离子液中铜盐纳米粒子以及钙镁离子催化类紫罗兰酮的烯丙位氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有机化学中烯酮、烯二酮、二烯酮等占有重要的地位,它们是许多天然产物的基本单元,是生产药品、香料、食品添加剂、农业化学品、功能材料等的原料和中间体,也是多种重要化合物,如手性醇、酯和醚的前体,可以广泛作为有机合成中的构建单元以形成复杂分子。在获取烯酮的众多方法中,烯烃及其衍生物的烯丙位氧化是最主要的方法之一。
     目前,已经建立的烯丙位氧化方法有:各种铬试剂或二氧化硒作氧化剂的方法;基于铬的分子筛或催化量三氧化铬结合叔丁基过氧化氢的方法;各种硒酸试剂结合碘氧苯的方法;最近报道的己内酰胺二铑配体和叔丁基过氧化氢催化氧化方法;过渡金属催化结合叔丁基过氧化氢的方法。这些方法有的表现出较好的收率,但是仍然存在一些问题,例如铬试剂和二氧化硒的危害性、复杂配体的制备、昂贵的催化剂、较长的反应时间、催化剂的回收、产品的分离、无水叔丁基过氧化氢使用安全问题、有机溶剂的环境负担等等。这些问题的改善和解决还有待进一步的探索工作。因此,进一步研发简单、有效、环境友好的方法一直是化学界关注的最具挑战性的课题。
     α-紫罗兰酮、β-紫罗兰酮及其醚、酯类衍生物是天然芳香植物如:桂花、紫罗兰、西番莲、茶叶、烟草等的重要香味组分,广泛地应用于精细化工,制药以及香料工业中。在紫罗兰酮及其衍生物的烯丙位上引入羰基活性基团,不但可以进一步构建更复杂的分子,而且更为重要的是形成类紫罗兰酮二烯酮后,香气变得珍稀独特,用于水果、烟草、鲜花香精或添加剂中,增香矫味,具有很高的应用价值。据我们所知,用于类紫罗兰酮二烯的烯丙位氧化的方法非常有限,都是使用化学计量的三氧化铬或铬酸叔丁酯作氧化剂。最近有报道用催化量的三氧化铬和叔丁基过氧化氢氧化二氢-β-紫罗兰酮,但是来自三氧化铬的危害仍然存在。
     离子液作为环境友好和可以回收的反应介质和催化剂,近年来受到了极大的关注。许多有机反应在离子液中得以实现,取得了比有机溶剂更好或相当的结果。醇的氧化,烯烃的环氧化在离子液中都取得了好结果。但是至今未见烯丙位氧化在离子液中进行的报道。
     结合以上三个领域的研究现状,进一步研发新的、有效的、环境友好的、针对精细化学品生产中应用底物的烯丙位氧化的新方法,不但是有机化学中的重要课题,也将成为精细化学品生产中有创新性和重大应用价值的成果。
     我们首先在咪唑鎓离子液中建立了一种简便有效的、选择性好的烯丙位氧化类紫罗兰酮二烯合成双烯酮的方法。在20 mol%CuCl_2·2H_2O存在下,以简单咪唑鎓六氟磷酸盐或四氟硼酸盐离子液为反应介质,3~5 equiv的70%叔丁基过氧化氢水溶液,成功氧化紫罗兰酮及其酯醚类衍生物,以45%~71%的产率获得相应的烯酮。进一步探索成本相对低廉的离子液作为反应介质,选用N-丁基吡啶鎓六氟磷酸盐或四氟硼酸盐离子液,在类似条件下氧化紫罗兰酮及其酯醚类衍生物,也以47%~72%的产率获得相应的烯酮。
     这是目前这类化合物烯丙位氧化合成烯酮最好的结果。在咪唑鎓和吡啶鎓离子液中,仅以简单铜盐为催化剂和叔丁基过氧化氢为氧化剂,不加入任何其他的碱或配体的类紫罗兰酮二烯的烯丙位氧化,具有反应时间短、使用无毒价廉的催化剂、氧化剂用量小、产率好、反应介质可回收等优点。迄今未见文献报道。
     采用透射电镜技术(TEM)首次展示了形成和稳定在咪唑鎓或吡啶鎓离子液中的Cu(Ⅱ)纳米粒子(20~300nm,10~20 nm)的催化形态。这对于理解新的催化系统CuCl_2·2H_2O-t-BuOOH-[bmim]X或[bpy]X,以及过渡金属在咪唑鎓或吡啶鎓离子液中进行氧化反应,催化剂是在分子水平还是在纳米水平上发挥作用,提供了依据。的产率获得相应的烯酮。以简单钙盐或镁盐为催化剂和叔丁基过氧化氢为氧化剂,不加入任何其他的碱或配体的类紫罗兰酮二烯的烯丙位氧化,迄今未见文献报道。基于实验结果首次提出了钙镁离子催化的,非氧化还原型的烯丙位氧化类紫罗兰酮二烯的反应机理。
     新的催化系统,具有反应时间短、使用无毒价廉的催化剂、直接用70%叔丁基过氧化氢水溶液代替无水叔丁基过氧化氢,氧化剂用量小、且更安全、产率好等优点。进一步探索钙镁离子的催化作用,将开辟钙镁离子催化反应的新领域。
     巨豆三烯酮不但是烟叶中重要的香味化合物,对烟叶的香气吃味质量有重要作用,而且也是许多天然香料的香味成分,有很高的价值,广泛地应用于食品、香水、化妆品和烟草等行业。之前所报道的合成方法存在着步骤多、产率低,反应条件苛刻等限制,我们在成功地解决了合成中产率最低的烯丙位氧化步骤后,建立了一条新的由紫罗兰酮合成巨豆三烯酮的路线,这条新的合成路线只经过氧化—还原—消去重排三步反应就合成了巨豆三烯酮,总产率>50%。这是迄今为止由紫罗兰酮合成巨豆三烯酮最简单,产率最高的方法,不使用复杂的配体,不要求无水无氧操作和很低的反应温度等,这一新方法将具有很好的工业推广价值。
     上述创新性的应用基础研究成果,可为我国进行自主知识产权的烟草香味化合物的合成研究奠定基础。本研究成果还可以推广应用到香料、药物、精细化学品等行业。
Enones, endiones, dienones are of importance in organic chemistry because which are basic blocks of natural products and synthesis chemistry, materials and intermediates in synthesis of pharmaceutical, flavor and fragrance, agricultural chemicals, functional material, and importance precursors to many chiral organic compounds e.g chiral alcohols, ethers and esters. Among methods of producing enones, the allylic oxidation is one of main protocols.
