Co_3O_4催化剂的制备、表征及其CO低温氧化催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO低(常)温催化氧化由于在许多方面具有重要的实用价值而颇受关注,如用于地下矿井的过滤式自救器和消防自救呼吸器、CO气体传感器、封闭式CO_2激光器以及密闭系统内CO的消除等方面。同时,由于反应体系简单,在理论研究方面CO氧化还常常用作研究氧化催化剂的探针反应,以揭示催化剂的结构与性能之间的关系,探讨反应机理。
     Co_3O_4作为一种非贵金属催化剂用于CO的低温催化氧化近年来已成为研究的热点之一。目前来看制备高活性Co_3O_4催化剂的制备方法存在制备过程复杂、后处理繁琐等缺点;根据研究发现预处理条件对Co_3O_4催化剂的CO低温氧化活性有较大的影响;对Co_3O_4催化剂上CO低温氧化反应的机理和失活原因也有研究,取得了一些共识,但仍有许多问题需要解决,同时对Co_3O_4催化剂的表征及其CO低温催化性能缺乏系统研究。本文利用简单的液相沉淀方法制备了高活性的Co_3O_4催化剂,首先考察了各种制备条件对其CO低温氧化性能的影响,然后着重考察了后处理温度以及工艺条件等对其CO低温催化氧化性能的影响,并通过TG-DTG、XRD、N_2-物理吸附、TEM、IR、XPS等表征手段对催化剂的结构进行了系统研究,同时还利用CO滴定、O_2-TPD以及In-situ DRIFT等实验手段,对Co_3O_4催化剂上CO和O_2的吸附性能以及催化CO低温氧化反应的机理和可能的失活原因进行了探索,得到的主要结果和结论如下:
     1.制备方法和制备参数对Co_3O_4催化剂CO低温催化氧化性能的影响研究
     (1)通过比较直接焙烧法、均匀沉淀法和液相沉淀法制备的Co_3O_4催化剂的CO催化氧化性能得出,均匀沉淀法和液相沉淀法制备的催化剂在25℃均能将CO完全转化,并且具有相似的稳定性,直接焙烧法制备的催化剂虽然也能将CO完全转化,但稳定性相对较差。
     (2)采用液相沉淀法,以NH_4HCO_3为沉淀剂,通过比较以三种不同钴盐为前驱物制备的Co_3O_4的CO催化氧化性能得出,以Co(NO_3)_2·6H_2O、COSO_4·7H_2O为前驱物制备的催化剂在25℃均能将CO完全转化,并且具有相似的稳定性,以COCl_2·6H_2O为前驱物制备的催化剂初始CO转化率只有80%,并且稳定性较差。
     (3)采用液相沉淀法,以Co(NO_3)_2·6H_2O为前驱物,通过比较三种不同沉淀剂制备的Co_3O_4的CO催化氧化性能得出,以NH_4HCO_3和NH_3·H_2O为沉淀剂制备的催化剂在25℃均能将CO完全转化,前者稳定性优于后者,以KHCO_3为沉淀剂制备的催化剂初始CO转化率只有80%,并且稳定性较差。
     (4)通过液相沉淀法以Co(NO_3)_2·6H_2O为前驱物,NH_4HCO_3为沉淀剂,通过比较分别采用普通干燥和超临界干燥制备的Co_3O_4催化剂的CO催化氧化性能得出,两种干燥方式对Co_3O_4催化剂的催化性能影响不大。
     (5)以液相沉淀法制备的Co_3O_4负载Pd制备Pd/Co_3O_4催化剂,在25℃具有与Co_3O_4相同的催化活性,但催化稳定性低于Co_3O_4。
     (6)以液相沉淀法制备的Co_3O_4与膨润土机械混合制备不同Co_3O_4含量的Co_3O_4/膨润土催化剂,在25℃具有与Co_3O_4相同的催化活性,稳定性随Co_3O_4含量的降低而下降。
     2.焙烧温度对Co_3O_4催化剂织构、结构、表面性质和CO低温催化氧化性能的影响研究
     (1)在所考察的温度范围内(250~600℃),焙烧温度对Co_3O_4催化剂的体相结构没有影响,均以尖晶石结构存在,但对Co_3O_4催化剂的粒径形貌具有较大影响,经300℃焙烧的催化剂具有小的粒径和相对好的分散状态,随焙烧温度的升高,催化剂颗粒不断聚集,粒径明显长大。
     (2)焙烧温度对Co_3O_4催化剂的比表面积和比孔体积有较大影响,300℃焙烧的催化剂比表面积和比孔体积分别为54.3m~2/g和0.20cm~3/g,当焙烧温度达到600℃时,分别仅有9m~2/g和0.02cm~3/g,催化剂基本上变为无孔材料。
     (3)在所考察的温度范围内,焙烧温度对Co_3O_4催化剂表面Co的价态没有明显影响。
     (4)Co_3O_4催化剂表面存在三种形态的氧,随着焙烧温度的升高,吸附氧略有减少,羟基氧明显减少,晶格氧占总氧的百分数显著增加。
     (5)CO滴定实验表明,经氧化预处理的Co_3O_4催化剂表面具有活性氧物种,焙烧温度对催化剂表面的活性氧物种的数量有较大影响,300℃焙烧的催化剂具有最多的活性氧物种,约为143.74μmol/g。
     (6)CO催化氧化实验结果表明,在考察的焙烧温度范围内所有的催化剂都具有较高的CO氧化初始活性,经300℃焙烧的催化剂具有最好的稳定性。高于或低于300℃的焙烧均引起催化剂稳定性的下降。
