富氧条件下沸石分子筛负载Co,Mn选择催化CH_4还原NO_x的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤、石油、天然气等物质的燃烧满足了人类对于能源的需求,但排放的燃烧尾气造成了严重的环境污染,SO_2,NO_x(90%为NO),CO,CO_2等污染物的排放对人类的生存环境产生了极大的威胁。尤其是NO_x不仅能形成酸雨和光化学雾,而且能引起温室效应,人类的很多疾病都或多或少与NO_x的排放有关。如何有效地消除尾气中的NO_x是一项世界性的难题,尽管NH_3作还原剂选择还原NO_x在固定源(发电厂)NO_x等行业已经投入商业运营,但由于NH_3容易泄漏、腐蚀性强、设备投资大、操作难度高、能形成硫酸铵等造成管道堵塞,将该技术应用于移动源NO_x(汽车尾气)的治理几乎是不可能。三效催化剂(TWC)应用于汽车等移动源尾气时能同时脱除尾气中的CO,HC和NO_x,但该技术只能应用在空燃比(A/F=14.6)附近狭窄的范围内。富氧燃烧是当前提倡节约能源和减少废气排放的发展趋势,而TWC催化剂在这种燃烧条件下对脱除NO_x基本没有活性。碳氢化合物为还原剂选择催化还原NO_x(HC-SCR)是目前研究非常热门的课题,自从发现CH_4能选择催化还原NO(CH_4-SCR),CH_4-SCR被认为是最具应用前景的脱除氮氧化物技术。选择具有高活性、选择性和抗SO_2和H_2O毒化性能的催化剂是将该技术投入实际应用必须首先解决的课题,正是在上述研究背景下提出了本论文的研究课题。
     本文首次采用了一种具有FAU和BEA两种拓扑结构的复合沸石分子筛(FBZ)为载体,系统的研究了Co和Mn交换FBZ催化剂(CoH-FBZ和MnH-FBZ)催化CH_4还原NO的催化性能,并应用XRD,FT-IR,DRS-UV-Vis,SEM,NH_3-TPD,H_2-TPR等现代的分析技术对催化剂进行了表征,采用NO,NO+O_2,NO_2吸附和程序升温脱附的方法研究了N、O的吸附态与催化剂表面的相互作用。考察了复合结构催化剂的抗H_2O和SO_2毒化性能,采用SO_2-TPSR技术对比研究了SO_2毒化单一结构催化剂CoH-Beta和复合结构催化剂CoH-FBZ表面形成的含硫物种与催化剂表面之间的相互作用。并对传统催化剂CoH-ZSM-5的催化性能进行了研究,应用NO,NO+O_2,NO_2,NO+NO_2吸附和程序升温脱附技术对氮氧化物与催化剂CoH-ZSM-5表面的相互作用进行了研究,以期获得具有应用价值的催化剂,并探讨CH_4-SCR反应的机理。研究结果表明沸石分子筛的拓扑结构直接影响催化剂的CH_4-SCR性能,催化剂抗SO_2和H_2O的毒化性能也与沸石载体的拓扑结构有关。本论文主要取得了以下几方面研究进展:
     (一)Co,Mn系列复合结构催化剂CH_4-SCR的研究结果
     1采用两步水热晶化法能成功的合成具有FAU和BEA复合拓扑结构的沸石分子筛FBZ,FBZ的XRD图中仅观察到FAU和BEA两种拓扑结构的特征衍射峰且没有其它杂晶峰,应用XRD结果可获得复合结构沸石中两种拓扑结构的质量相对含量;FBZ的FTIR图谱中能观察到FAU和BEA两种拓扑结构的特征吸收峰,两种拓扑结构吸收峰的相对强度与XRD图一致;FBZ的SEM图中没有观察到八面体型(典型FAU的晶型晶貌),为均一椭球型的晶型晶貌,由于BEA结构生长在FAU结构的外表面,因此FBZ的SEM图与单一Beta沸石的SEM图较为相近。
     2 NH_3-TPD结果表明,H-FBZ上产生了一种新的强酸位,该强酸位能够被金属离子交换,且Co,Mn离子交换后该酸位的平均酸强度有所增强。程序升温氧化(TPO)和H_2程序升温还原(H_2-TPR)研究结果表明,处于离子交换位置的Co,Mn对氧化和还原处理不敏感,在所研究的选择催化CH_4还原NO过程中能保持氧化态不发生变化。
     3 CoH-FBZ催化剂的DRS-UV-Vis图谱与单一结构催化剂CoH-Beta和CoH-Y的DRS-UV-Vis图谱存在一定的差异,结合NH_3-TPD和复合沸石分子筛的结构特点,可以推断在CoH-FBZ中产生了新Co位,氮氧化物在催化剂表面的吸附支持这一推论。
     4研究结果表明复合结构催化剂CoH-FBZ与机械混合催化剂(CoH-Y+CoH-Beta)存在显著的差异,催化剂的CH_4-SCR催化性能受沸石分子筛的拓扑结、沸石分子筛中的酸位、金属性质、金属的所处的晶体场、反应条件等因素的影响。具体如下:
     a.催化活性测试结果表明,与CoH-Beta和CoH-Y单一拓扑结构机械混合催化剂相比,负载Co的复合结构催化剂CoH-FBZ上NO还原为N_2的转化率明显较高,且当BEA的质量相对含量为60-80%时,复合结构催化剂显示出较高的催化活性和CH_4选择性;催化剂的催化活性随着其中Co含量的增大而提高,高空速使NO还原为N_2的转化率下降;沸石分子筛载体的酸性能促进CH_4-SCR反应进行;O_2能促进CoH-FBZ催化剂催化CH_4还原NO,当反应体系中无O_2时,CH_4还原NO的活性很低(2180×10~(-6)NO+2050×10~(-6)CH_4),随着反应气流中O_2的浓度增大(反应温度773 K),CH_4还原NO的催化活性迅速增大,当O_2的浓度为2.00%时,催化活性达到极大,继续提高O_2的浓度催化剂的催化活性有所下降。O_2的主要作用是能与NO在催化剂表面形成能活化CH_4的中间吸附态-NO_y,然而过高的O_2浓度使CH_4直接燃烧速率加快,从而抑制了SCR反应的进行。
     反应体系中存在H_2O或SO_2时,催化剂的催化活性明显下降,两种毒化物质同时存在使催化剂中毒更加严重,但复合结构催化剂较单一结构催化剂显示出更好的抗H_2O或SO_2毒化性能。
     b.Mn系列复合结构催化剂的催化性能与Co系列复合结构催化剂的催化性能非常类似,与MnH-Beta和MnH-Y单一拓扑结构机械混合催化剂相比,负载Mn的复合结构催化剂MnH-FBZ上NO还原为N_2的转化率明显较高,且当BEA拓扑结构的质量相对含量为60-80%时,复合结构催化剂显示出较高的催化活性和CH_4选择性;催化剂的催化活性随其中Mn含量增大而提高;沸石分子筛载体的酸性能促进CH_4-SCR反应进行。同样,复合结构催化剂较单一结构催化剂显示出更好的抗H_2O或SO_2毒化性能。
     c.单一拓扑结构沸石分子筛为载体时,Co系列催化剂的催化活性较Mn系列催化剂的催化活性高,但复合结构催化剂MnH-FBZ催化剂的催化性能与CoH-FBZ的催化性能基本相同,在一定的反应条件下,MnH-FBZ的催化活性甚至较CoH-FBZ的催化活性高。进一步证实所制备的复合结构催化剂并非单一结构催化剂的简单机械混合,且沸石分子筛载体对催化剂的CH_4-SCR活性起着很重要的作用。两类Mn系列催化剂均较Co系列催化剂显示好的抗H_2O毒化性能,但当反应体系中存在SO_2时,Mn系催化剂在抗毒化性能方面的优势被削弱。
     5 NO-,NO_2-和NO+O_2-TPD研究结果表明,载体对N、O化物与催化剂表面相互作用有很大的影响。NO-TPD结果表明催化剂表面形成的吸附态NO不稳定,在573 K前基本脱附完全,且CoH-FBZ系列催化剂上形成的吸附态NO相对更稳定。NO_2与NO+O_2能在催化剂表面形成稳定的含N、O的吸附态-NO_y。与单一拓扑结构的CoH-Beta和CoH-Y相比,CoH-FBZ表面形成的吸附态-NO_y相对更稳定,且NO+O_2(或NO_2)在CoH-FBZ表面吸附和程序升温脱附曲线上至少存在两个NO_2脱附中心。由于氮氧化物只能吸附在催化剂中的Co位上,表明复合结构催化剂中形成了一种新的Co位,由于复合结构的拓扑结构、强酸位和新Co位的协同效应使CoH-FBZ具有新的CH_4-SCR催化活性。
     6 SO_2-TPSR研究结果表明,被SO_2毒化后的催化剂表面形成了稳定的含硫化合物,含硫化合物占据部分的活性,导致催化剂表面形成活性吸附态-NO_y含量下降是SO_2使催化剂催化活性下降的主要原因。由于复合结构催化剂CoH-FBZ表面形成的含硫化合物相对于单一结构催化剂CoH-Beta表面形成的含硫化合物不稳定,提高反应温度更多含硫化合物脱附释放出部分活性位,使复合结构催化剂显示出较好的抗SO_2中毒性能。
     (二)CoH-ZSM-5催化剂CH_4-SCR的研究结果
     本论文中系统的研究了CoH-ZSM-5催化剂上的NO_x(O_2)-TPD,并研究了有氧和无氧条件下,CoH-ZSM-5上CH_4选择催化还原NO或NO_2。
     1研究结果表明在无氧条件下,CH_4选择催化还原NO的活性很低,加入O_2极大的提高了CH_4-SCR催化活性。在NO/CH_4/O_2和NO_2/CH_4/O_2反应体系中,CH_4还原NO和NO_2为N_2的转化率基本相同,CH_4的转化率也基本相同。而无氧体系反应NO_2/CH_4,673 K前CH_4还原NO_2的催化性能与有氧条件下相同,继续提高反应温度,CH_4还原NO_2为N_2的催化活性有所下降。
     2 TPD研究结果表明在CoH-ZSM-5表面形成的含N、O吸附态均吸附在催化剂中的Co位上,吸附量随催化剂中Co含量增大而增大,吸附条件对NO,NO_2和NO+O_2在催化剂表面形成的吸附态的量有很大影响。NO在催化剂表面形成的吸附态很不稳定,523 K前基本脱附完全,吸附过程中NO的浓度对催化剂表面形成NO吸附态的量影响不大;随着吸附温度上升,NO吸附态的量迅速下降。NO_2在催化剂表面形成的吸附态-NO_y的量随吸附过程NO_2浓度增大而增大,提高吸附过程的温度吸附态-NO_y的量则明显下降。尽管NO较-NO_y在催化剂表面的吸附弱,但NO与NO_2共吸附时,由于竞争吸附使吸附态-NO_y的量明显下降。
     3在1000×10~(-6)NO_2,1000×10~(-6) NO+1000×10~(-6)NO_2和2000×10~(-6)NO+2%O_2三种吸附过程中,由于最后一过程NO_2的浓度最低,且存在NO的竞争吸附,因此,在催化剂表面形成的吸附态-NO_y的量应该最少,但实际形成吸附态-NO_y的量处于另外两种吸附过程形成吸附态-NO_y的量之间。这表明NO+O_2能不经过NO_2直接在催化剂表面形成吸附态-NO_y。
     4 O_2的主要作用是与NO在催化剂表面形成能活化CH_4的吸附态-NO_y,从而促进CH_4-SCR反应进行。