     To date, the methods established for allylic oxidation mainly refer to the traditional methods based on chromium compounds, the improved systems of chromium-based molecular sieve and chromium trioxide with tert-butyl hydroperoxide, the procedures of selenium dioxide and perfluorooctylseleninic acid-iodoxybenzene and the approach of dirhodium(Ⅱ) caprolactamate catalyzed by with tert-butyl hydroperoxide. Transition metal (e.g. Cu, Co, Pd, etc) catalyzed processes in conjunction with a terminal oxidant offer a promising alternatives. Many of these systems are useful synthetically, but several issues remain, including un-available and expensive catalyst, long reaction time, catalyst/product separation, catalyst reuse, the environmental burden of volatile organic solvents, and safety concerns of using anhydrous tert-butyl hydroperoxide. Therefore, further investigation is high desirable. The development of simple, efficient and environmentally friendly method is a challenge for chemistry communites
     Ionones and their derivatives are flavor components of many natural essential oil such as osmanthus, passion fruit, tea, and tobacco. They are appreciated synthetic building blocks due to their remarkable contributions in the synthesis of many medicine, biological active and flavor and fragrance compounds.4 Especially, the introduction of an active carbonyl group in their cyclohexene allylic C-H bond can not only construct more complex molecules, but also yield valued-added products, utilized to the essence of fruit, tobacco, flower and food additives. However, the direct synthesis of dienones by the allylic oxidation of ionones and their derivatives have required either stoichiometric chromium reagent (CrO_3 or (t-BuO)_2CrO_2). Recently, it is reported that using catalytic amount chromium trioxide with tert-butyl hydroperoxide,β-dihydro-ionone was converted to 4-oxo-β-dihydro-ionone. Although the latter avoided the use of stoichiometric reagents, the hazard from chromium trioxide remains.
     Ionic liquids as environmentally benign and recoverable solvents have received considerable attentions. Various reactions can carry out in them, and the equal or better outcome have been obtained. The oxidation of alcohols, the epoxidation of alkenes have well run in ionic liquid. However, to the best of our knowledge, no report has been presented involving the allylic oxidation of alkenes in ionic liquid, particularly ionone-like dienes.
     Based on the background, the development of new, efficient, environmentally friendly protocol of allylic oxidation would be not only an important subject in organic chemistry, but also become innovative and practical findings.
     We originally established a simple, efficient, selective method for the allylic oxidation of ionone-like dienes in imidazolium ionic liquids. In the presence of 20 mol% CuCl_2·2H_2O, ionone and their derivates were converted to corresponding eneones and the yields 45%~71% were afforded using [bmim]BF4 or [bmim]PF_6 as reaction medium and 3-5 equiv of aqueous 70% TBHP.
     We further utilized more low cost ionic liquids as reaction medium, and in [bpy]BF_4 or [bpy]PF_6 the enones of ionone and their derivates were provided with 47%~72% of yield under the similar conditions. This is the best results of synthesis of the enones of ionone and their derivates. Few reports were presented on the allylic oxidation in imidazolium or pyridinium ionic liquids, and without ligand and base the method of allylic oxidation exhibited many advantages including short reaction time, the use of nontoxic catalyst, low amount of TBHP, the good yields of product, and the facile recovery and recycling of reaction media.
     We firstly disclosed the size and shape of Cu (Ⅱ) nanoparticales of formation and stabilization in imidazolium or pyridinium ionic liquids by TEM, which give us insight into the CuCl_2·2H_2O-t-BuOOH-[bmim]X or [bpy]X catalytic system.,
     We also established a new strategy of allylic oxidation of ionone-like based on CaCl_2 or MgCl_2 catalyst. In the presence of 20 mol~30 mol% of CaCl_2 or MgCl2·6H_2O ionone and their derivates can be oxidized corresponding dienones using acetonitrile as solvent with 3-5equiv of aqueous 70% TBHP at 80℃for 4 h, and 42%~456% yields were achieved. To date, no report involved the allylic oxidation of ionone-like dienes with the catalyst of simple calcium or magnesium salt. More important, we proposed a mechanism to account for the non-redox allylic oxidation.
     The advantage of the new catalytic system (CaCl_2 or MgCl_2·6H_2O-TBHP) are numerous: the utilization of Ca~(2+)or Mg~(2+), pretty cheap and nontoxic as well as essential for life, and low amount and direct application of aqueous 70% solution of TBHP, mild reaction conditions, relative short reaction time, and better yield of product. It is believed that the deeply explore the catalytic function of Ca~(2+) or Mg~(2+) would open new areas catalysis by Ca~(2+)or Mg~(2+).
     Megastigmatrienone are known as key tobacco flavoring components and can improve smoking characteristics. Moreover, they serve as the composition of natural essential oil with high value and are frequently utilized to food, perfume, cosmetic and tobacco. The previous methods of synthesizing megastigmatrienone remain many problems, such as long synthetic route, low yield, and harsh reaction conditions. We successively improved the process of the allylic oxidation with low yield, and then develop a new synthetic route of megastigmatrienone using a-ionone as starting material, which are composed of oxidation, reduction and elimination and with good overall yield(>50%). This is the simplest and efficient method in the synthesis of megastigmatrienone. No requirement of moisture-free, air-free and very low temperature make the new approach more practical in industry scale.
     These innovation outcome would support the research of self-dependant synthesis of tobacco flavor component and be widely used in fine chemistry, pharmaceutical and flavor and fragrance industry.
引文
1. Marker, R. E.; Kamm, O.; Fleming, G N.; Popkin, A. H.; Wittle, E. L.; Sterols, X. Cholesterol derivatives. J. Am. Chem. Soc. 1937, 59, 619.
    2. Whitmore, F. C.; Piedlow, G. W. △~2-Cyclohexenone and Related Substances. J. Amer. Chem. Soc., 1941, 63, 758.
    3. Marshall, C. W.; Ray, R. E.; Laos, I.; Riegel, B. 7-Keto Steroids. 11. Steroidal 3/3-Hydroxy-A5-7-ones and A335-7-Ones. J. Amer. Chem. Soc., 1957, 79, 6308.
    4. Dauben, W. G.; Lorber, M.; Fullerton, D. S. Allylic Oxidation of Olefins with Chromium Trioxidepyridine Complex. J. Org. Chem. 1969. 34,3587.
    5. Salmond, W. G.; Barta, M. A.; Havens, J. L. Allylic Oxidation with 3,5-Dimethyl- pyrazole Chromium Trioxide complex Steroidal△~5-7-Ketones. J. Org. Chem. 1978, 43,2057.
