125(2): 217~232.
    [179] Parida K, Quaschning V, Lieske E et al. Freeze-dried promoted and unpromoted sulfated zirconia and their catalytic potential. J. Mater. Chem., 2001, 11(7): 1903~1911.
    [180] 战永复,战瑞瑞.纳米固体酸SO_4~(2-)/TiO_2的研究[J].无机化学学报,2002,5(5):505-507.
    [181] 陈同云,古绪鹏,胡祥余.低温陈化法制备SO_4~(2-)/ZrO_2-TiO_2超强酸及其催化性能和稳定性研究[J].无机化学学报,2002,4(4):378~382.
    [182] Corma A,Serra J M,Chica A.Discovery of new paraffin isomerizafion catalysts based on SO_4~(2-)/ZrO_2 and WO_xZrO_2 applying combinatorial techniques.Catal.Today,2003,8 1(3): 495-506.
    [183] 田部浩山 等著.徐柏庆 等译.新固体酸与碱及其催化作用.北京:化学工业出版社,1986:122~124.
    [184] Hua W M, Xia Y D, Yue Y H et al. Promoting Effect of SO_4~(2-)/MxOy(M=Zr, Ti, Fe) Catalysts. J. Catal., 2000, 196(1): 104-114.
    [185] Garcia E A, Rueda E H, Rouco A J. Sulfated zirconia catalysts promoted with Fe and Mn: Mn effect in the Fe dispersion. Appl. Catal. A Gen., 2001, 210(1-2): 363~370.
    [186] Ohtsuka H. Effect of iron addition on the durability of Pd-Pt-loaded sulfated zirconia for the selective reduction of nitrogen oxides by methane. Catal Let., 2003, 87(3-4): 179~186.
    [187]廖世军,王乐夫,杨兆禧等.SO_4~(2-)/ZrO_2-SiO_2催化剂的结构及其形成过程[J].物理化学学报,2000,16(3):278~283.
    [188] Yang H, Lu R, Chen S Let al. Preparation, characterization and catalytic activity of sulfated zirconia-silica nanocrystalline catalysts. Mater. Lett., 2003, 57(16-17): 2572-2579
    [189] 孙长勇,郭锡坤,林绮纯等.固体超酸SO_4~(2-)/TiO_2负载Tm改性的研究[J].分子催化,2002,6(3):195~198.
    [190] Kresge C T, leonowicz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by a liquid-crystyl template mechanism. Nature, 1992, 359(6397): 710-712.
    [191] 季山,廖世军,王乐夫等.具有中孔结构的SO_4~(2-)/Zr-HMS型固体超强酸的合成和结构表征[J].高等学校化学学报,2003,24(3):469~472.
    [192] 韩松,王伟,徐南平等.铝对固超强酸/介孔分子筛催化性能的促进作用[J].高校化学工程学报,2003,17(3):294~297.
    [193] 赵国良,张武阳,林文勇.新型固体超强酸催化剂的制备与裂解性能研究[J].分子催化,2002,6(3):191~194.
    [194] 张密林,王君,梅长松.磁性纳米固体超强酸的合成、表征及性能研究[J].高等学校化学学报,2002,7(7):1347~1351.
    [195] 宋国新,张黎,陈建民等.S_2O_8~(2-)和SO_4~(2-)促进ZrO_2固体超强酸正戊烷反应性能差异的研究[J].高等学校化学学报,2003,1(1):130~134.
    [196] 但悠梦.固体超强酸催化剂S_2O_8~(2-)/ZrO_2-MxOy(M=Al,Ti,Cr,Mn,Fe)的研究[J].精细化工,2002,19(10):587~589.
    [197] 薛华欣,宋国新,王琳等.碳化钨负载S_2O_8~(2-)/ZrO_2固体超强酸催化剂上的正戊烷反应研究[J].化学学报,2003,61(2):208~212.