The combustion of coal, petroleum and natural-gas etc. meets the mankind's needs of energy. However, the emission of flue gas has caused serious environmental pollutions. SO_2, NO_x (NO accounts for 90%), CO and CO_2 results in great threat to environment, particularly NO_x can not only lead to formation of acid rain and photochemical smog, but also to "green-house" effect. Many diseases are more or less related to NO_x. How to abate NO_x in the flue gas is a tough task in the worldwide. Although selective catalytic reduction of NO_x with NH_3 has been put into commercial application in the disposal of stationary source of NO_x such as emission gas in the electric power plant, application of this technology in the moving source of NO_x such as the traffic flue gas is impossible because of the well-known reasons such as storage and leakage of NH_3, costly equipment, strict operation conditions and formation of sulfate leading to pipe jam. Three-Way-Catalysts (TWC) is an effective way to abate CO, HC, and NO_x in the traffic flue gas simultaneously. However, this type of catalysts is only effective in the narrow range of air to fuel ratio adjacent to 14.6. Combustion of fuel in the presence of excess oxygen is not only an effective way to improve the fuel utilizing efficiency, but also can decrease the emission of pollutants. However, TWC catalysts exhibit low activity for NO_x reduction in these conditions. Selective catalytic reduction of NO_x with hydrocarbon (HC-SCR) is considered to be the potential technology substituting for NH_3-SCR, particularly selective catalytic reduction of NO_x by methane (CH_4-SCR). Preparing catalysts with high activity, selectivity and SO_2 and H_2O tolerance should be solved before practical application of the CH4-SCR technology. The investigating tasks are put forward under this research background in this paper.
     A type of new zeolite composite FBZ with FAU and BEA topology structure was synthesized. Selective catalytic reduction of NO_x in the presence of excess oxygen was investigated systemically over the Co- or Mn- ion-exchange H-FBZ catalysts. XRD, FT-IR, DRS-UV-Vis, FE-SEM, NH_3-TPD, H_2-TPR techniques were applied to characterize the catalysts. Combined NO, NO+O_2、NO_2 adsorption and temperature programmed desorption (TPD) were applied to investigate the adsorption species contained N and O over the catalysts. The H_2O and SO_2 tolerance of the catalysts were also studied. SO_2 temperature programmed surface reaction (TPSR) was applied to investigate the sulfur species formed during the poisonous tests. CH_4-SCR was also investigated over the traditional catalyst CoH-ZSM-5. Combined NO, NO+O_2, NO_2 and NO+NO_2 adsorption and TPD were carried out over CoH-ZSM-5 to investigate the interaction of the N and O contained species with the catalyst surface. This paper would focus on acquiring novel catalyst, and valuable information for the reaction mechanism by which the CH_4-SCR occurs over Co-zeolite catalyst. It is found that the topology structure of the carrier strongly affects the catalytic properties of the catalysts. The SO_2 and H_2O tolerance of the catalysts is also affected by the carrier. The main research results obtained in this paper will be shown as follows:
     I) Research progresses of CH_4-SCR in the Co and Mn contained zeolite composite CoH-FBZ and MnH-FBZ
     1 Zeolite composite with FAU and BEA topology structure can be synthesized succefully with two step hydrothermal crystalyzing method. Only characteristic peaks of FAU and BEA topology structure are observed over the XRD patterns of FBZ. The relative content of the two kinds of topology structure can be obtained by the XRD results. Characteristic peaks of FAU and BEA topology structure are observed in the FTIR spectra of the catalysts. No octahedral morphology is observed in the SEM images of the zeolite composite, whereas it cannot be excluded completely. Homogenous ellipse morphology is observed in the SEM image of zeolite composite. The morphology is similar to that of the Beta zeolite because the zeolite composite FBZ is synthesized by overgrowing or epitaxially growing a layer of zeolite Beta on the pseudo-crystal of FAU zeolite.
     2 NH_3-TPD results show that a new kind of strong acidic sites is formed on H-FBZ. These acidic sites can be ion-exchanged by the metal ions. The average acidity of this type of acidic sites increases after ion-exchange of Co or Mn cations. Temperature programmed oxidizing (TPO) and temperature programmed reducing (TPR) results show that the ion-exchange Co and Mn cations in the zeolite are resist to the reducing and oxidizing process.