    6. Pearson, A. J.: Chen, Y. S.: Hsu. S. Y.: Ray, T. Oxidation of alkenes to enones using tert-butyl hydroperoxide in the presence of chromium carbonyl catalysts. Tetrahedron Lett. 1984, 25; 1235.
    7. Majetich, G.; Song, J.S.; Ringold, C.; Nemeth, G. A.; Newton,M. G. Intramolecular additions of allylsilanes to conjugated dienones. A direct stereoselective synthesis of (.+-.)-14-deoxyisoamijiol J. Org. Chem. 1991,56,3973.
    8. Muuzaart, J. Synthesisof unsaturated carbonyl compounds via a chrominum-mediated allylie oxidation by 70% t-butyl hydroperoxide. Tetrahedron Lett. 1987, 28, 4665.
    9. Lempers, H. E. B.; Sheldon, R. A. Allylic oxidation ofolefins to the corresponding α,β-unsaturated ketones catalyzed by chromium aluminophosphate-5. Appl. Catal. A. 1996, 143.
    10. Sakthivel, A.; Dapurkar, S. E.; Selvam, P. Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves Appl. Catal. A. 2003, 246, 283.
    11. Kaplan, H. The Use of Selenium Dioxide in the Preparation of Quinoline Aldehydes. J. Amer. Chem. Soc.1941, 63, 2654.
    12. Bhalerao, U. T.; Rapoport, H. Stereochemistry of Allylic Oxidation with Selenium Dioxide. Stereospecific Oxidation of gem-Dimethyl Olefins J. Amer. Chem. Soc.1971, 93,4835.
    13. Umbreit, W. A.; Sharpless, K.B. Allylic Oxidation of Olefins by Catalytic and Stoichiometric Selenium Dioxide with tert-Butyl Hydroperoxide. J. Am. Chem. Soc. 1977, 99, 5526.
    14. Barton, D. H. R.; Crich, D. Oxidation of olefins with 2-pyridineseleninic anhydride Tetrahedron 1985, 41,4359. (b) Barton, D. H. R.; Wang, T. L. Novel Allylic Oxidation Reagents. Tetrahedron Lett. 1994, 35, 5149
    15. Crich, D.; Zou, Y. Catalytic Allylic Oxidation with a Recyclable, Fluorous Seleninic Acid Org. Lett. 2004, 6, 775.
    16. Harre, M,; Haufe, R,; Nickisch, K,; Weinig,P,; Weinmann, H. Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylic Oxidations of △-5-Steroids in the Pilot Plant. Org. Proc. Res. Dev. 1998, 2, 100.
    17. Catino, A. J.; Forslund, R. E.; Doyle, M. P. Dirhodium(II) Caprolactamate: An Exceptional Catalyst for Allylic Oxidation..J. Am. Chem. Soc. 2004, 126,13622-13623
    18. Yu, J. Q.; Corey, E. J. Diverse Pathways for the Palladium(II)-Mediated Oxidation of Olefins by tert-Butylhydroperoxide Org. Lett. 2002, 4,2727.
    19. Yu, J. Q.; Corey, E. J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α,β-Enones to 1,4-Enediones J. Am. Chem. Soc. 2003,125, 3232.
    20. Salvador, J. A. R.; Clark, J. H.; The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using homogeneous and heterogeneous cobalt acetate .Chem. Comun. 2001 33.
    21. Salvador, J. A. R.; Melo, M. L. S.; Neves, A. S. C. Tetrahedron Letter. 1997, 38,119.
    22. Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Steroids, 2003,68, 407.
    23. Allal, B. A.; Firdoussi, L. E.; Allaround, S.; Karim, A.; Castanet, Y.; Mortreux, A. Catalytic oxidation of α-pinene by transition metal using t-butyl hydroperoxide and hydrogen peroxide. J. Mol. Catal. A: Chem., 2003, 200, 177
    24. Wilkes, J. S.; Levinsky, J. A.; Wilson. R. A.; Hussey, C. A. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982,21,1263.
    25. Boon, J. A.; Levinsky, J. A.;Pflug, J. L. Wilkes, S. J. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem. 1986,51,480.
    26. Ansari, I. A.; Gree, R. TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF_6].Org. Lett.; (Letter); 2002; 4(9); 1507-1509.
    27. Liu, Z.; Chen, Z.-C; Zheng, Q.-G. Mild Oxidation of Alcohols with 0-Iodoxybenzoic Acid (IBX) in Ionic Liquid l-Butyl-3-methyl-imidazolium Chloride and Water. Org. Lett.; 2003; 5(18); 3321-3323.
    28. Tong, K. H.; Wong, K. Y.; Chan, T. H. Manganese/Biocarbonate-Catalyzed Epoxidation of Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids. Org. Lett 2003,5,3423
    29. Bortolini, O.; Campestrini, S.; Conte, V.; Fantin, G; Fogagnolo, M.; Maietti, S. Sustainable Epoxidation of Electron-Poor Olefins with Hydrogen Peroxide in Ionic Liquids and Recovery of the Products with Supercritical CO_2. Eur. J.Org. Chem. 2003,4804
    30. Branco, L. C; Afonso, C. A. M. Ionic Liquids as a Convenient New Medium for the Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Osmium/Ligand. J. Org. Chem.; 2004; 69(13); 4381-4389.
    31. Smith, K.; Liu, S.; El-Hiti, G. A. IRegioselective Mononitration of Simple Aromatic Compounds under Mild Conditions in Ionic Liquids. Ind. Eng. Chem. Res.; 2005; 44(23); 8611-8615.
    32. Jorapur, Y. R.; Chi, D. Y. Synthesis of Symmetrical Organic Carbonates via Significantly Enhanced Alkylation of Metal Carbonates with Alkyl Halides/Sulfonates in Ionic Liquid. J. Org. Chem.; 2005; 70(26); 10774
    33. Ranu, B. C; Jana, R. Catalysis by Ionic Liquid. A Green Protocol for the Stereoselective Debromination of vicinal -Dibromides by [pmIm]BF4 under Microwave Irradiation..J. Org. Chem.; 2005; 70(21); 8621-8624.
    34. Guo,H.M.; Cun.L.F.; Gong.L.Z.; Mi,A.Q.; Jiang,Y.Z. Asymmetric direct aldol reaction catalyzed by an L-prolinamide derivative: considerable improvement of the catalytic efficiency in the ionic liquid. Chem. Commun., 2005,1450
    35. Alleti, R.; Oh, W. S.; Perambuduru, M.; Afrasiabi ,Z.; Sinn, E.; Reddy, V. P. Gadolinium triflate immobilized in imidazolium based ionic liquids: a recyclable catalyst and green solvent for acetylation of alcohols and amines. Gree Chem., 2005,7, 203-206
    36. Ranu, B. C; Banerjee, S. Ionic Liguid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmim]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles Org. Lett. 2005, 7, 3049.