     (7)通过对不同温度焙烧的Co_3O_4催化剂的结构、织构、表面性质以及CO催化氧化性能的研究,发现通过液相沉淀法经300℃焙烧制备的Co_3O_4催化剂以尖晶石结构存在,粒径细小,具有相对好的分散状态,从而具有最多的活性氧物种和最好的催化性能,显然小的粒径、好的分散状态和多的活性氧物种是Co_3O_4催化剂具有高的低温催化活性和稳定性的重要因素。
     3.Co_3O_4催化剂上CO低温催化氧化工艺条件的优化选择
     (1)在反应温度为25℃时,经过200℃氧化预处理的Co_3O_4催化剂具有高的CO催化氧化活性和稳定性,经惰性气氛预处理的催化剂也具有较高的催化活性,稳定性相对变差,不经过预处理的催化剂几乎没有催化活性。
     (2)在反应温度为25℃时,空速在2500~20000h~(-1)的范围内,随空速的提高,催化稳定性下降;原料气中CO含量在0.5~2%的范围内,随CO含量的提高,催化稳定性下降。
     (3)在反应温度为-78~80℃的范围内,Co_3O_4催化剂均具有较高的CO催化氧化活性,在-78~25℃的范围内随温度的升高,稳定性提高,在25~80℃的范围内随温度的升高,稳定性降低。
     (4)通过工艺条件的优化选择,液相沉淀法制备的Co_3O_4催化剂的最佳反应条件为:反应温度25℃,空速2500h~(-1),原料气中CO含量0.5%,在此条件下,可以将CO完全催化氧化维持时间达630min,优于文献报道的结果。
     (5)原料气中水蒸气的引入对Co_3O_4催化剂的稳定性有极大的负作用,在Co_3O_4催化剂中添加微量的Pd明显可以提高催化剂的抗水性能。
     (6)失活的Co_3O_4催化剂在高于200℃的温度下,经流动的干燥空气处理30min,完全可以再生。
     (7)该催化剂不但具有较高的连续催化CO低温氧化的活性和稳定性,而且可以间断使用。
     4.Co_3O_4催化剂催化CO低温氧化的反应机理和失活原因的探索
     (1)失活前后催化剂的O_2-TPD分析表明:Co_3O_4催化剂表面有多种氧物种的吸附,其中α峰对应的低温脱附的氧物种O_2~-和β、γ峰对应脱附的O_2~(2-)和O~-具有CO低温氧化活性,δ峰对应的高温脱附的晶格氧对CO低温氧化没有作用。
     (2)失活前后催化剂的XPS结果表明,催化剂表面Co的价态没有明显变化,表明催化剂失活不是由于Co的价态变化引起的。在失活的催化剂表面上明显有吸附水存在,同时催化剂失活后与失活前相比吸附氧与晶格氧的比值下降。
     (3)In situ DRIFT分析结果表明:在未经预处理的Co_3O_4催化剂表面,存在一定量的吸附水,与CO竞争吸附同一活性位,导致CO的吸附减少,且与催化剂表面吸附水的-OH形成甲酸盐物种,导致吸附的CO不能与氧反应生成CO_2。在经过氧化预处理的Co_3O_4催化剂上,CO发生明显的线性吸附,并且能够与催化剂表面的氧物种反应生成CO_2,其中碳酸盐物种是可能的中间产物。
     (4)推测Co_3O_4催化剂上CO低温氧化的反应机理可能为:在催化剂表面存在CO吸附和氧的吸附,吸附的活性氧与吸附的CO反应生成CO_2,碳酸盐物种是可能的中间产物;在反应过程中很可能由于原料气中微量的水吸附在催化剂表面并逐渐积累,导致CO吸附减少,并且吸附的CO与-OH生成可能的甲酸盐物种,从而导致催化剂失活。
The process of low-temperature CO catalytic oxidation has become animportant research topic due to its many potential areas of applications.Particularly, these applications include air-purification devices for respiratoryprotection, carbon monoxide gas sensors, closed-cycle carbon dioxide lasers,and removing trace quantities of CO from the ambient air in sealed cabins. Inaddition, in the aspect of academic study the CO oxidation has been regardedas a probe reaction to show the relationship between the structure and theperformance, and also to investigate the reaction mechanism.