     3 Different DRS-UV-Vis spectra are obtained over CoH-FBZ, CoH-Y, CoH-Beta and the physical mixture of both. Combining the NH_3-TPD results and the properties of the zeolite composite, new ion-exchange Co sites could be formed in CoH-FBZ. The combined NO, NO+O_2 and NO_2 adsorption and TPD as shown in the follows support this viewpoint.
     4 It is found that the composite catalysts CoH-FBZ and the physical mixture catalysts of CoH-Y and CoH-Beta exhibit significant different properties. The topology structure of the carrier, acidity of the zeolite carrier, the metal cations and their ligand and the reaction conditions significantly affects the catalytic properties of the catalysts, which are discussed in detail as follows:
     a. Activity test results show that the catalytic activity is significantly affected by the topology structure of the catalyst. Compared to the physical mixture catalysts of CoH-Y and CoH-Beta, with comparable FAU and BEA topology structure, CoH-FBZ catalysts exhibit much higher catalytic activity, particularly the catalysts with the mass content of BEA topology structure between 60 % and 80%. CoH-FBZ catalysts also exhibit higher CH_4 selectivity than the physical mixture catalysts of CoH-Y and CoH-Beta. The catalytic activity increases with the cobalt content in the catalysts. Higher gas hourly space velocity (GHSV) results in lower NO to N_2 conversion. The acidity of the carrier can promote the CH_4-SCR. O_2 is another essential factor in the CH_4-SCR. In the reaction system absence of oxygen at 773 K, i.e. 2050×10~(-6) CH_4/2180×10~(-6) NO, the catalytic activity is very low in the whole test temperature range. Increasing the oxygen concentration, the NO to N_2 conversion increases significantly and reaches a maximum while the oxygen concentration is up to 2.00%. Further increasing the oxygen concentration, the catalytic activity decreases. O_2 can react with NO to form adsorbed -NO_y, species over the catalyst. Too higher oxygen concentration leads to the rate of direct CH_4 combustion increase quickly, and the CH_4-SCR is inhibited.
     In the presence of H_2O or SO_2, the catalytic activity of the catalyst decreases considerably. Co-existence of H_2O and SO_2, NO to N_2 conversion decreases further, whereas, the composite catalyst CoH-FBZ exhibits better H_2O and SO_2 than the catalysts CoH-Beta with single topology structure.
     b. Similar catalytic properties are obtained over MnH-FBZ and CoH-FBZ catalysts. MnH-FBZ catalysts exhibit much higher catalytic activity than physical mixture catalysts with comparable FAU and BEA topology, particularly over the catalysts with BEA topology structure mass content between 60-80%. The catalytic activity increases with the Mn content in the catalysts. As that in CoH-FBZ catalysts, the acidity of the catalyst promotes the CH_4-SCR activity. The composite catalyst MnH-FBZ exhibits better H_2O and SO_2 than the catalysts MnH-Beta with single topology structure.
     c. The CH_4-SCR activity over the Co ion-exchange catalysts with single topology structure is higher than that over the Mn ion-exchange catalysts with comparable metal content. However, the activity of the two types of composite catalysts is almost comparable on both kind catalysts. In some reaction conditions, the catalytic activity of MnH-FBZ is even higher than that of CoH-FBZ. These results illustrate that the zeolite composite exhibit different properties to the physical mixtures, and the CH_4-SCR activity is influenced by the topology structure of the zeolite singnificantly. Mn catalysts with either single topoloigy structure or composite topology structure better H_2O tolerance than Co catalysts, whereas addition of SO_2, the difference decreases.
     5 Combined NO, NO_2, NO+O_2 adsorption and TPD results show that the N and O contained species formed over the catalyst are significantly affected by the topology structure of the carrier. NO-TPD results show that the NO species formed over the catalysts is unstable and desorbed at temperature lower than 573 K. The NO species is adsorbed more strongly on CoH-FBZ catalysts. Compared with the CoH-Beta and CoH-Y with single topology structure, adsorbed -NO_y species formed by NO+O_2 co-adsorption (or NO_2 adsorption) is adsorbed more strongly on CoH-FBZ than on CoH-Y and CoH-Beta. Furthermore, at least two NO_2 desorption centers are observed over TPD profiles of CoH-FBZ. N and O contained species are only adsorbed on Co sites. This supports that new Co sites are formed over CoH-FBZ.
     6 SO_2-TPSR results show that stable sulfur compounds are formed over the SO_2 poisoning catalysts. The sulfur compounds occupy part of the active sites, lead to the amount of the active species -NO_y decrease, and the catalytic activity of the catalysts is inhibited. In contrast to that over the catalysts CoH-Beta with single topology structure, the sulfur compounds is less stable over the catalysts CoH-FBZ with composite topology structure. Increasing the reaction temperature, part of the sulfur compounds is desorbed and the active sites are released. As a result, the composite catalyst CoH-FBZ exhibit better SO_2 tolerance than CoH-Beta due to the less stable adsorption of sulfur species over CoH-FBZ than over CoH-Beta, as revealed by SO_2-TPSR results.
     II) Research progresses of CH_4-SCR in CoH-ZSM-5
     Combined NO_2, NO (O_2) adsorption and temperature programmed desorption (TPD) have been studied systematically to probe into the selective catalytic reduction of NO by methane (CH_4-SCR) over CoH-ZSM-5 (SiO_2/Al_2O_3=25). Selective catalytic reduction of NO or NO_2 by CH_4 over CoH-ZSM-5 are also investigated.
     1 Catalytic activity results show that in the absence of oxygen, low NO to N_2 conversion is obtained. Addition of oxygen, the catalytic activity increases significantly. In the reaction system of NO/CH_4/O_2 and NO_2/CH_4/O_2, same NO or NO_2 to N_2 conversion is obtained, the CH_4 conversion is also comparable. In the absence of oxygen, same NO_2 to N_2 conversion is obtained in the NO_2/CH_4 reaction as that in the presence of oxygen at temperature lower than 673 K. Further increasing the reaction temperature, catalytic activity decreases.
     2 Adsorption conditions significantly affect the adsorption of NO, NO_2 and NO+O_2. Adsorbed NO species are unstable and desorbed below the reactive temperature 523 K. Increasing adsorption temperature results in the decrease of the adsorbed NO species amount.
     3 The amount of-NO_y species formed from NO_2 adsorption increases with the increase of NO_2 concentration in the adsorption process, while decreases significantly with the increase of adsorption temperature. Though NO species are adsorbed weakly on CoH-ZSM-5, competitive adsorption between NO and -NO_y species decreases the amount of adsorbed -NO_y species. Similar desorption profiles of NO_2 was obtained over CoH-ZSM-5 while it was contacted with NO_2 or NO+O_2 followed by TPD. If NO_2 was essential to form adsorbed -NO_y species, the amount of adsorbed -NO_y species for NO+O_2 adsorption should be the least among the adsorption of NO_2, NO+O_2 and NO+NO_2 because of the lowest NO_2 concentration and highest NO concentration. In fact, the amount of adsorbed -NO_y species is between the other two adsorption processes. These indicate that formation of adsorbed -NO_y species may not originate from NO_2.
     4 O_2 promotes the CH_4-SCR activity by reacting with adsorbed NO or NO_2 to form sufficient amount of active -NO_y species.
引文
[1] Bosch H. Janssen F. J. Formation and control of nitrogen oxides. Catal. Today, 1988, 2 (4): 369-379
    [2] Busca G. Lietti L. Ramis G. and Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review. Appl. Catal., 1998, B18:1-36.
    [3] Traa Y. Burger B. and Weitkamp J. Zeolite-based materials for the selective catalytic reduction of NO_x with hydrocarbons. Micropor. Mesopor. Mater, 1999, 30:3-41.
    [4] Li Y. J. Armor J. N. Catalytic Reduction of Nitrogen Oxides with Methane in the Presence of Excess Oxygen. Appl. Catal., 1992, B 1(4): L31-L40.