    37. Xing, H.; Wang, T.; Zhou, Z.; Dai, Y. Novel Bronsted-Acidic Ionic Liquids for Esterifications. Ind. Eng. Chem. Res.; 2005; 44(11); 4147-4150
    38. Yao.Q.OsO_4 in Ionic Liquid [Bmin]PF_6: A Recyclable and Reusable Catalyst System for olefin Dihydroxylation. Remarkable Effect of DMAP. Org.Lett.; 2002, 4;2197
    39. Zhao,D.; Fei,Z..; Geldbach,T.J.; Scopelliti,R.; Dyson,P.J. Nitrile-Functionalized Pyridinium Ionic Liquids: Synthesis, Characterization, and Their Application in Carbon-Carbon Coupling Reaction. J. Am. Chem. Soc. 2004,126, 15876.
    40. Law, M. C; Wong, K.Y.; Chan, T. H. Formation and eaction of Alkylzinc reagents in Room-Temperature Ionic Liquids. J. Org. Chem.; 2005; 70; 1043
    41. Arfan,A.;Bazureau, J.P. Efficient Combination of Recyclable Task Specific Ionic liquid and Microwave Dielectric Heating for the Synthesis of Lipophilic Esters. Org. Proc. Res. Dev. 2005, 9, 743.
    1. Pugson,Terrace, Belmont. Synthesis of Vitamin A. England. GB672211,1952
    2. Anzaldia, M.; Sottofattori, E. Synthesis of ionones and carvone analogues: olfactory properties and preliminary toxicity assays. Eur. J. Med. Chem.2000,35,797-803
    3. Anzaldi, M. Sottofattori, E. Synthesis and antimicrobial activity of heterocyclic ionone-like derivatives. Eur.J..Med.Chem.1999.34,837-842
    4. Roche, F. H. I. The Synthesis of Carotenoids. England. GB796757.1955
    5. Waché, Y.; Ratuld, A. B. Co-oxidation of β-carotene in biphasic media. J.Mol. Catalysis B: Enzymatic 2002,19-20.197-201
    6. Jung, M. E. Min. S. J. Novel formation of a bridged bicyclic furan by rearrangement of a tetrahydroxydecalinone. Tetrahedron Lett. 2004,45,6753-6755
    7. Leclaire, M.; leve, R.. Studies on the preparation of the "Ziegler Intermediate", a Key Intermediate in the Total Synthesis of Forskolin. Tetrahedron. 1996,2,7703-7718
    8. Michael W.Tiepkema, Peter D.Wilson, et al. Synthesis of Functionalized Ring A Building Blocks for Taxoids. Tetrahedron Lett. 1995,36,6039
    9. Pandey, S.; Suryawanshi, S. N.; Gupta, S.; Srivastava, V. M. L. Synthesis and antileishmanial profile of some novel terpenyl pyrimidines. Euro.J.Med.Chem.2004,39, 969
    10. Chakraborty, A.; Kar; G.. K.; Ray, J. K. Studies on fluoterpenes: Stereoselective total Synthesis of (±)-Ambliol-A and Dendrolasin. Tetrahedron, 1997,53,8513
    11. Valla, A.; Andriamialisoa, Z.; Labia, R. Synthesis of new cyclic retinoids via base induced self-condensation of C-13, C-14 and C-15 units. Tetrahedron Lett. 2000,41,3359
    12. Kim, B.T.; Min, Y. K. Synthesis of 2-fluoroabscisic acid: A potential photo-stable abscisic acid. Tetrahedron Lett. 1997,38,1797
    13. Kaiser, R.; Kappeler, A.; Lamparsky, D. Constituent of Osmanthus-Absolute,3rd communication: Derivatives of Theaspiranes. Helv. Chim. Acta. 1978,61,387.
    14. Reynolds, R. J. Tobacco Company. Synthesis of Dehydroionone. England.GB1073609, 1967
    15. Sakamaki, H.; Itoch, K. Biotransformation of (±)-α-ionone and b-ionone by cultured cells of Caragana chamlagu. J.Mol. Catalysis B: Enzymatic 2004,27,177-181
    16. Singh, R.; Ishar, M. P. S.. UV irradiation of arylidene-β-ionones in the presence of dioxygen: regioselective formation of stable endoperoxides. Tetrahedron Lett. 2003, 44, 1943-1945
    17. Aasen, A. J.; Hlubucek,J. R.; Enzell,C. R.Tobacco Chemistry.24. (gR)-9-hydroxy-4-megastigrnen-3-one,a new Tobacoo Constituent. Acta. Chem. Scand. 1974, 28, 285.
    18. Kaiser. Oxo-ionyl esters useful as tobacco flavorant and tobacco producys containing same. R. U. S. 4,963,193 (1990).
    19. Aasen, A. J.; Kimland, B.; Enzell, C. R. Tobacco Chemistry 18.Absolute Configuration of (9R)-9-Hydroxy-4,7E-megastimadien-3-one (3-Oxo-a-ionol). Acta Chem. Scand. 1973, 27, 2107.
    20. Demole, E., Berthet, D., Helv. Chim. Acta. 1971, 54, 681.
    21. Demole, E., Berthet, D. Achemical study of burley tobacco flavour (Nicotiana tabacum L) I. Volatile to medium—volatile constituents. Helv. Chim. Acta 1972,55,1866.
    22. Demole, E., Winter,M., Megastigma- 5,8-dien-4-one, an aroma constituent of the yellow passion fruit and Virginia tobacco.Helv. Chim. Acta. 1979, 62, 67.
    23. Anzaldi, M.; Sottofattori, E.; Dusatti, F.; Ferro, M.; Pani, M.; Balbi, A. Synthesis of ionones and carvone analogues: olfactory properties and preliminary toxicity assays. Eur. J. Med.Chem, 2000, 35, 797.
    24. Zeng, F.; Negishi, E. I.. A Novel, Selective, and Efficient Route to Carotenoids and Related Natural Products via Zr-Catalyzed Carboalumination and Pd- and Zn-Catalyzed Cross Coupling. Org. Lett. 2001, 3, 719.