     The research about the base metal oxide Co_3O_4 catalyst forlow-temperature CO catalytic oxidation has become a hotspot over the years.At present, the methods for preparing the Co_3O_4 catalyst with high activityexist many disadvantages such as the complicated process of operation andthe post treatment. According to the literatures, the pretreatment conditionshave an great effect on the catalytic activity of Co_3O_4 for low-temperatureCO oxidation. There are some researches about the reaction mechanism andthe original factors of deactivation of the Co_3O_4 catalyst, and a littleconsensus has been obtained, however, there are many problems awaitingfurther investigation, and there is a lack of perfect study about thecharacterization and catalytic performance of the Co_3O_4 catalyst. Without useof any surfactant or oxidant, Co_3O_4 catalyst with high activity has beenprepared by a simple liquid-precipitation method in the dissertation. Firstly,the effects of preparation conditions on the catalytic performance forlow-temperature CO oxidation have been studied; secondly, the effects of calcination temperatures and evaluation conditions on the catalyticperformance for low-temperature CO oxidation have been studied. Thestructures of the catalysts have been investigated by TG-DTG、XRD、TEM、N_2-adsorption、IR and XPS. The adsorption performance of CO and O_2 andthe reaction mechanism and the reason of deactivation of low-temperatureCO oxidation have been investigated via CO titration, O_2-TPD and in situDRIFT. The main results and conclusions are as follows:
     1. The study on the effect of preparation methods and preparationparameters on the catalytic performance for low-temperature CO oxidationover the Co_3O_4 catalysts.
     (1) The Co_3O_4 catalyst with high catalytic activity can be obtained by theliquid-precipitation and the well-distributed precipitation method, and canconvert CO completely at 25℃with the same stability. However, the catalystprepared by the direct calcination has a poor catalytic performance.
     (2) The Co_3O_4 catalysts obtained by the liquid-precipitation can convertCO completely at 25℃with the same stability using Co(N_O3)_2·6H_2O orCoSO_4·7H_2O as the cobalt salt and NH_4HCO_3 as the precipitator. However,the conversion of CO over the catalyst is only 80% obtained usingCoCl_2·6H_2O as the cobalt salt and the stability is poor.