    [1] 宋春敏,阎子峰.介孔分子筛研究新进展[J].化学研究与应用,2004,16(5):601-606.
    [2] Knowles J A,Hudson M J. Preparation and characterization of mesoporous,high surface area zirconium(Ⅳ)oxides [J].J/Chem S Chem Commun, 1995:2083-2084.
    [3] Hudson M J,Knowles J A. Preparation and characterization of mesoporous,high-surface-area zirconium(Ⅳ)oxides [J]. Journal of Materials chemistry, 1996,6(1):89-95.
    [4] Reddy J S,Sayari A. Nanoporous zirconium oxide prepared using the supra-molecular templating apprpach [J].Catalysis Letters, 1996,38:219-223.
    [5] Schuth F, Ciesla U,Schachat S et.al. Ordered mesoporous silicas and zirconias: control on length scales nanometer and micrometer [J].Materials Research Bulletin, 1999, 34(3):483-494.
    [6] Blin J L, Flamant Rk, Su B L. Synthesis of nanostructured mesoporous zirconia using CTMABr-ZrOCl_2·8H_2O systems: a Kinetic study of synthesis mechanism [J]. International Journal of Inorganic Materials, 2001, 3: 959-972.
    [7] Chen H R,Shi J L,Hua Z Let al. Parameter control in the synthesis of ordered porous zirconium oxide [J].Materials Letters,2001,51:187-193.
    [8] Wong M,Antonelli D,Ying J. Synthesis and characterization of phosphated mesoporous zirconium oxide [J]. Nanostructured Materials, 1997,9:165-168.
    [9] Terribile D,Trovarelli A,Llorca Jet al. [J]. Catalysis Today,1998,43:79-88.
    [10] Inoue M,Kominami H,Inui T. [J]. Appl Catal A, 1993,97:L25-L30.
    [11] Zhao Junping(赵军平),Wang Shuguo(王树国),Gong Yanjun(巩雁军) et al.Systhesis of mesoporous zirconia with crystalline framework in super-critical ethanol[J].Chemieal Journal of Chinese Universites(高等化学学报), 2000, 21:1797-1800.
    [12] Parvulescu V I,Bonnemann H,Parvulescu V et al. Preparation and eharacterisation of mesoporous zirconium oxide [J]. Applied Catalysis A,2001,214:273-287.
    [13] Parvulescu V I,Parvulescu V, Endruschat U et al. Preparation and characterisation of mesoporous zirconium oxide. Part 2 [J]. Microporous and Mesoporous Materials, 2001, 44-45:221-226.
    [14] Pacheco C,Zhao E, Garcia Aet al. Mesoporous zirconia obtained with anionic templates[J].Chem Commun, 1997:491.
    [15] Zhao E,Hernandez O,Pacheco G et al. Thermal behavior and texture of mesoporous zirconia obtained from anionic surfactants [J].JMater chem., 1998,8(7): 1635-1640.
    [16] Antonelli D M. [J].Microporous andMesoporous Materials, 1999, 28:505-510.
    [17] Yang P, Zhao D,Margolese D et al. [J] .Nature, 1998,396:152-155.
    [18] Pacheco C,Zhao E,Garcia A et al. Syntheses of mesoporous zirconia with anionic surfactants[J].J Mater Chem, 1998, 8(1): 219-226.
    [19] Huang Y Y, McCarthy T J,Sachtler W M H. Preparation and catalytic testing of mesoporous sulfated zirconium [J]. Applied Catalysis A,1996,148:135-154.
    [20] Chuah G K,Jaenicke S,Cheong S A,Chan K S. The influence of preparation conditions on the surface area of zirconia [J]. Applied Catalysis A, 1996,145:267-284,
    [21] Chuah G K,Liu S H,Jaenicke S,Li J. High surface area zirconia by digestion of zirconium propoxide at different pH [J].Microporous and Mesoporous Materials,2000,39:381-392.