    25. A. Pommier, V. Stepanenko, K. Jarowicki, P. J. Kocienski. Synthesis of (+)-Manoalide via a Copper(I)-Mediated 1,2-Metalate Rearrangement J. Org. Chem. 2003, 68, 4008.
    26. Aasen, A. J.; Hlubucek, J. R.; Enzell, C. R.Tobacco Chemistry.24.(9R)-9Hydroxy -4- megastigmen-3-one, a new Tobacco Costituent. Acta. Chem. Scand. 1974, 28, 285.
    27. Kaiser, R.; Lamparsky, D. Constituents of Osmanthus-Absolute, 3rd communication: Derivatives of Theaspiranes. Helv. Chem. Acta, 1978, 7, 2328.
    28. Kaiser.Oxo-ionyl esters useful as tobacco flavorant and tobacco producys containing same. R. U. S. 4,963,193 (1990)
    29. Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.; Cho, K. Y.; Yoshida, S. Synthesis of 2-fluoroabscisic acid: A potential photo-stable abscisic acid. Tetrahedron Letters. 38 (1997) 1797
    30. Oppenauer, R. V., Oberrauch, H., An. Asoc. Quim. Argent. 1949, 37, 246
    31. Prelog, V., Osgan, M. Helv. Chim. Acta, 1952, 35, 986.
    32. Hiroyuki, I., Satoshi, T. Metabolism of α-ionone. Isolation, characterization and identification of the metabolites in the urine of rabbits. J. Biochem. 1970, 119, 281.
    33. Aasen, A. J., Kimland, B., Enzell, C. R. Tobacco Chemistry 7. Structure and Synthesis of 3-oxo-α-ionl, a new Tobacco Constituent. Acta Chem. Scand. 1971, 25, 1481.
    34. Aasen, A. J., Kimland, B., Enzell, C. R. Tobacco Chemistry 18.Absolute Configuration of (9R)-9-Hydroxy-4,7E-megastimadien-3-one (3-Oxo-a-ionol). Acta Chem. Scand. 1973, 27, 2107.
    35. Davis, D. L.; Stevens, K. L.; Jurd, L. Chemistry of tobacco constituents. Oxidation of .alpha.-ionone and the acid-catalyzed rearrangement of 5-keto-.alpha.-ionone. J. Agric. Food Chem. 1976, 24, 187.
    36. Young, J. J.; Jung, L. J.; Cheng, K. M. Amberlyst-15-catalyzed intramolecular S_N2' oxaspirocyclization of secondary allylic alcohols. Application to the total synthesis of spirocyclic ethers theaspirane and theaspirone. Tetrahedron Lett. 2000, 41, 3415.
    37. Salvador, J. A. R.; Melo, M. L. S.; Neves, A. S. C. A Novel Method for the N-Acylation of (4R,5S)- 1,5-Dimethyl-4-phenylimidazolidin-2-one. Tetrahedron Letter. 1997, 38, 119.
    38. Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Optimization of the allylie oxidation in the synthesis of 7-keto-△~5-steroidal substrates. Steroids, 2003, 68, 407.
    39. Allal, B. A.; Firdoussi, L. E.; Allaround, S.; Karim, A.; Castanet, Y.; Mortreux, A. Catalytic oxidation of α-pinene by transition metal using t-butyl hydroperoxide and hydrogen peroxide. J. Mol. Catal. A: Chem. 2003, 200, 177.
    40. Yu, J. Q.; Corey, E. J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α, β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 2003, 125, 3232.
    42. Yu, J. Q.; Corey, E. J. Diverse Pathways for the Palladium(Ⅱ)-Mediated Oxidation of Olefins by tert-Butylhydroperoxide. Org. Lett. 2002, 4, 2727.
    43. Catino, A. J.; Forslund, R. E.; Doyle, M. P. Dirhodium(Ⅱ) Caprolactamate: An Exceptional Catalyst for Allylic Oxidation. J. Am. Chem. Soc. 2004; 126(42); 13622-13623.
    44. Crieh, V. D.; Zou,Y. K. Spieuloie Acids A and B, New Polyketides Isolated from the Caribbean Marine Sponge Plakortis angulospiculatus.Org. Lett. 2004, 6, 75.
    45. Harre, M; Haufe, R; Nickisch, K; Weinig,P; Weinmann, H. Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylie Oxidations of A-5-Steroids in the Pilot Plant. Org. Proc. Res. Dev. 1998, 2, 100.
    46. Welton, T.; Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071,
    47. Sheldon, R. Catalytic reactions in ionic liquids Chem. Commun. 2001, 2399-2407.
    48. Kumar, A.; Pawar, S. S. Converting exo-Selective Diels-Alder Reaction to endo-Selective in Chloroloaluminate Ionic Liquids. J. Org. Chem. 2004, 69, 1419
    49. I. A. Ansari, R. Gree. TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF_6]. Org. Lett. 2002, 4, 1507.
    50. Z. Liu, Z-C. Chun, Q-G. Zheng. Mild Oxidation of Alcohols with O-Iodoxybenzoic Acid (IBX) in Ionic Liquid 1-Butyl-3-methyl-imidazolium Chloride and Water. Org. Lett. 2003, 5, 3321.
    51. Tong, K. H.; Wong, Y. K.; Chan, T. H. Manganese/Bicarbonate-Catalyzed Epoxidation of Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids. Org.Lett, 2003, 5, 3423.
    52. Bortolini, S. Campestrini, V. Conte, G. Fantin, M. Fogagnolo, S. Maietti. Sustainable Epoxidation of Electron-Poor Olefins with Hydrogen Peroxide in Ionic Liquids and Recovery of the Products with Supercriticai CO_2. Eur. J. Org. Chem. 2003, 24, 4804.
    53. Huddleston, J. G.; Willauer, H.; D. Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room temperature ionic liquids as novel media for 'clean' liquid-liquid Extraction Chem. Commun. 1998,1765.
    54. Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.;Souza, R. F. D.; Dupont, J. the use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complex Polyhedron 1995, 7,1217-1219.
    55. Park, S.; Kazlauskas, R. J. Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio- and Regioselective Acylations J. Org. Chem.; (Article); 2001; 66(25); 8395-8401.
    56. Dupont, J.; Fonseca, G S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc. 2002, 124, 4228.
    57. Cassol, C. C.; Umpierre, A. P.; Machado, G; Wolke, S. I.; Dupont, J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc. 2005; 127(10); 3298-3299.
    58. Gelesky, M. A.; Umpierre, A. P.; Machado, G.; Correia, R. R. B.; Magno, W. C.; Morais, J.; Ebeling, G.; Dupont, J. Laser-Induced Fragmentation of Transition Metal Nanoparticles in Ionic Liquids. J. Am. Chem. Soc. 2005; 127(13); 4588-4589.