    [5] Fritz A. and Janssen F. The current state of research on automotive lean NO_x catalysis. Appl. Catal., 1997, B13(1):1-25.
    [6] Armor J. N. Catalytic solutions to reduce pollutants. Catal. Today, 1997, 38(2): 163-167.
    [7] Wojciechowska M. On the catalytic removal of nitrogen oxides, in Catalysis and adsorption in fuel processing and environmental protection, proc. 3rd international conference Kudowa Zdroj Poland, 1999.
    [8] Li Y. J. and Armor J. N. Simultaneous, catalytic removal of nitric oxide and nitrous oxide. Appl. Catal., 1996, B3(1):55-60.
    [9] Kaptejin F. Mirasol J. R. and Moulijin J. A. Heterogeneous catalytic decomposition of nitrous oxide Appl. Catal., 1996, B9(1-4):25-64.
    [10] Ertl G. Knzinger and Weitkamp J. in Environmental Catalysis Wyley-VCH, Weihei FRG, 1999.
    
    [11] Armor J. N. Selective catalytic reduction of NO_x with methane over metal exchange zeolites. Appl. Catal., 1992, B1(2-3):239- 256.
    
    [12] Armor J. N. in Environmental Catalysis ACS Symposium series 552 American Chemical Society Washington. 1994.
    [13] Economic evaluation of air quality targets for sulfur dioxide, nitrogen oxide, fine and suspended particlulate matter and lead, final report, XIII, 80, Office for official publications of European Communities Luxembourg. 1998.
    [14] Meyers R. A. Dittrick D. K. in The Wiley Encyclopedia of Environmental Pollution and Cleanup. Vol 1, p.50, Wiley, New York. 1999.
    [15] Armor J. N. Catalytic removal of nitrogen oxides: where are the opportunities? Catal. Today, 1995, 26(2):99-105.
    [16] Hums E. Is advanced SCR technology at a standstill? A provocation for the academic community and catalyst manufacturers Catal. Today, 1998, 42(1-2):25-35.
    [17] Parvulescu V. I. Grange P. and Delmon Catalytic removal of NO. Catal. Today, 1998, 46(4): 233-316.
    [18] Shelef M. and Graham G. W. Why rhodium in automotive three-way catalysts? Catal. Rev. Sci. Eng., 1994, 36(3):443-457.
    [19] Farrauto R. J. and Heck R. M. Catalytic converters: state of the art and perspectives. Catal. Today, 1999, 51(3-4):351-360.
    [20] Iwamoto M. Furukawa H. Mine Y. Uemura F. Mikuriya and Kagawa S. J. Chem. Soc. Chem. Commun. 1986,1272.
    
    [21] in Motor vehicle pollution, reduction strategies beyond 2010, OECD. 1995.
    [22] The Encarta 99 New World Almanac, Helicon Publishing. 1998.
    [23] Stern A. G. Boudbel R. W. Turner D. B. and Fox D. L. Fundamentals of air pollution 2nd edition. Academic Press, London. 1984.
    
    [24] "The Nitric Oxide Hompage" in www.apnet.com/www/jussayno.htlm.
    [25] Li Y. J. Hall W. K. Stoichiometric catalytic decomposition of nitric oxide over copper- exchanged zeolite (CuZSM-5) catalysts. J. Phys. Chem. 1990, 94(16): 6145-6148.
    [26] Misono M. selective catalytic reduction of NO by methane over Ce-ZSM-5. Cattech, 1998, 2 (2):183-196.
    [27] Iwamoto M. Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994, Catal. Today, 1996, 29(1-4):29-35.
    [28] Held W. Konig A. Richterand T. Puppe L. Multiphase catalyst for selective for selective of NO_x with hydrocarbons SAE paper NO. 900496. 1990, 209-216.
    [29] Iwamoto M. Yahiro H. Yu-u Y. Shundo S. Mizuno N. Selective reduction of NO by lower hydrocarbons in the presence of O_2 and SO_2 over copper ion-exchange zeolites, Shokubai, 1990, 32:430-433.
    [30] Kintaichi Y. Hamada H. Tabata M. Sasaki M. Ito, T. Selective reduction of nitrogen oxide with hydrocarbons over solid catalysts in oxygen rich atmospheres. Catal. Lett. 1990, 6:239-244.
    [31] Zuzaniuk V. Meunier F. C. Ross J. R. H. Possible intermediates in the selective catalytic reduction of NO_x: differences in the reactivity of nitro-compounds and tert-butyl nitrite over Y-Al_2O_3. Chem. Commun., 1999, 9: 815-816.
    [32] Hamada H. Kintaichi Y. Inaba M. Yoshinari and Tsuchida. Role of supported metals in the selective reduction of nitrogen monoxide with hydrocarbons over metal/alumina catalysts. Catal. Today, 1996, 29(1-4):53-57.
    [33] Zhang X. Walters A. B. and Vanic G. NO_x decomposition and reduction by methane over La_2O_3. Appl. Catal., 1994, B4(2-3):237-256.
    [34] Hamada H. Kintaichi Y. Sasaki M. Ito T. Tabata M. Transition metal-prometed silica and alumina catalysts for selective reduction of nitrogen monoxide by propane. Appl. Catal. 1991, 75(1):L1-L8.
    [35] Kameoka S. Chafik T. Ukisu Y. and Miyadera T. Role of organic nitro compounds in selective reduction of NOx with ethanol over different supported silver catalysts. Catal. Lett., 1998, 51(1):11-14.
    [36] Yan J. Y. Kung H. H. Sachtler W. M. H. and Kung M. C. Co/Al_2O_3 Lean NO, Reduction Catalyst. J. Catal., 1997, 172:178-186.
    [37] Torikai Y. Yahiro H. Mizuno N. Iwamoto M. Enhancement of catalytic activity of alumina by copper addition for selective reduction of nitrogen monoxide by ethene in oxidizing atmosphere. Catal Lett., 1991, 9:91-96.
    [38] Li Y. and Armor J. N. 81 Natural Gas Conversion II. 103 -113. Stud. in Surf. Sci. and Catal Elsevier Science 1994.
    [39] Meunier F. C. Breen J.P. Zuzaniuk V. Olsson M. and Ross J. R. H. Mechanistic Aspects of the Selective Reduction of NO by Propene over Alumina and Silver-Alumina Catalysts. J. Catal 1999, 187:493-505.
    
    [40] Inaba M. Kintachi Y. and Hamada H. in proc 1~(st) int. Cong. On Environ. Catal. Pisa p 327 1995.
    [41] Hamada H. Kintaichi Y. Tabata M. Sasaki M. Ito T. Sulfate-promoted metal oxide catalysts for the selective reduction of nitrogen monoxide by propane in oxygen-rich atmospheres. Chem. Lett., 1991,20(24):2179-2182.
    [42] Miyadera T. Yoshida K. Alunima-supported catalysts for the selective reduction of nitric oxide by propane. Chem. Lett., 1993, 22(16):1483-1486.
    [43] Maunula T. Torikai Y. Inaba M. Haneda M. Sato K. Hamada H. Enhanced activity of In and Ga HHvvhsy-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in lean conditions. Appl. Catal., 1998, B15(3):291-304.
    
    [44] Okimura Y. Yokoi H. Ohbayashi K. Shimizu K. Satsuma A. Hattori T. Selective catalytic reduction of nitrogen oxides with hydrocarbons over Zn-Al-Ga comples oxides. Catal. Lett., 1998, 52(1-2):157-161.
    [45] Burch R, Millington P.J. Walker A.P. Mechanism of selective selection reduction of nitrogen monoxide on platinum-based catalysts in the present of excess oxygen. Appl. Catal., 1994, B4(1):65-94.
    [46] Iwamoto M. Yahiro H. Shundo S. Yuu Y. Mizuno N. Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite. Appl. Catal., 1991, 69(1): L15-L19.