    [22] Liao Shuzhi(廖树帜),Zhang Bangwei(张邦维),Liu Xinhai(刘新海),et al.Effect of calcination temperature and time on size and structure of nanostructured ZrO_2 powders prepared by precipition[J]. Rare Metal Materials and Engineering(稀有金属材料和工程), 1998,27(5):309-312.
    [23] Gajdardziska-Josifovska M,Aita C R. The transformation structure of zirconia-alumina nanolaminates studied by high resolution electron microscopy [J].J Appl Phys,1994,79: 1315-1319.
    [24] Mercera P D L,Ommen J G;Doesburg E B Met al. [J]. Applied Catalysis, 1991,78:79-96.
    [25] Wong M S, Ying Y. Amphiphilic templating of mesostructured zirconium oxide[J]. Nature,1998, 10: 2067-2077.
    [26] 陈航榕,施剑林,张文华,严东生.高比表面积有序多孔氧化锆的合成与表征[J].无机材料学报,2000,15(6):1123-1126.
    [27] Hang-Rong Chen, Jian-Lin Shi, Zi-Le Hua, Mei-Ling Ruan, Dong-Sheng Yan. Parameter control in the synthesis of ordered porous zirconium oxide[J]. Materials Letters, 2001, 51: 187-193.
    [28] 陈航榕,施剑林,杨勇,李蕾,阮美玲,严东生.钇掺杂介孔氧化锆材料的合成与表征[J].化学学报,2003,61(9):1441-1443.
    [29] Zhao E, Hardcastle S E, Pacheco Get al. Aluminum-doped mesoporous zirconia obtained from anionic surfactants[J]. Microporous and Mesoporous Materials, 1999, 31:9-21.
    [30] Hang-Rong Chen, Jian-Lin Shi, Jian Yu et al. Synthesis of titanium-doped ordered porous zirconium oxide with high-surface-area[J]. Microporous and Mesoporous Materials, 2000, 39:
    [31] 陈航榕,施剑林,张文华,阮美玲,严东生.钛掺杂有序多孔氧化锆的研究[J].无机材料学报,2001,16(3):465-469.
    [32] Ji Man Kim,Chae Ho Shin,Ryong Ryoo.Mesoporous molecular sieve with binary transition metal(Zr-Cr)oxide framework[J].Catalysis Today,1997,38:221-226.
    [33] 张波,周春晖,卢晗锋等.MCM-41介孔分子筛结构的XRD表征.浙江工业大学学报,2001,29(2):185-190.
    [34] Yang Z Y, Vantomme A Leonard Aet al. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia[J]. Chem. Commun., 2003, 1558-1559.
    [35] Michael S W & Jackie Y Y. Amphiphilic Templating of Mesostructured Zirconium Oxide[J].Chem. Mater.. 1998, 10(8): 2067-2077.
    [36] Marc M, Neil C & Geoffrey O. Self-Assembling Solid Oxide Fuel Cell Materials: Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions[J]. J. Am. Chem. Soc.. 2000, 122(37):8932-8939.