    59. Chapman, J. J.; Reid, J. R. An electrophile-assisted nonsolvent synthesis of alkyl macroisocyclie ethers: an improved nonsoivent Williamson synthesis of medium-sized alkyl carbocyclic ethers J. Org. Chem., 1989; 54(15); 3757-3759.
    60. Ito, N.; Etoh, T.; Hagiwara, H.; Kato, M.Novel synthesis of degradation products of carotenoids, megastigmatrienone analogues and blumeeol-A J. Chem. Soc., Perkin Trans. 1. 1997, 1571.
    1. Andrus, M. B.; Lashley, J. C. Copper catalyzed allylic oxidation with peresters. Tetrahedron 58 (2002) 845.
    2. Muzart, J. Chromium- catalyzed oxidations in organic synthesis. Chem. Rev. 92 (1992) 113.
    3. Marker, R. E.; Kamm, O.; Fleming, G. N.; Popkin, A. H.; Wittle, E. L.; Sterols, X. Cholesterol derivatives. J. Am. Chem. Soc.1937, 59, 619.
    4. Whitmore, F. C.; Piedlow, G. W. △~2-Cyclohexenone and Related Substances. J. Amer. Chem. Soc., 1941, 63, 758.
    5. Marshall, C. W.; Ray, R. E.; Laos, I.; Riegel, B. 7-Keto Steroids. 11. Steroidal 3/3- Hydroxy- A5-7-ones and A335-7-Ones. J. Amer. Chem. Soc., 1957, 79, 6308.
    6. Sakthivel, A.; Dapurkar, S. E.; Seivam, P. Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves. Appl. Catal. A-G, 246 (2003) 283.
    7. Young, J. J.; Jung, L. J.; Cheng, K. M. Amberlyst-15-catalyzed intramolecular S_N2' oxaspirocyclization of secondary allylic alcohols. Application to the total synthesis of spirocyclic ethers theaspirane and theaspirone. Tetrahedron Lett. 41 (2000) 3415.
    8. Crich, D.; Zou, Y. Catalytic Aliylic Oxidation with a Recyclable, Fluorous Seleninic Acid Org. Lett. 2004, 6, 775.
    9. Catino, A. J.; Forslund, R. E.; Doyle, M. P. Dirhodium(Ⅱ) Caprolactamate: An Exceptional Catalyst for Allylic Oxidation J. Am. Chem. Soc. 2004, 126, 13622-13623
    10. Salvador, J. A. R.; Melo, M. L. S.; Neves, A. S. C. Copper-Catalysed Allylic Oxidation of △~5-Steroids by t-Butyl Hydroperoxide. Tetrahedron Letter. 38 (1997) 119.
    11. Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Optimization of the allylie oxidation in the synthesis of 7-keto-△~5-steroidal substrates. Steroids 68 (2003) 407.
    12. Allal, B. A.; Firdoussi, L. E.; Allaround, S.; Karim, A.; Castanet, Y.; Mortreux, A. J. Mol. Catal. A: Chem. 200 (2003) 177.
    13. Yu, J. Q.; Corey, E. J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α,β-Enones to 1,4-Enediones. J Am. Chem. Soc. 2003, 125, 3232.
    14. Yu, J. Q.; Corey, E. J. Diverse Pathways for the Palladium(Ⅱ)-Mediated Oxidation of Olefins by tert-Butylhydroperoxide. Org. Lett. 2002, 4, 2727.
    15. Salvador, J. A. R.; Clark, J. H. The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using homogeneous and heterogeneous cobalt acetate. Chem. Comun. (2001) 33.
    16. Harre, M,: Haufe, R,; Nickisch, K,; Weinig, P,; Weinmann, H. Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylie Oxidations of A-5-Steroids in the Pilot Plant. Org. Proe. Res. Dev. 1998, 2, 100.
    17. Anzaldi, M.; Sottofattori, E.; Dusatti, F.; Ferro, M.; Pani, M.; Balbi, A. Synthesis of ionones and carvone analogues: olfactory properties and preliminary toxicity assays. Eur. J. Med. Chem, 2000,35, 797.
    18. Zeng, F.; Negishi,E. I. A Novel, Selective, and Efficient Route to Carotenoids and Related Natural Products via Zr-Catalyzed Carboalumination and Pd- and Zn-Catalyzed Cross Coupling. Org. Lett. 2001, 3, 719
    19. Pommier, A.; Stepanenko, V.; Jarowicki, K.; Kocienski, P. J. Synthesis of (+)-Manoalide via a Copper(1)-Mediated 1,2-Metalate Rearrangement. J. Org. Chem. 2003,68, 4008.
    20. Aasen, A. J.; Hlubucek, J. R.; Enzell,C. R.Tobacco Chemistry.24. (9R)-9-hydroxy-4-megastigmen-3-one,a new Tobacoo Constituent. Acta. Chem. Scand. 1974, 28, 285.
    21. Kaiser, R.; Lamparsky, D. Constituents of Osmanthus-Absolute, 3rd communication: Derivatives of Theaspiranes. Helv. Chem. Acta, 1978, 7, 2328,
    22. Kaiser, Oxo-ionyl esters useful as tobacco flavorant and tobacco producys containing same. R. U. S. 4,963,193 (1990).
    23. Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.; Cho, K. Y.; Yoshida, S. Synthesis of 2-fluoroabscisic acid: A potential photo-stable abscisic acid. Tetrahedron Lett. 1997, 38, 1797.
    24. Aasen, A. J.; Kimland, B.; Enzell, C. R. Tobacco Chemistry 18.Absolute Configuration of (9R)-9-Hydroxy-4,7E-megastimadien-3-one (3-Oxo-a-ionol). Acta Chem. Scand. 1973, 27, 2107.
    25. Davis, D. L.; Stevens, K. L.; Jurd, L. Chemistry of tobacco constituents. Oxidation of .alpha.-ionone and the acid-catalyzed rearrangement of 5-keto-.alpha.-ionone. J. Agric. Food Chem. 1976, 24, 187.
    26. Young, J. J.; Jung, L. J.; Cheng, K. M. Amberlyst-15-catalyzed intramolecular S_N2' oxaspirocyclization of secondary allylic alcohols. Application to the total synthesis of spirocyclie ethers theaspirane and theaspirone. Tetrahedron Letters 2000, 41, 3415.
    27. Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 99 (1999) 2071,
    28. Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun.2001, 2399-2407.