    
    [47] Sato S. Yau Y. Yahiro H. Mizuno N. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines, Appl. Catal. 1991, 70(1): L1-L5.
    [48] Yokoyama C. Misono M. Promotive effects of the addition of alkaline earth metals to Ce-ZSM-5 catalyst for the reduction of nitrogen monoxide in the presence of propene and oxygen. Chem. Lett., 1992, 21(12):1669-1672.
    [49] Yokoyama C. Misono M. Catalytic recuction of NO by propene in the presence of Oxygen over mechanically mixed metal metal and Ce-ZSM-5. Chem. Lett., 1994, 23(1): 1-6.
    [51] Chen H. Y. Schtler W. M. H. Promoted Fe/HZSM-5 catalysts prepared by sublimation: De-NO_x activity and curability in H_2O-rich streams. Catal. Lett., 1998, 50(1-2): 125-130.
    [52] Gerlach T. Schutzeand F. W. Baerns M. An FTIR Study on the Mechanism of the Reaction between Nitrogen Dioxide and Propene over Acidic Mordenites. J. Catal., 1999, 185(1): 131-137.
    [53] Campa M. C. Rossi S. De Ferraris Indovina E. Catalytic activity of Co-ZSM-5 for the abatement of NO_x with methane in the presence of oxygen. Appl. Catal., 1996, B8(3): 315-331.
    [54] Hamada H. Kintashi Y. Sasake M. Ito T. and Tabata M. Selective reduction of nitrogen monoxide with propane over alumina and HZSM-5 zeolite : Effect of oxygen and nitrogen dioxide intermediate.Appl. Catal., 1991, 70(1 ):L15-L20.
    [55] Li Y. J. and Armor J. N. Metal exchanged ferrierites as catalysts for the selective reduction of NO_x with methane. Appl. Catal., 1993, B1:L1-L11.
    [56] Chen H. Y. Schtler W. M. H. FeZSM-5: A Durable SCR Catalyst for NO_x Removal from Combustion Streams. J. Catal., 1997, 166 (2):368-376.
    [57] Aylor A. W. Lobree L. J. Reimer J. A. and Bell A. T. NO Adsorption, Desorption, and Reduction by CH_4 over Mn-ZSM-5. J. Catal., 1997,170(2):390-401.
    [58] Yokoyama C. and Misono M. Catalytic Reduction of Nitrogen Oxides by Propene in the Presence of Oxygen over Cerium Ion-Exchanged Zeolites : II. Mechanistic Study of Roles of Oxygen and Doped Metals. J. Catal., 1994, 150(1):9-17.
    
    [59] Iwamoto M. Yahiro H. and Mizuno N. in prodeeding 9th inter donf Montreal (1992).
    [60] Burch A. Scire S. Selective catalytic reduction of nitric oxide with ethane and methane on some metal exchanged ZSM-5 zeolites. Appl. Catal. 1994, B3(4):295-318.
    [61] Obuchi A. Ohi A. Nakamura M. Ogata A. Mizuno K. Ochuchi H. Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons. Appl. Catal. 1993, B2(1):71-80.
    [62] Jayat F. Lembacher C. Schubert U. and Martens J.A. NO_x removal from exhaust gas from lean burn internal combustion engines through adsorption on FAU type zeolites cation exchanged with alkali metals and alkaline earth metals. Appl. Catal., 1999, B21(3): 221-226.
    [63] Hirabayashi H. Yahiro H. Mizuno N. and Iwamoto M. High Catalytic Activity of Platinum- ZSM-5 Zeolite below 500 K in Water Vapor for Reduction of Nitrogen Monoxide. Chem. Lett., 1992, 21(24):2235-2236.
    [64] Pitchon V. and Fritz A. The Relation between Surface State and Reactivity in the DeNO_x Mechanism on Platinum-Based Catalysts. J. Catal., 1999, 186(1 ):64-74.
    [65] Bamwenda G.R. Ogata A. Obuchi A. Oi J. Mizuno K. Skrzypek J. Selective reduction of nitric oxide with propene over platinum-group based catalysts: Studies of surface species and catalytic activity. Appl. Catal., 1995, B6(4): 311-323
    [66] Rottlander C. Andorf R. Plog C. Krutzsch and Baerns M. Selective NO reduction by propane and propene over a Pt/ZSM-5 catalyst: a transient study of the reaction mechanism. Appl. Catal., 1996, B 11(1): 49-63.
    [67] Burchi R. and Ramli A. A kinetic investigation of the reduction of NO by CH_4 on silica and alumina-supported Pt catalysts. Appl. Catal., 1998, B15(1) 63-73.
    [68] Matsumoto S. Yokota K. Doi H. Kimura M. Sekizawa K. Kasahura S. Research on new DeNO_x catalysts for automotive engines. Catal. Today, 1994, 22(1): 127-146.
    [69] Adelman B. Beutel T. Lei G. D. Schtler W. M. H. On the mechanism of selective NO_x reduction with alkanes over Cu/ZSM-5. Appl. Catal., 1996, B11(1):L1-19.
     [70] Smits R. H. H. Iwasawa Y. Reaction mechanisms for the reduction of nitric oxide by hydrocarbons on Cu-ZSM-5 and related catalysts. Appl. Catal., 1995, B6(3):201-207
    [71] Burch R. Milington P. J. Selective reduction of nitrogen oxides by hydrocarbons under lean-burn conditions using supported platinum group metal catalysts. Catal. Today, 1995, 26(2), 185-206.
    [72] Kikuchi E, Yogo K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere. Catal Today, 1994, 22:73-86.
    [73] Louhran C. J. Resaco D. E. Bifunctionality of palladium-based catalysts used in the reduction of nitric oxide by methane in the presence of oxygen. Appl. Catal., 1996, B7(1-2) 113-126.
    [74] Bennett C. J. Bennet P. S. Goulinsky, S. E. Hayes J. W. Walker A. P. Selective reduction of nitrogen oxides under oxidising exhaust-gas conditions. Appl. Catal., 1992, A86(2):L1-L6.
    [75] Ansell G. P. Diwell A. F. Goulinsky S. E. Hayes J. W. Rajaram R. R. Truex T. J. and Walker A. P. Mechanism of the lean NO, reaction over Cu/ZSM-5. Appl. Catal. 1993, B2(1):81-100.
    [76] Matsumoto S. Yokota K. Doi H. Kimura M. Sekizawa K. and Kasahara S. Research on new DeNO_x catalysts for automotive engines. Catal. Today, 1994:22:733.
    [77] Inui T. Hirabayashi T. Iwamoto S. Performance of a protonated Co-contained silicate catalyst for NO reduction in equivalent conditions to diesel engine exhaust. Catal. Lett., 27 267 (1994)
    [78] Connerton J. Joyner R. W. and Stockenhuber M. Activity of carbonaceous deposits in the selective reduction of nitrogen oxides. Chem. Commun., 1997, 2:185-186.
    [79] Yan J. Y. Kung H. H. Schtler W. M. H. Kung M. C. Synergistic Effect in Lean NO_x Reduction by CH_4over Co/Al_2O_3 and H-Zeolite Catalysts. J. Catal., 1998, 175(2):294-301:
    [80] Witzel F. Sill G. A. Hall W. K. Reaction Studies of the Selective Reduction of NO by Various Hydrocarbons. J. Catal., 1994, 149(1 ):229-237.
    [81] Li Y. J. Slager T. Armor J. N. Selective Reduction of NO_x by Methane on Co-Ferrierites : II. Catalyst Characterization. J. Catal., 1994, 150:388-399.
    [82] Kharas K. C. C. Performance, selectivity, and mechanism in Cu-ZSM-5 lean-burn catalysts. Appl. Catal. 1993, B2(2-3):207-224.
    [83] Hayes N. W. Joyner R. W. Shpiro E. S. Infrared spectroscopy studies of the mechanism of the selective reduction of NO_x over Cu-ZSM-5 catalysts. Appl Catal., 1996, B8(3):343-363.