    [37] 梁健、黄惠中、谢有畅.共沉淀法制备ZrO_2-Al_2O_3纳米复合氧化物的物相表征[J].物理化学学报(Wuli Huaxue Xuebao),2003,19(1):30-34
    [1] Cai Weiping(蔡伟平),Zhang Lide(张立德).Mesoporous solid and mesoporous compound materials[J].Physics(物理), 1997, 26(4):213-216
    [2] Guo Weilin(国伟林),Wang Likui(王西奎).Preparation and application in environmental science of ordered mesoporous materials[J].Journal of.Jinan University(济南大学学报), 2002,16(1):101-104
    [3] Chai Jinling(柴金岭),Zhang Gaoyong(张高勇),Li Ganzuo(李干佐),et al.Research progress of mesoporous molecular sieve materials MCM-41 [J]. Chemical World(化学世界), 2002,11: 604-607
    [4] Cai Weiping(蔡伟平), Zhang Lide(张立德). Mesoporous solide and mesoporous compound materials[J]. Physics(物理), 1997, 26(4): 213-216
    [5] Guo Weilin(国伟林), Wang Xikui(王西奎). Preparation and application in environmental science of ordered mesoporous materials[J]. Journal of Jinan University(济南大学学报), 2002,16(1): 101-104
    [6] Li T, Cheng S,Lee Jet al. [J].Journal of Molecular Catalysis A: Chemical, 2003,198:139-149
    [7] Sun Y, Zhu L,Lu H et al Sulfated zirconia supported in mesoporous materials[J].Applied Catalysis A.Genernal, 2002, 237:21-31
    [8] Chen C,Cheng S,Lin H et al.Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve[J]. Applied Catalysis A: Genernal, 2001,215:21-30
    [9] He J,Xue D,Li C.Imoproving the stability of MCM-41 by monolayer didpersion of a metal ordde[J].Materials Chemistry and Physics,2001,71:221-225
    [10] 赵国良,张武阳,滕加伟等.[J].分子催化,2002,3:191-194
    [11] Landau M V, Titelman L, Vradman Let al.Thermostable sulfated 2-4nm tetragonal ZrO_2 with high loading in nanotubes of SBA-15[J].Chem Commun,2003:594-595
    [12] Hua W, Yue Y, Gao Zi.Acidity enhancement of SBA mesoporous molecular sieve by modification with SO4_(2-)/ ZrO_2[J].Journal of Molecular Catalysis A:Chemical, 2001, 170:195-202
    [13] 张雪峥,乐英红,高滋).PW/SBA-15负载催化剂的性能研究[J].高等学校化学学报,2001.22:1169-1172
    [14] 袁兴东,沈健,李国辉等.SBA-15介孔分子筛表面的磺酸基改性及其催化性能[J].催化学报,2002.23:435-438
    [15] Anwander R,Palm C,Gerstberger Get al. Enhanced catalytic activity of MCM-41-grafted aluminium isopropoxide in MPV reductions[J].Chem. Commun., 1998:1811-1812
    [16] Zhu Y, Jaenicke S,Chuah G K.Supported zirconium propoxide—a versatile heterogeneous catalyst for the Meerwein-Ponndorf-Verley reduction[J].Journal of Catalysis, 2003, 218: 396-404
    [17] Wang Xuxu(王绪绪),Chen Xun(陈旬),Fu Xianzhi(傅贤智).Modification of the mesoporous molecular sieves by grafating organometallic groups[J].Journal of Fuel Chemistry and Technology(燃料化学学报), 2001,29:4-8
    [18] Huo Q, Leon R, Petroff P Met al. Mesostructure Design with Gemini Surfactants: Sup ercage Formation in a Three-Dimensional Hexagonal Array. Science, 1995, 268(5215): 1324-1327
    [19] Zhao D, Sun J, Li Q, Stucky G D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 Chem. Mater., 2000, 12: 275-279
    [20] Lewellyn P L, Grillet Y, Schuth F et al. Effect of Pore Size on Adsorbate Condensation and Hysteresis within a Potential Model Adsobent: M41S. Micropor. Mater., 1994, 3: 345
    [21] Liu S H, Jaenicke S,Chuah G K. Hydrous Zirconia as a Selective Catalyst for the Meerwein-Ponndorf-Verley Reduction of Cinnamaldehyde. J Catal, 2002,206(1):321
    [22] Blasco T., Corma A., Navarro M.T., Perez-Pariente J. Synthesis, characterization and catalytic activity of Ti-MCM-41 molecular sieves synthesized at room temperature [J]. J. Catal. 1995,156,65.
    [23] Tuel A., Gontier S., Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reaction in the liquid phase[J]. Chem. Commun. 1996,651-652.
    [24] Reddy J.S., Sayari A. Room-temperature synthesis of a highly active vanadium- containing mesoporous molecular sieve V-HMS[J]. J. Chem. Soc, Chem. Commun. 1995,(21): 2231-2232.