     (3) The Co_3O_4 catalysts obtained by the liquid-precipitation can convertCO completely at 25℃with the same stability using NH_4HCO_3 or NH_3·6H_2Oas the precipitator and Co(NO_3)_2·6H_2O as the cobalt salt. However, theconversion of CO over the catalyst is only 80% obtained using KHCO_3 as theprecipitator and the stability is poor.
     (4) The drying methods including the common drying and the super criticaldrying have no obvious effects on the catalytic performance.
     (5) The Pd/Co_3O_4 catalyst does not show superiority compared to theCo_3O_4 catalyst for CO oxidation at 25℃.
     (6) The Co_3O_4/Bent catalysts have the same catalytic activity as the Co_3O_4catalyst at 25℃, and the stability decreases with the content of Co_3O_4 increasing.
     2. The study on the effect of calcination temperature on the structure,surface properties and the low-temperature CO oxidation performance overthe Co_3O_4 catalysts.
     (1) The calcination temperatures have no obvious effect on the structure ofthe Co_3O_4 catalyst, and all the catalysts exist as a pure Co_3O_4 phase with thespinel structure within the calcination temperature 250~600℃. However,the calcinations temperatures have a great effect on the crystal size and thegeometry of the catalysts. The catalyst calcined at 300℃has the highestdispersion level, and the particles are apt to aggregate together randomly withthe increase of calcination temperature.
     (2) The calcination temperatures also have an obvious effect on the BETspecific surface area and the specific pore volume. The BET specific surfacearea and the specific pore volume of the catalyst calcined at 300℃are 54.3m~2/g and 0.20 cm~3/g respectively, and they are 9 m~2/g and 0.02 cm~3/g whenthe calcination temperature is at 600℃, so the catalyst has transformed into amaterial of none pore.
     (3) Within the temperature 250~600℃, the calcination temperatures haveon obvious effect on the valence state of Co on the Co_3O_4 surface.
     (4) There are three kinds of oxygen species on the Co_3O_4 surface. Theamount of the adsorption oxygen species decrease a little while the hydroxideradical oxygen species decrease a lot, and the percent of the lattice oxygen atthe whole oxygen species increase.
     (5) The results of CO titration indicate the Co_3O_4 catalysts possess theactive oxygen species after pretreatment. The calcinations temperature havean obvious effect on the amount of active oxygen species, and the catalystcalcined at 300℃possesses the most amounts of active oxygen species,about 143.74μmol/g.
     (6) All the catalysts have good catalytic activity for CO oxidation in thetemperature range used. The catalyst calcined at 300℃shows the beststability. The calcination temperatures that higher or lower than 300℃lead to a decrease of the catalytic stability.
     (7) The results of investigation about the structure、surface properties andthe low-temperature CO oxidation performance indicate that the catalystcalcined at 300℃has the small particle size and the highest dispersion levelexisting as the spinel structure, and so possesses the most amounts of activeoxygen species and the best catalytic performance. Obviously, the smallparticle size、high dispersion level and many active oxygen species are theimportant factors for the high catalytic activity and stability oflow-temperature CO oxidation over the Co_3O_4 catalysts.
     3. The optimization of the technological condition of low-temperature COoxidation over the Co_3O_4 catalyst
     (1) The pre-oxidized Co_3O_4 catalyst shows very high CO oxidation activityand stability at 25℃. Treatment of catalyst with inert gas causes the catalyticstability lower, while the catalyst has bad catalytic activity without anypretreatment.
     (2) The stability decreases with the space velocity increasing within2500~20000 h~(-1), and the stability decreases with the content of COincreasing within 0.5~2.0% at 25℃.
     (3) The pre-oxidized Co_3O_4 catalyst shows very high CO oxidation activitywithin -78~80℃. The stability increases with the reaction temperatureincreasing within -78~25℃, and the stability decreases with the reactiontemperature increasing within 25~80℃
     (4) The results of optimization of the technological condition indicate that:the pre-oxidized Co_3O_4 catalyst can be able to maintain its activity for COcomplete oxidation more than 630 min under the reaction conditions: CO0.5%、space velocity 2500 h~(-1) and 25℃. The result is better than theliteratures.