    29. Kumar, A.; Pawar, S. S. Converting exo-Selective Diels-Alder Reaction to endo-Selective in Chloroloaluminate Ionic Liquids. J. Org. Chem. 69 (2004) 1419.
    30. Zhao, D.; Fei, Z.; Geldbach, J. T.; Scopelliti, R.; Dyson, P. J. Nitrile-Functionalized Pyridinium Ionic Liquids: Synthesis, Characterization, and Their Application in Carbon-Carbon Coupling Reactions. J. Am. Chem. Soc. 2004, 126, 15876.
    31. Law, M. C.Wong,K.Y.;Chan,T.H. Formation and Reactions of Alkylzinc Reagents in Room-Temperature Ionic Liquids. J. Org. Chem.2005,70,10434.
    32. Yao, Q. OsO_4 in liquid [bmim] PF_6: A Recyclable and reusable Catalyst System for Olefin Dihydroxylatin. Remarkable Effect of DMAP Org. Lett.2002, 4, 2197.
    33. Xing, H.; Wang, T.; Zhou, Z.; Dai, Y. Novel Brφnsted-Acidic Ionic Liquids for Esterifications. 1rid Eng. Chem. Res. 2005; 44(11); 4147-4150.
    34. Arfan, A.; Bazureau, P. Efficient Combination of Recycle Tast Specific Ionic Liquid and Microwave Dielectric Heating for the Synthesis of Lipophilic Esters. Org. Proc. Res. Dev.2005, 9, 743.
    35. Xiao, J. C. Ye, C.; Shreeve, J. M. Bipyridinium Ionic Liquid-Promoted Cross-Coupling Reactions between Perfluouralkyl or pentafluorophenyl Halides and Aryl Iodides. Org. Lett. 2005, 7, 1963.
    36. Xiao, Y.; Malhotra, S. V. Friedel-Crafts cylation reactions in pyridinium ba ased ionic liquids. J.. Orgmetal. Chem. 2005, 690, 3609.
    37. Ougaliotto, P.; Viscardi, G.; Barolo, C.; Bami, E. Gemini Pyridinium Surfactants: Synthesis and Conductometric Study of a Noval Class of Amphiphiles. J. Org. Chem. 2003, 68, 7651.
    38. Lewis, L. Chemical catalysis by colloids and clusters.Chem. Rev. 1993, 93, 2693.
    39. Aiken, J. D.; Finke, R. G. A review of modem transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 1999, 145, 1-44.
    40. Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc. 2002, 124, 4228.
    41. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction.J. Am. Chem. Soc. 2005; 127(10);3298-3299.
    42. Gelesky, M. A.; Umpierre, A. P.; Machado, G.; Correia, R. R. B.; Magno, W. C.; Morais, J.;Ebeling, G.; Dupont, J.Laser-lnduced Fragmentation of Transition Metal Nanopartieles in Ionic Liquids. J. Am. Chem. Soc. 2005; 127(13); 4588-4589.
    43. Harre, M,; Haufe, R,; Nickisch, K,; Weinig,P,; Weinmann, H. Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylie Oxidations of A-5-Steroids in the Pilot Plant. Org.Proc. Res. Dev. 1998, 2, 100.
    44. Kaiser.Oxo-ionyl esters useful as tobacco flavorant and tobacco producys containing same.R. U. S. 4,963,193 (1990)
    45. Aasen, A. J., Kimland, B., Enzell, C. R. Tobacco Chemistry 18.Absolute Configuration of (9R)-9-Hydroxy-4,7E-megastimadien-3-one (3-Oxo-a-ionol). Acta Chem. Scand. 1973, 27,2107.
    46. Davis, D. L.; Stevens, K. L.; Jurd, L. Chemistry of tobacco constituents. Oxidation of.alpha.-ionone and the acid-catalyzed rearrangement of 5-keto-.alpha.-ionone. J. Agric.Food Chem. 1976, 24, 187.
    47. Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recyeable Catalysts for Biphasie Hydrogenation Reactions. J. Am. Chem. Soc. 2002, 124, 4228.
    48. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. The Role of Pd Nanopartieles in Ionic Liquid in the Heek Reaction. J. Am. Chem. Soc. 2005; 127(10);3298-3299.
    49. Gelesky, M. A.; Umpierre, A. P.; Machado, G.; Correia, R. R. B.; Magno, W. C.; Morais, J.;Ebeling, G.; Dupont, J.Laser-lnduced Fragmentation of Transition Metal Nanoparticles in Ionic Liquids. J. Am. Chem. Soc. 2005; 127(13); 4588-4589.
    50. Salvador, J. A. R.; Melo, M. L. S.; Neves, A. S. C. A Novel Method for the N-Aeylation of (4R,5S)-1,5-Dimethyl-4-phenylimidazolidin-2-one. Tetrahedron Letter. 38 (1997) 119.
    51. Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Optimization of the allylie oxidation in the synthesis of 7-keto-△~5-steroidal substrates. Steroids 68 (2003) 407.
    52. Allal, B. A.; Firdoussi, L. E.; Ailaround, S.; Karim, A.; Castanet, Y.; Mortreux, A. Catalytic oxidation of α-pinene by transition metal using t-butyl hydroperoxide and hydrogen peroxide.J. Mol. Catal. A: Chem. 200 (2003) 177.
    53. Yu, J. Q.; Corey, E. J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α,β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 2003, 125, 3232.
    54. Yu, J. Q.; Corey, E. J. Diverse Pathways for the Palladium(Ⅱ)-Mediated Oxidation of Olefins by tert-Butylhydroperoxide. Org. Lett. 2002, 4, 2727.
    1. Dugas, H. Bioorganic Chemistry: A ChemicalApproach to Enzyme Action, Springer-Verlag, New York, Third Editon, 1996, p 165.
    2. Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Componds.Meehanistie Principles and Synthetic Methodology Including Biochemical Processes. Academic. Press, Inc. (London).Ltd.1981, p.38
    3. Metal-Catalyzed Selective Oxidations. In Peroxide Chemistry Mechanistic and Preparative Aspects of Oxygen Transfer; Acad,W.,Ed.;Wiley:Weinheim,2000;p 301
    4. Asadullah, M.; Kitamura, T.; Fujiwara, Y. CaCl_2-Catalyzed Functionalization of Saturated Hydrocarbons with CO to Carboxylie Acids and Esters. Journal of Catalyst. 2000, 195, 180.
    5. Suppes, G. J.; Roy, S.; Ruckman, J. Calcium carbonate catalysis of alcohol oxidation in near-critical water.AICHE Journal 2001, 47, 2102.