    [25] Vayssilov G N. Structural and Physicochemical Features of Titanium Silicalites[J]. Catal.Rev.-Sci. Eng. 1997,39,209.
    [26] Yuliati L,Tsubota M, Satsuma A, Itoh H, Yoshida H. Photoactive sites on pure silica materials for nonoxidative direct methane coupling[J]. J Catal,2006,238( 1 ):214-20
    [1] Wang X X, Lefebvre F, Patarin Joel, et al. Synthesis and characterization of zirconium containing mesoporous silicas[J]. Microporous and Mesoporous Materials, 2000, 42: 269-276.
    [2] Flego C, Carluccio L, Rizzo C, et al. Synthesis of mesoporous SiO_2-ZrO_2 mixed oxides by sol-gel method[J]. Catalysis Communications, 2001, 2: 43-48.
    [3] Jens Klein, Christian Lettmann, Wilhelm F. Maier. Thermally stable, silica-based arnorphous porous mixed oxides prepared by sol-gel procedures[J]. Journel of Non-crystalline Solides, 2001, 282: 203-220.
    [4] 王绪绪,陈旬,傅贤智.中孔分子筛接枝有机金属化合物改性[J].燃料化学学报,2001,29:4-8 (WANG Xu-xu, CHEN Xun, FU Xian-zhi. Modification of the mesoporous molecular sieves by grafating organometallic groups[J]. Journal of Fuel Chemistry and Technology, 2001,29:4-8.
    [5] Chen C, Cheng S, Lin H, et al. Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve[J]. Applied Catalysis A: Genernal, 2001,215:21-30.
    [6] 梁健、黄惠中、谢有畅.共沉淀法制备ZrO_2Al_2O_3纳米复合氧化物的物相表征.物理化学学报(Wuli Huaxue Xuebao),2003,19(1):30~34.
    [7] Zhao D, Sun J, Li Q, Stucky G D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 Chem. Mater., 2000, 12:275~279
    [8] Llewellyn P L, Grillet Y, Schuth F, et al. Effect of pore size on adsorbate condensation and hysteresis within a potential model adsobent: M41S. Micropor. Mater., 1994, 3:345-349
    [9] Sonwane C.G.,Bhatia S.K.,Calos N. Experimental and theoretical investigations of adsorption hysteresis and criticality in MCM-41:studied with O_2,Ar, and CO_2. Ind.Eng.Chem.Res. 1998, 37(6):2271~2283
    [10] Zhu Y, Jaenicke S,Chuah G K.Supported zirconium propoxide—a versatile heterogeneous catalyst for the Meerwein-Ponndorf-Verley reduction[J].Joumal of Catalysis, 2002., 218: 396~404
    [11] Landau M V, Titelman L,Vradman Let al.Thermostable sulfated 2-4nm tetragonal ZrO_2 with high loading in nanotubes of SBA-15[J]. Chem Commun,2003: 594~595
    [12] Huo Q, Leon R, PetroffP Met al. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science, 1995,268:1324-1327
    [1] Katada N., Endo J., Notsu K., Yasunobu N., Naito N. and Niwa M., J. Phys. Chem, B, 2000, 104, 10321.
    [2] Nascimento P., Akratopoulou C, Oszagyan M., Coudurier G., Travers C., Jolu J. F. and Vedrdine J.C., Stud. Surf.Sci.catal., 1992,75,1185
    [3] Hua W, Yue Y, Gao Zi. Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2 [J]. Journal of Molecular Catalysis A:Chemical, 2001, 170:195-202
    [4] 雷霆,华伟明,唐颐,乐英红,高滋.MCM-41负载SO_4~(2-)的性能研究[J].高等学校化学学报.2000,21(8)1240~1243
    [5] Xia Q.-H., Hidajajat K. and Kawi S. Effect of ZrO_2 loading on the structure, acidity, and catalytic activity of the SO_4~(2-)/ZrO_2/MCM-41 acid catalyst. J. Catal., 2002, 205, 318-331
    [6] Sun Y, Zhu L, Lu H et al. Sulfated zirconia supported in mesoporous materials. Applied Catalysis A.Genernal, 2002, 237:21-31
    [7] Beck J S, Vartuli J C, Roth WJ, et al. A new family ofmesoporous molecular sieves prepared with liquid crystaltemplates[J]. J Am Chem Soc, 1992, 114:10834-10843.