     (5) The low-temperature activity of Co_3O_4 is inhibited by the presence ofmoisture in the feed gas, and the resistance to water is promoted greatly bythe addition of traces of Pd.
     (6) The regeneration of the deactivated catalyst could be achieved via theheat treatment at 200℃under the following drying air.
     (7) The catalyst not only has the high catalytic performance forlow-temperature CO oxidation in continuous flowing conditions, but also canbe used inconsecutively.
     4. The investigation of the reaction mechanism and the reason ofdeactivation for the low-temperature CO catalytic oxidation over the Co_3O_4catalysts.
     (1) The O_2-TPD analysis of the fresh and deactivated Co_3O_4 catalystsindicate the Co_3O_4 catalysts have several kinds of oxygen species, and theO_2~-、O_2~(2-) and O~- species responsible for the possible active oxygen species.The lattice oxygen has no effect on the catalytic performance of Co_3O_4 inlow-temperature CO oxidation.
     (2) The valence state of Co has no obvious difference between the freshand the deactivated Co_3O_4 catalysts, and it indicates that the deactivationdoes not originate in the change of the valence state of Co. There is water onthe surface of the deactivated, and the ratio of the adsorption oxygen to thelattic oxygen decreases after the deactivation.
     (3) The results of in situ DRIFT indicate that: there is a little wateradsorbing on the catalyst without pretreatment, and the water and CO arecompeting for the same site which leads to the weak adsorption of CO, andthe CO can react with the—OH to form the formate species. There is linearadsorbed CO on the surface of the pre-oxidized Co_3O_4 catalyst, and the COcan react with the active oxygen species to form CO_2, and the carbonates arethe possible intermediate product.
     (4) The presumable reaction mechanism of low temperature CO oxidationover the Co_3O_4 catalyst is that: there is adsorption of CO and O_2 on thesurface of the catalyst, and the CO can react with the active oxygen species toform CO_2, and the carbonates are the possible intermediate product. In thereaction process, the deactivation of the catalyst probably due to traces of moisture in the feed gas adsorption and accumulating on the surface leadingto the decrease of CO adsorption and the formation of the formate species.
引文
[1] 董国利.超细钛基催化剂的制备,反应与表征[D].中国科学院山西煤炭化学研究所博士论文,1998.
    [2] LAMB A B, BRAY W C, FRAZER J C W. The Removal of Carbon Monoxide from Air[J]. Ind Eng Chem, 1920, 12:213-221.
    [3] TRIPATHI A K, GUPTA N M, CHATTERJI U K, et al. An Improved Au/Fe_2O_3 Catalyst for Long Life Closed Cycle CO_2 Laser[J]. Indian J Technol, 1992, 30:107-112.
    [4] YAMAURA H, MORIYA K, MIURA N, et al. Mechanism of Sensitivity Promotion in CO Sensor Using Indium Oxide and Cobalt[J]. Sens Actuators B, 2000, 65:39-41.
    [5] 郝郑平,安立敦,王弘立.负载型金催化剂用于室温下CO的消除[J].环境污染与防治,1996,18(4):4-5.
    [6] SNYTNIKOV P V, SOBYANIN V A, BELYAEV V D, et al. Selective Oxidation of Carbon Monoxide in Excess Hydrogen over Pt-, Ru- and Pd-Supported Catalysts[J]. Appl Catal A: Gen, 2003, 239:149-156.
    [7] 朱华青.铈钛氧化物负载钯催化剂上一氧化碳低温氧化[D].中国科学院山西煤炭化学研究所博士论文,2004.
    [8] THORMAHLEN P, FRIDELL E, CRUISE N, et al. The Influence of CO_2, C_3H_6, NO, H_2, H_2O or SO_2 on the Low-temperature Oxidation of CO on a Cobalt-aluminate Spinel Catalyst (Co_(1.66)Al_(1.34)O_4)[J]. Appl Carol B. Environmental, 2001, 31:1-12.