    6. Pearson, A. J.; Chen, Y. S.; Hsu. S. Y.; Ray, T. Oxidation ofalkenes to enones using tert-butyl hydroperoxide in the presence of chromium carbonyl catalysts. Tetrahedron Lett.1984, 25, 1235.
    7. Salvador, J. A. R.; Melo, M. L. S.; Neves, A. S. C. Copper-Catalysed Allylie Oxidation of AS-Steroids by t-Butyl Hydroperoxide. Tetrahedron Lett. 1997, 38, 119.
    8. Salvador, J. A. R.; Clark, J. H. The allylic oxidation of unsaturated steroid by tert-butyl hydroperoxide using homogeneous and heterogeneous cobalt acetate.Chem. Comun. 2001, 33.
    9. Yu, J. Q.; Corey, E. J. Diverse pathway for the palladium(Ⅱ)-mediated oxidation of olefins by t ert-butylhydroperoxide. Org. Lett. 2002, 4, 2727.
    10. Yu, J. Q.; Corey, E. J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α,β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 2003, 125, 3232.
    11. Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.; Nikolaropoulos, S. S. Optimization of the allylic oxidation in the synthesis of 7-keto-△~5-steroidal subtrates.Steroids 2003, 68, 407.
    12. Allal, B. A.; Firdoussi, L. E.; Allaround, S.; A. Karim, Castanet, Y.; Mortreux, A. Catalytic oxidation of α-pinene by transition metal using t-butyl hydroperoxide and hydrogen peroxide.J. Mol. Catal. A: Chem. 2003, 200, 177.
    13. Sakthivel, A.; Dapurkar, S. E.; Selvam P., Ailylie oxidation of eyclohexene over chromium containing mesoporous molecular sieves. Applied Catalysis A: General. 2003, 246, 283.
    14. Catino, A. J.; Forslund, R. E.; Doyle, M. P. Dirhodium(Ⅱ) Caprolactamate: An Exceptional Catalyst for Ailylic Oxidation J. Am. Chem. Soc. 2004, 126, 13622.
    15. Harre, M,; Haufe, R,; Nickisch, K,; Weinig, P,; Weinmann, H. Some Reaction Safety Aspects of Ruthenium-Catalyzed Allylic Oxidations of △-5-Steroids in the Pilot Plant. Org. Proc. Res. Dev. 1998, 2, 100.
    16.章思规.精细有机化学品技术手册.北京:科学出版社,1992:1530
    17.北京化学试剂公司.化学试剂·精细化学品手册.北京:化学工业出版社,2002:978
    18. Bartlett, P. D.; Gunther, P. Oxygen-Rich Intermediates in the Low-Temperature Oxidation of t-Butyl and Cumyl Hydroperoxides. J. Am. Chem. Soc. 1966, 88, 3288.
    19. Bartlett, P. D.; Guaraldi, G. Di-tert-butyl trioxide and di-tert-butyl tertoxide, J. Am. Chem. Soc. 1967, 89, 4799.
    1. Kaiser, R.; Eur. P. Appl. 3515 (1979); C.A., 92, 42165 (1980)
    2. Kaiser, R.; Kappeler, A.; Lamparsky, D. Inhaltsstoffe des Osmanthus-Absolues. 3. Mitteilung: Derivate der theaspirane. Heir. Chim. Acta. 1978, 61,387.
    3. Demole, E.; Enggist, P. Novel Synthesis of 3,5,5-Tdmethyl-4-(2-butenylidene) -eyelohex-2-en-l-one, a Major Constituent of Burley Tobacco Flavour. Helv. Chim. Acta. 1974, 57,2087.
    4. Brunke, E.J.; Tumbrink, L. Process for the preparation of 4,4,7-trimethyl-3,4,7,8-tetrahydro-2(6H)-naphthalene-one D E 3516931 (1988)
    5. Rowland, R. L. Process for the preparing 4-(2-butenylidene)-3,5,5- trimethyl- cyelohex- 2-en-1.-one U. S. 3,211,157 (1965); U. S. 3,268, 589 (1966)
    6. Aasen A. J. New Tobacco Constituents-The Structures of Five Isomeric Megastigmatrienones., Aeta. Chem. Seand. 1972, 26 (6): 2573-2576.
    7. Takazawa, O.; Tamyra, H.; Kogami, K.; Hayashi, K. New synthesis of megastigma-4, 6, 8-tden-3-ones, 3-hydrox-β-ionol, 3-hydroxy-β-ionone, 5,6-epoxy-3-hydroxy-β-ionol, and 3-oxo-α-ionol. Bull. Chem. Soc. Jpn. 1982, 55, 1907.
    8. Ito,N.; Etoh,T.Hagiwara, H.;Kato,M. Novel synthesis of degradation products ofearotenoids, megastigmatrienone analogues and blumenol-A. J. Chem. Soc. Perkin Trans.1, 1997, 1571.
    9. Torh, S.; lnokuehi, T.; Ogawa, H. The Cross-Aldol reaction of 3-alkoxy-2-eyelohexen-1-ones with enals. A Synthesis of 4-(trans-2-butenylidene)-3,5,5-trimethyl-2-eyelohexen-1-ones. Bull. Chem. Soc. Jpn.1979, 52, 1233.
    10. Gemal, A. L.; Luehe, J. L. Lanthanoids in Organic Synthesis. 6. The Reduction of-Enones by Sodium Borohydride in the Presence of Lanthanoid Chlorides: Synthetic and eehanistie Aspects. J. Am. Chem. Soc. 1981, 103, 5454.
    11. Luche, J. L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones J. Am. Chem. Soc. 1978, 100, 2226.
    12. Fujii, H.; Oshima, K.; Utimoto, K. A Facile and Selective 1,2-Reduction of Conjugated ketones with NaBH_4 in the Presence of CaCI_2. Chem. Lett. 1991, 1848.
    13. Coleman.G.H.; Johnstone. H. F. CYCLOHEXENE. Organic Syntheses, Coll. 5, p.33
    14. Kaiser.R;Lamparsky.D.222.Inhaltsstoff des osmanthus-absolues. Helv. Chim. Acta. 1978, 61, 2328.
    15. Monson. R. S. Solvent catalyzed dehydration of alcohols in hexamethylphosphorie triamide.Tetrahedron Lett. 1971, 7, 567-570
    16. Whitfield. F.B.; Sugowdz.G. The 6-(But-2'-enylidene)-1,5,5- trimethyl- cyclohex-1-enes:Important volatile constituents of the Juice of the purple passionfruit passiflora edulis. Aust.J. Chem., 1979,32,891-903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700