    [8] Aguado J, Serrana D P, Escola J M. A sol-gel approach for the room temprature synthesis of Al-containing mi-celle-templated silica[J]. Microporous & Mesoporous Mater, 2000, 34: 43-54.
    [9] Wang X Z, Dou T, Xiao Y Z. Synthesis of double2mesopore silica using aqueous ammonia as catalyst [J]. J Chem Soc Chem Commun, 1998:103521036.
    [10] Lin W Y, Chen J S, Sun Y, et al. Bimodal mesopore distribution in a silica prepared by calcining a wet surface-tant-containing silicate gel[J]. J Chern Soc Chem Commun, 1995: 2367-2368.
    [11] Mormier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic Interfaces in the synthesis of silicate mesosmctures[J]. Science, 1993, 261: 1299~1303
    [12] Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science, 1995, 267:1138~1143
    [13] Zhao Junping(赵军平), Wang Shuguo(王树国),Gong Yanjun(巩雁军),et al. Systhesis of mesoporous zirconia with crystalline framework in super-critical ethanol[J]. Chemical Journal of Chinese Universites(高等化学学报), 2000, 21:1797~1800
    [14] 沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.
    [15] Zhao D, Sun J, Li Q, Stucky G D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater., 2000, 12:275~279
    [16] Sonwane C.G.,Bhatia S.K.,Calos N. Experimental and theoretical investigations: of adsorption hysteresis and criticality in MCM-41:studied with O_2, Ar, and CO_2. Ind.Eng.Chem.Res. 1998, 37(6):2271~2283
    [17] Zhu Y, Jaenicke S, Chuah G K.Supported zirconium propoxide—a versatile heterogeneous catalyst for the Meerwein-Ponndorf-Verley reduction[J]. Journal of Catalysis, 2003, 218: 396~404
    [18] Landau M V, Titelman L, Vradman L et al. Thermostable sulfated 2-4nm tetragonal ZrO_2 with high loading in nanotubes of SBA-15[J]. Chem Commun, 2003:594~595
    [19] Huo Q, Leon R, Petroff P M et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science, 1995, 268: 1324-1327
    [20] Liu S H, Jaenicke S,Chuah G K. Hydrous Zirconia as a Selective Catalyst for the Meerwein-Ponndorf-Verley Reduction of Cinnamaldehyde. J Catal,2002,206(1): 321
    [21] Blasco T., Corma A., Navarro M.T., Perez-Pariente J. Synthesis, characterization and catalytic activity of Ti-MCM-41 molecular sieves synthesized at room temperature [J]. J. Catal. 1995,156,65.
    [22] Tuel A., Gontier S., Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reaction in the liquid phase[J]. Chem. Commun. 1996, 651-652.
    [23] Reddy J.S., Sayari A. Room-temperature synthesis of a highly active vanadium- containing mesoporous molecular sieve V-HMS[J]. J. Chem. Soc., Chem. Commun. 1995,(21):2231-2232.
    [24] Vayssilov G N. Structural and Physicochemical Features of Titanium Silicalites[J]. Catal. Rev.-Sci. Eng. 1997,39,209
    [25] Yuliati L.Tsubota M, Satsuma A, Itoh H, Yoshida H. Photoactive sites on pure silica materials for nonoxidative direct methane coupling[J]. J Catal,2006,238(1):214-20
    [26] Lewellyn P L, Grillet Y, Schuth F et al. Effect of Pore Size on Adsorbate Condensation and Hysteresis within a Potential Model Adsobent: M41S. Micropor. Mater., 1994, 3: 345
    [1] Hino M, Kobayashi S, Arata K. peactions of butane and isobutene catalyzed by zirconium oxide treated with sulphate ion:Solid superacid catalyst. J. Am. Chem. Soc., 1979, 101(21): 6439~6441.