    [9] RIJKEBOER R C. Catalysts on Cars-practical Experience[J]. Catal Today, 1991, 11: 141-150.
    [10] PARK E D, LEE J S. Effect of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts[J]. J Catal, 1999, 186: 1-11.
    [11] GRUNWALDT J D, MACIEJEWSKI M M, BECKEROS, et al. Comparative Study of Au/TiO_2 and Au/ZrO_2 Catalysts for Low-temperature CO Oxidation[J]. J Catal, 1999, 186: 458-469.
    [12] HOFLUND G B, GARDNER S D, SCHRYER D R, et al. Au/MnOx Catalytic Performance Characteristics for Low-temperature Carbon Monoxide Oxidation[J]. Appl Catal B: Environmental, 1995, 6:117-126.
    [13] SOARES J M C, BOWKER M. Low Temperature CO Oxidation on Supported and Unsupported Gold Compounds[J]. Appl Catal,A: Gen, 2005, 291:136-144.
    [14] GLASPELL G, FUOCO L, EL-SHALL M S. Microwave Synthesis of Supported Au and Pd Nanoparticle Catalysts for CO Oxidation[J], J Phys Chem B, 2005, 109: 17350-17355.
    [15] FIERRO-GONZALEZ J C, BHIRUD V A, GATES B C. A highly Active Catalyst for CO Oxidation at 298K: Mononuclear Au~Ⅲ Complexes Anchored to La_2O Nanoparticles[J]. Chem Comm, 2005, 5275-5277.
    [16] CENTENO M A, PORTALES C, CARRIZOSA I, et al. Gold Supported CeO_2/Al_2O_3 Catalysts for CO Oxidation: Influence of the Ceria Phase[J]. Catal Lett, 2005, 102: 289-297.
    [17] JAIN A, ZHAO X, KJERGAARD S, et al. Effect of Aging Time and Calcination on the Preferential Oxidation of CO over Au Supported on Doped Ceria[J]. Catal Lett, 2005,104:191-197.
    [18] MOREAU F, BOND G C. CO Oxidation Activity of Gold Catalysts Supported on Various Oxides and their Improvement by Inclusion of an Iron Component[J] Catal Today, 2006,114:362-368.
    
    [19] MOREAU F, BOND G C, TAYLOR A O. The Influence of Metal Loading and pH during Preparation on the CO Oxidation Activity of Au/TiO_2 Catalysts [J]. Chem Comm, 2004: 1642.
    
    [20] GARRIAZO J G, MARTINEZ L M, ODRIOZOLA J A. Gold Supported on Fe, Ce, and Al Pillared Bentonites for CO Oxidation Reaction[J]. Appl Catal B:Environmental, 2007,72:157-165.
    [21] SHAPOVALOV V, METIU H. Catalysis by Doped Oxides: CO Oxidation by Au_xCe_(1-x)O_2[J]. J Catal, 2007, 245:205-214.
    [22] MOREAU F, BOND G C. Influence of the Surface Area of the Support on the Activity of Gold Catalysts for CO Oxidation[J]. Catal Today, 2007 (In press).
    [23] AYASTUY J L, GONZALEZ-MARCOS M P, GONZALEZ-VELASCO J R. MnO_x/Pt/Al_2O_3 Catalysts for CO Oxidation in H_2-rich Streams[J]. Appl Catal B: Environmental, 2007, 70: 532-541.
    [24] OH S H, HOFLUND G B. Low-temperature Catalytic Carbon Monoxide Oxidation over Hydrous and Anhydrous Palladium Oxide Powders[J]. J Catal, 2007, 245: 5-44.
    [25] DONG G L, WANG J G, GAO Y B, et al. A Novel Catalyst for CO Oxidation at Low Temperature[J]. Catal Lett, 1999, 58:37-41.
    [26] BI Y U, LU G X. Catalytic CO Oxiation over Palladium Supported NaZSM-5 Catalysts[J]. Appl Catal B:Environmental, 2003, 41:279-286.