    [84] Okuhara T. Hasada Y. Misono M. In situ diffuse reflectance IR of catalytic reduction of nitrogen oxides by propene in the presence of oxygen over silica-supported platinum. Catal. Today, 1997, 35(1):83-88.
    [85] Capatain D. K. Armiridis M. D. In Situ FTIR Studies of the Selective Catalytic Reduction of NO by C_3H_6 over Pt/Al_2O_3. J. Catal., 1999, 184(2):377-389.
    [86] Zhang X. Walters A. B. and Vannice M.A. NO Adsorption, Decomposition, and Reduction by Methane over Rare Earth Oxides. J. Catal., 1994, 155(2): 290-302.
    
    [87] Aylor A. W. Lobree L. J. Reimer J. A. Bell A. T. Stud In Surf. Sci. and Catal. 1996, 101:661.
    [88] Fang X. Walters A. B. Vannice M. A. Catalytic reduction of NO by CH_4 over Li-prompted MgO. J. Catal., 1994, 146(2):568-578.
    [89] Vannice M. A. Walters A. B. Zhang X. The kinetics of NO_x decomposition and NO reduction by CH_4 over La_2O_3 and Sr/La_2O_3. J. Catal., 1996 159(1): 119-126
    [90] Huang S. J. Walters A. B. Vannice M. A. The adsorption and reaction of NO, CH_4 and O_2 onLa_2O_3 and Sr-promoted La_2O_3.Appl. Catal., 1998, B 17(3): 183-193
    
    [91] Zhang X. Walters A. B. Vannice M. A. NO reduction by CH_4 over rare earth oxides. Catal. Today, 1996, 27(1):41-47.
    [92] Fliatoura K. D. Verkios X. E. Costa C. N. Efstathious Selective catalytic reduction of nitric oxide by methane in the presence of oxygen over CaO catalysts. J. Catal., 1999, 183(2): 323-335
    [93] Fokema M. D. Ying J. Y. The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide. Appl. Catal., 1998, B 18:71-77.
    [94] Kumthekar M. W. Ozkan U. S. Nitric Oxide Reduction with Methane over Pd/TiO_2 Catalysts I. Effect of Oxygen Concentration. J. Catal., 1997, 171:45-53.
    [95] Kumthekar M. W. Ozkan U. S. Nitric Oxide Reduction with Methane over Pd/TiO_2 Catalysts II. Isotopic Labeling Studies Using N-15, O-18, and C-13.J. Catal., 1997, 171:54-66.
    [96] Loughran C. J. Resasco D. E. Bifunctionality of Palladium-based catalysts used in the reduction of nitric oxide by methane in the presence of oxygen. Appl. Catal., 1995, B7 (1-2): 113-126.
    [97] Kantcheva M. Vakkasoglu A. S. Cobalt supported on zirconia and sulfated zirconia II. Reactive of adsorbed NO_x compounds toward methane. J Catal. 2004, 323:364-371.
    [98] Li N. Wang A. Q. Tang J. W. Wang X. D. Liang D. B. Zhang T. NO reduction by CH_4 in the presence of excess O_2 over Co/sulfated zirconia catalysts. Appl. Catal., 2003, B43: 195-201.
    [99] Costa C. N. Anastasiadou T. Efstathiou A. M. The Selective Catalytic Reduction of Nitric Oxide with Methane over La_2O_3-CaO Systems: Synergistic Effects and Surface Reactivity Studies of NO, CH4, O_2 and CO_2 by transient Techniques. J. Catal., 2000, 194:250-265.
    [100] Hardee J. R. Hightower J. W. Nitric oxide reduction by methane over Rh/Al_2O_3 catalysts. J. Catal., 1984, 86(1):137-146
    [101] Shimazu K. Satsuma A. Hattori T. Selective catalytic reduction of NO by hydrocarbons on Ga_2O_3/Al_2O_3 catalysts. Appl. Catal., 1998, B 16:319-320.
    [102] Li Y, Batavio P. T. Armor J. N. Effect of water vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5. J. Catal., 1993, 142(2): 561-571.
    [103] Li Y. Armor J. N. Selective catalytic reduction of NO with methane on gallium catalysts. J. Catal., 1994, 145(1): 1-9.
    [104] Ren L. L. Zhang T. Liang D. B. Xu C, Tang J, Lin L. W. Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NO_x with CH_4. Appl. Catal., 2002, B35(4):317-321.
    [105] 任丽丽,张涛,赵金凤,林励吾。Fe对Co/HZSM-5在甲烷选择还原NO中的影响,宁夏大学学报(自然科学版),2001,21:162-163.
    [106] Ogura M. Hiromoto S. Kikuchi E. Precious metal loaded In/HZSM-5 for low concentration NO reduction with methane in the presence of water vapor. Chem. Lett., 1995, 1135-1136.
    [107] Kikuchi E. Ogura M. Aratani N. Sugiura Y. Hiromoto S. Yogo K. Promotive effect of additives to In/HZSM-5 catalyst for selective reduction of nitric oxide with methane in the presence of water vapor. Catal. Today, 1996, 27(1): 35-40.
    [108] Nishizaka Y. Misono M. Catalytic reduction of nitrogen monoxide by methane over palladium-loaded zeolites in the presence of oxygen. Chem. Lett., 1993, 22(14): 1295~1298.
    [109] Li Z. Stephanopoulos M. F. Selective catalytic reduction of nitric oxide by methane over cerium and silver ion-exchanged ZSM-5 zeolite. Appl. Catal., 1997, A 165(1-2):15-34.
    [110] Li Z. Stephanopoulos M. F. On the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane. J. Catal., 1999, 182: 313-327.
    [111] Li Z. Stephanopoulos M. F. Effect of water vapor and sulfur dioxide on the performance of Ce-Ag-ZSM-5 for the SCR of NO with CH4. Appl. Catal., 1999, B 22(1): 35-47.
    [112] Zhou X, Zhang T, Xu Z, etc. Selective catalytic reduction of nitrogen monoxide with methane over impregnated In/HZSM-5 in the presence of excess oxygen. Catal. Lett., 1996, 40: 35~38.
    [113] Wang X. Zhang T. Sun X. Guan W. Liang D. Lin L. Enhanced activity of In-Fe_2O_3/HZSM-5 catalyst for NO reduction with methane, 2000, Appl. Catal., B 24(3-4):169-173.
    [114] Ren L. L. Zhang T. Tang J. Zhao J. F. Li N. Lin L. W. Promotional effect of colloidal alumina in the activity of In/HZSM-5 catalyst for selective reduction of NO with methane. Appl. Catal., 2003, B 41(1-2):129-136.
    [115] Guo W. P. Huang L. M. Deng. P. Xue Z. Y. Li Q. Z. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture. Micropor. Mesopor. Mater. 2001, 44-45:427-434.
    [116] Liu H. T. Bao X. J. Wei W. S. Shi G. Synthesis and characterization of kaolin/NaY/MCM-41 composites. Mieropor. Mesopor. Mater., 2003, 66:117-125.
    [117] Kloetstra K. R. Zandbergen, Jansen J. C. van Bekkurn H. Overgrowth of mesoporous MCM-41 on faujasite. Micropor. Mater., 1996, 6:287-293.
    [118] Ooi Y. S. Zakaria R. Mohamed A. R. and Bhatia S. Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Appl. Catal., 2004, A274:15-23.
    [119] Chen H. L. Shen B. J. Pan H. F. In situ Formation of ZSM-5 in NaY Gel and Chararatcerization of ZSM/Y Composite Zeolite. Chem. Lett., 2003, 32(8):726-727.
    [1] Zhang J. Q. Liu Y. Y. Fan W. B. Li R. F. Characterization of CoH-FBZ and selective catalytic reduction NO by CH_4, J. Chem. lnd. Eng. (China) 2006, 9:2105-2110. [张金桥,刘于英,樊卫斌,李瑞丰.CoH-FBZ催化剂表征及选择催化CH_4还原NO《化工学报》2006,9:2105-2110.]