    [2] Ganapati D Y, Jayesh J N. Sulfated Zirconia and Its Modified Versions as Promising Catalysts for Industrial Processes[J]. Micropor. Mesopor. Mater., 1999, 33: 1~48.
    [3] Katada N., Endo J., Notsu K. Superacidity and Catalytic Activity of Sulfated Zirconia. et al. J.Phys. Chem, B, 2000, 104, 10321-10328.
    [4] Nascimento P., Akratopoulou C., Oszagyan M. et al. Stud. Surf Sci. catal., 1992,75,1185
    [5] Ying J, Mehnert C, Weng M et al. Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed, 1999, 38:56-77
    [6] Liu Y., Zhang W.,Pinnavaia T. J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J]. J. Am. Chem. Soc. 2000, 122:8791-8792
    [7] Liu Y., Zhang W., Pinnavaia T. J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew. Chem. Int. Ed. 2001, 40:1255-1258
    [8] Zhang Z., Han Y., Zhu L. et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem. Int. Ed. 2001, 40:1258-1261
    [9] Zhang Z., Han Y., Xiao F. S. et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures[J]. J. Am. Chem. Soc. 2001, 123:5014-5021
    [10] 雷霆,华伟明,唐颐,乐英红,高滋.MCM-41负载SO_4~(2-)的性能研究[J].高等学校化学学报.2000,21(8)1240~1243
    [11] Hua W, Yue Y, Gao Zi. Acidity enhancement of SBA mesoporous molecular sieve by modification with SO_4~(2-)/ZrO_2 [J]. Journal of Molecular Catalysis A:Chemical, 2001, 170:195-202
    [12] Wang X X, Lefebvre F, Patafin Joel, et al. Synthesis and characterization of zirconium containing mesoporous silicas: Ⅰ. Hydrothermal synthesis of Zr-MCM-41-type materials. Microporous and Mes oporous Materials, 2000, 42:269~276
    [13] 李福祥、张香娣、李瑞丰、谢克昌.Zr-MCM-41的合成及其表征.燃料化学学报,2004,32(4):471~474
    [14] Hiromi Matsuhashi, et al, Skeletal isomerization mechanism of alkanes over solid superacid of sulfated zirconia. Applied Catalysis A: General 187 (1999) 99~106
    [15] Essayem N., et al. Comparative study of n-pentane isomerization over solid acid catalysts, heteropolyacid, sulfated zirconia, and mordenite: dependence on hydrogen and platinum addition[J]. Journal of Catalysis 219 (2003) 97~106
    [16] 曾键青,钟炳,罗庆云等.SO_4~(2-)/ZrO_2超强酸催化剂的XPS研究[J].燃料化学学报,1994,22(3),239-245
    [17] Ecormier M. A., Wilson K. and Lee A. F. Structure-reactivity correlations in sulphatedzirconia catalysts for the isomerisation of α-pinene. Journal of Catalysis, 2003, 215, 57-65
    [18] 廖世军,杨兆禧,余文威等.SO_4~(2-)/ZrO_2-SiO_2催化剂的酸性[J].分子催化,1998,12(4),292-298
    [19] 高滋,陈建明,唐颐.SO_4~(2-)/ZrO_2超强酸体系红外光谱研究.高等学校化学学报,1993,14(5),658-662
    [20] Landau M V,Titelman L,Vradman L,et al.Thermostable sulfated 2-4nm tetragonal ZrO_2 with high loading in nanotubes of SBA-15[J].Chem Commun,2003:594-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700