    [2] Li R. F. Guo Q. Li Z. F. Preparation of Y/Beta zeolite composite. CN Appl.20040012333.2[李瑞丰,郭群,李志峰.复合沸石Y/Beta的制备.中国 申请号20040012333.2]
    [3] Eapen M. J. Reddy K. S. N. and Shiralkar V. P. Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide, Zeolites, 1994, 14:295-302.
    [4] Kim M. H. Nam I. S. Kim Y. G. Characteristics of Mordenite-Type Zeolite Catalysts Deactivated by SO2 for the Reduction of NO with Hydrocarbons. J. Catal., 1998, 179:350-360.
    [1] Li Y. Armor J. N. Catalytic Reduction of Nitrogen Oxides with Methane in the Presence of Excess Oxygen. Appl. Catal., 1992, B 1(4): L31-L40.
    [2] Traa Y. Burger B. and Weitkamp J. Zeolite-based materials for the selective catalytic reduction of NO_x with hydrocarbons. Micropor. Mesopor. Mater., 1999, 30: 3-41.
    [3] Li Y. J. and Armor J. N. Metal exchanged ferrierites as catalysts for the selective reduction of NO_x with methane. Appl. Catal., 1993, B 1:L1-Lll.
    [4] Li Y. J. and Armor J. N. Selective Reduction of NO_x by Methane on Co-Ferrierites: I. Reaction and Kinetic Studies J. Catal., 1994, 150:376-387
    [5] Kaucky D. Vondrova A. Dedecek J. Wichlertlova B. Activity of Co Ion Sites in ZSM-5, Ferrierite, and Mordenite in Selective Catalytic Reduction of NO with Methane. J. Catal., 2000, 194: 318-329
    [6] Resni C. Montanari T. Nappi L. Bagnasco G. Turco M. Busca G. Bregani F. Notaro M. Rocchini G. Selective catalytic reduction of NO_x by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterization and catalytic activity. J. Catal., 2003, 214: 179-190.
    [7] Armor J. N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen: a review. Catal. Today, 1995, 26:147-158.
    [8] Guo W. P. Huang L. M. Deng. P. Xue Z. Y. Li Q. Z. Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture. Micropor. Mesopor. Mater., 2001, 44-45: 427-434.
    [9] Liu H. T. Bao X. J. Wei W. S. Shi G. Synthesis and characterization of kaolin/NaY/MCM-41 composites. Micropor. Mesopor. Mater., 2003, 66: 117-125.
    [10] Kloetstra K. R. Zandbergen, Jansen J. C. van Bekkum H. Overgrowth of mesoporous MCM-41 on faujasite. Micropor. Mater., 1996, 6: 287-293.
    [11] Ooi Y. S. Zakaria R. Mohamed A. R. and Bhatia S. Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Appl. Catal. 2004, A274: 15-23.
    [12] Dedecek J. Capek L. Kaucky D. Sobalik Z. and Wichterlova B. Siting and Distribution of the Co ions in the Beta Zeolite: A UV-Vis-NIR and FT-IR study. J. Catal., 2002, 211: 198-207.
    [13] Tabata T. Ohtsuka H. Sabatino L.M.F. and Bellussi G. Selective catalytic reduction of NO_x by propane on Co-loaded zeolites.Microporo. Mesoporo. Mater., 1998, 21: 517-524.
    [14] Ohtsuka H. Tabata T. Okada O. Sabatino L.M.F. and Bellussi G. Catal. Today, 1998, 42: 45-50.
    [15] Xu Ruren(徐如人), Pang Wenqin(庞文琴), Yu Jihong(于吉红), Huo Qisheng(霍启升), Chen Jiesheng(陈接胜). Chemistry-zeolites and Porous Materials(分子筛与多孔材料化学). Beijing: Science Press, 2004. 171-173.
    [16] Perez-Pariente J, Martens J A, Jacobs P A. Crystallization mechanism of zeolite beta from (TEA)_2O, Na_2O and K_2O containing aluminusilicate. Appl. Catal., 1987, 31(1): 35-64
    [17] Eapen M. J. Reddy K. S. N. Shiralkzr V. P. Hydrothermal crystallization of zeolite beta using tetraehtylammium. Zeolites, 1994, 14(4): 295-302.
    [18] Wang X. Chen H. Y. Schtler W. M. H. Mechanism of the Selective Reduction of NO_x over Co/MFI: Comparison with Fe/MFI. J. Catal., 2001, 197:281-291.
    [19] SunT. TrudeauM L. and Ying J Y. The Nature of Cobalt Species in Co-ZSM-5 NO Emission Control Catalysts. J. Phys. Chem., 1996, 100: 13662-1366
    [20] Campa M. C. Pietrogiacomi D. Tuti S. Ferraris G. Indovina V. The selective catalytic reduction of NO_x with CH_4 on Mn-ZSM5: A comparison with Co-ZSM5 and Cu-ZSM5. Appl. Catal. 1998, B18: 151-162.
    [1] Ivanova E. Hadjiivanov K. Klissurski D. Bevillaqua M. Armaroli T. Busca G. FTIR study of species arising after NO adsorption and NO+O_2 co-adsorption on CoY: comparison with Co-ZSM-5. Micropor Mesopor Mater, 2001, 46: 299-309.
    [2] Armor J. N. Selective catalytic reduction of NO_x with methane over metal exchange zeolites. Appl. Catal., 1992, B1(2-3): 239-256.
    [3] Li Y. J. and Armor J. N. Metal exchanged ferrierites as catalysts for the selective reduction of NO_x with methane. Appl. Catal. 1993, B 1:L1-L11.
    [4] Li Y. J. Batavio P. T. Armor J. N. Effect of water vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5. J. Catal., 1993, 142(2):561-571.
    [5] Lukyanov D. B. Sill G. A. D'Itri J. L. Hall W. K. Selective Catalytic Reduction (SCR) of NO with Methane over CoZSM-5 and HZSM-5 Zeolites: On the Role of Free Radicals and Competitive Oxidation Reactions. J. Catal. 1996, 163,447
    [6] Sun T. Trudeau M. L. and Ying J. Y. The Nature of Cobalt Species in Co-ZSM-5 NO Emission Control Catalysts. J. Phys Chem., 1996, B 100:13662-13666
    [7] Campa M. C. Pietrogiacomi D. Tuti S. Ferraris G. Indovina V. The selective catalytic reduction of NO_x with CH_4 on Mn-ZSM5: A comparison with Co-ZSM5 and Cu-ZSM5. Appl. Catal. 1998, B18: 151-162.
    [8] Aylor A. W. Lobree L. J. Reimer J. A. and Bell A. T. NO Adsorption, Desorption, and Reduction by CH4 over Mn-ZSM-5. J. Catal., 1997, 170:390-401.
    [9] Armor J. N. Catalytic removal of nitrogen oxides: where are the opportunities? Catal. Today, 1995, 26(2): 99-105.
    [1] Shelef M. Selective catalytic reduction of NO_x with N-free reductant. Chem. Rev., 1995, 95: 209-225.
    [2] Traa Y. Burger B. Weitkamp J. Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Micropor Mesopor. Mater., 1999, 30: 3-41.
    [3] Wang X. Chen H. Y. Schtler W. M. H. Mechanism of the Selective Reduction of NO_x over Co/MFI: Comparison with Fe/MFI. J. Catal. 2001, 197: 281-291.
    [4] Ivanova E. Hadjiivanov K. Klissurski D. Bevilacqua M. Armaroli T. Busca G. FTIR study of species arising after NO adsorption and NO+O_2 co-adsorption on CoY: comparison with Co-ZSM-5. Micropor Mesopor. Mater., 2001, 46: 299-309.
    [5] Cowan A. D. Cant N. W. Haynes B. S. and Nelson P. F. The Catalytic Chemistry of Nitromethane over Co-ZSM5 and Other Catalysts in Connection with the Methane-NO_x SCR Reaction. J. Catal., 1998, 176: 329-343.
    [6] Campa M. C. Pietrogiacomi D. Tuti S. Ferraris G. Indovina V. The selective catalytic reduction of NO_x with CH_4 on Mn-ZSM5: A comparison with Co-ZSM5 and Cu-ZSM5. Appl. Catal., 1998, B18: 151-162.
    [7] Campa M. C. Rossi S. D. Ferraris G. Indovina V. Catalytic activity of Co-ZSM-5 for the abatement of NO_x with methane in the presence of oxygen. Appl. Catal., 1996, B8:315-331.
    [8] Campa M. C. Luisetto I. Pietrogiacomi D. Indovina V. The catalytic activity of cobalt-exchanged mordenites for the abatement of NO with CH_4 in the presence of excess O_2. Appl. Catal., 2003, B46: 511-522.
    [9] Adelman B. J. Betuel T. Lei G. D. Sachtler W. M. H. Mechanistic Cause of Hydrocarbon Specificity over Cu/ZSM-5 and Co/ZSM-5 Catalysts in the Selective Catalytic Reduction of NO_x. J. Catal., 1996, 158: 327-335.
    [10] Lobree J. Aylor A. W. Reimer J. A. Bell A. T. Role of Cyanide Species in the Reduction of NO by CH_4over Co-ZSM-5. J. Catal., 1997, 169:188-193.
    [11] Sun T. Fokema M. D. Ying J. Y. Mechanistic study of NO reduction with methane over Co~(2+) modified ZSM-5 catalysts. Catal. Today, 1997, 33:251-261.
    [12] Kaucky D. Vondrova A. Dedecek J. Wichterlova B. Activity of Co Ion Sites in ZSM-5, Ferrierite, and Mordenite in Selective Catalytic Reduction of NO with Methane. J. Catal. 2000, 194:318-329.
    [13] Lombardo E. A. Sill G. A. D'ltri J. L. and Hall W. K. The Possible Role of Nitromethane in the SCR of NO_x with CH_4 over M-ZSM5 (M=Co, H, Fe, Cu). J. Catal. 1998, 173:440-449.
    [14] Regalbuto J. R. Zheng T. Miller J. T. The bifunctional reaction pathway and dual kinetic regimes in NO_x SCR by methane over cobalt mordenite catalysts. Catal. Today, 1999, 54:495-505.
    [15] Armor J. N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen: a review. Catal. Today, 1995, 26:147-158.
    [16] Li Y. Battavio P. J. Armor J. N. Effect of Water Vapor on the Selective Reduction of NO by Methane over Cobalt-Exchanged ZSM-5.J. Catal., 1993, 142:561-571.
    [17] Cant N. W. Liu I. O. Y. The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catal. Today, 2000, 63:133-146.
    [18] Lukyanov D. B. Sill G. A. D'ltri J. L. and Hall W. K. Selective Catalytic Reduction (SCR) of NO with Methane over CoZSM-5 and HZSM-5 Zeolites: On the Role of Free Radicals and Competitive Oxidation Reactions. J. Catal., 1996, 163:447-456.
    [19] Yan J. Y. Kung H. H. Sachtler W. M. H. Kung M. M. Synergistic Effect in Lean NO_x Reduction by CH_4 over Co/Al_2O_3and H-Zeolite Catalysts. J. Catal. 1998,175:294-301.
    [20] Resini C. Montanari T. Nappi L. Bagnasco G. Turco M. Busca G. Bregani F. Notaro M. Rocchini G. Selective catalytic reduction of NO_x by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity. J. Catal. 2003, 214:179-190.
    [21] Lukyanov D. B. Sill G. A. D'ltri J. L. and Hall W. K. Comparison of Catalyzed and Homogeneous Reactions of Hydrocarbons for Selective Catalytic Reduction (SCR) of NO_x. J. Catal., 1995, 153:265-274.
    [22] Hadjiivanov K. Identification of Neutral and Charged N_xO_y Surface Species by IR Spectroscopy. Catal. Rev-Sci. ENgng., 2000, 42:71-144.
    [23] Tabata T. Ohtsuka H. Sabatino L. M. F. Bellussi G Selective catalytic reduction of NO_x by propane on Co-loaded zeolites. Micropor. Mesopor. Mater, 1998, 21:517-524.
    [24] Dedecek J. Kaucky D. Wichterlova B. Co~(2+) ion siting in pentasil-containing zeolites, part 3.:Co~(2+) ion sites and their occupation in ZSM-5:a VIS diffuse reflectance spectroscopy study. Micropor. Mesopor. Mater, 2000, 35-36:483-494.
    [25] Wang X. Chen H. Sachtler W. M. H Selective reduction of NO_x with hydrocarbons over Co/MFI prepared by sublimation of CoBr_2 and other methods. Appl. Catal., 2001, B29:47-60.
    [26] Wang X. Chen H. Sachtler W. M. H Catalytic reduction of NO_x by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Appl. Catal., 2000, B26:L227-L239.
    [27] Boix A. Miro E. E. Lombardo E. A. Banares M. A. Mariscal R, Fierro JLG, Chemical, surface and catalytic properties of non-stoichiometrically exchanged zeolites. J. Catal., 2003, 217:186-194.
    [28] Martinez-Hernandez A. Fuentes G. A. Redistribution of cobalt species in Co-ZSM-5 during operation under wet conditions in the reduction of NO_x by propane. Appl. Catal. 2005, B57: 167-174.
    [29] Jong S. J. Cheng S. Reduction behavior and catalytic properties of cobalt containing ZSM-5 zeolites. Appl. Catal., 1995, A 126:51-66.
    [30] Sun T. Trudeau M. L. and Ying J. Y. The Nature of Cobalt Species in Co-ZSM-5 NO Emission Control Catalysts. J. Phys Chem., 1996, B100:13662-13666
    [31] Li Y. J. Hall W. K. Catalytic decomposition of nitric oxide over Cu-zeolites. J. Catal. 1991, 129:202-215.
    [32] Pinaeva LG, Sadovskaya EM, Suknev AP, Goncharov VB, Sadykov VA, Balzhinimaev BS, Decamp T, Mirodatos C. Chem. Engng. Sci. 1999, 54:4327
    [33] Dedecek J. Capek L. Kaucky D. Sobalik Z. and Wichterlova B. Siting and Distribution of the Co ions in the Beta Zeolite: A UV-Vis-NIR and FT-IR study. J. Catal., 2002, 211:198-207.
    [34] Armaroli T. Trombetta M. Gutierrez Alejandre A. Ramirez Solis J, Busca G. FTIR study of the interaction of some branched aliphatic molecules with the external and internal sites of H-ZSM-5 zeolite. Phys. Chem. Chem. Phys., 2000, 2(14):3341-3348
    [35] Sobalik Z. Dedecek J. Kaucky, D. and Wichterlova B. Structure, Distribution, and Properties of Co Ions in Ferrierite Revealed by FT-IR, UV-Vis, and EXAFS. J. Catal., 2000, 194:330-342.
    [36] Dedecek J. Wichterlova B. Co~(2+) Ion Siting in Pentasil-Containing Zeolites. I. Co~(2+) Ion sites and Their Occupation in Mordenite. A Vis-NIR Diffuse Reflectance Spectrocopy Study. J. Phys. Chem. 1999, B103:1462-1476.
    [37] Kaucky D. Dedecek J. Wichterlova B. Co~(2+) Ion Siting in Pentasil-Containing Zeolites. Ⅱ. Co~(2+) Ion sites and Their Occupation in Ferrierite. AVIS Diffuse Reflectance Spectrocopy Study. Micropor. Mesopor. Mater., 1999, 31:75-87.
    [38] Dedecek J. Kaucky, D. Wichterlova B. Does density of cationic sites affect catalytic activity of Co zeolites in selective catalytic reduction of NO with methane? Top. Catal., 2002, 18(3-4):283-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700