    [27] LUO M F, HOU Z Y, YUAN X X, et al. Characterization Study of CeO_2 Supported Pd Catalyst for Low-temperature Carbon Monoxide Oxiation[J]. Catal Lett, 1998, 50:205-209.
    
    [28] BERA P, GAYEN A, HEGDE M S, et al. Promoting Effect of CeO_2 in Combustion Synthesized Pt/CeO_2 Catalyst for CO Oxiation[J]. J Phys Chem B, 2003, 107:6122-6130.
    [29] KWAK C, PARK T J, SUH D J. Preferential Oxidation of Carbon Monoxide in Hydrogen-rich Gas over Platinum-cobalt-alumina Aerogel Catalysts[J]. Chem Eng Sci, 2005, 60:1211-1217.
    [30] XU X Y, LI J J, HAO Z P, et al. Characterization and Catalytic Performance of Co/SBA-15 Supported Gold Catalysts for CO Oxidation[J]. Materials Research Bulletin, 2006,41:406-413.
    [31] WOJCIECHOWSKA M, PRZYSTAJKO W, ZIELINSKI M. CO Oxidation Catalysts Based on Copper and Manganese or Cobalt Oxides Supported on MgF_2 and Al_2O_3[J]. Catal Today, 2007,119:338-341.
    [32] TAYLOR S H, RHODES C. Ambient Temperature Oxidation of Carbon Monoxide using a Cu_2Ag_2O_3 Catalyst[J]. Catal Lett, 2005,101:31-33.
    [33] MIRZAEI A A, SHATERIAN H R, TAYOR S H, et al. Co-preciptated Copper Zinc oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation: Effect of Precipitate Aging Atmosphere on Catalyst Activity [J]. Catal Lett, 2003, 87:103-108
    [34] HUTCHINGS G J, MIRZAEI A A, JOYNER R W, et al. Effect of Preparation Conditions on the Catalytic Performance of Copper Manganese Oxide Catalysts for CO Oxidation[J].Appl Catal A: General, 1998,166:143-152.
    [35] TAYLOR S H, HUTCHINGS G J, MIRZAEI A A. Copper Zinc Oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation[J]. Chem Comm, 1999: 1373-1374.
    [36] WHITTLE D M, MIRZAEI A A, HARGREAVES J S, et al. Co-precipitated Copper Zinc Oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation[J]. Phys Chem Chem Phys, 2002, 4:5915-5920.
    [37] BAE C M, KO J B, KIM D H. Selective Catalytic Oxidation of Carbon Monoxide with Carbon Dioxide, Water Vapor and Excess Hydrogen on CuO-CeO_2 Mixed Oxide Catalysts[J]. Catal Comm, 2005, 6:507-511.
    [38] YUNG F, YU Y. The Oxidation of Hydrocarbons and CO over Metal Oxides III. Co_3O_4[J]. J Catal, 1974,33:108-122.
    [39] LIN H K, CHIU H C, TSAI HC, et al. Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide[J]. Catal Lett, 2003, 88:169-174.
    [40] TANG C W, KUO C C, KUO M C, et al. Influence of Pretreatment Conditions on Low-temperature Carbon Monoxide Oxidation over CeO_2/Co_3O_4 Catalysts[J]. Appl Catal A: General, 2006, 309:37-43.
    [41] CUNNINGHAM D A H, KOBAYASHI T, KAMIJO N, et al. Influence of Dry Operating Conditions: Observation of Oscillations and Low Temperature CO Oxidation over Co_3O_4 and Au/Co_3O4 Catalysts[J]. Catal Lett, 1994, 25:257-264.
    [42] JANSSON J. Low-temperature CO oxidation over Co_3O_4/Al_2O_3[J]. J Catal, 2000, 194: 55-66.
    [43] JANSSON J, PALMQVIST A E C, FRIDELL E, et al. On the Catalytic Activity of Co_3O_4 in Low-Temperature CO Oxidation[J]. J Catal, 2002, 211:387-397.
    [44] THORMAHLEN P, SKOGLUNDH M, FRIDELL E, et al. Low-tepmerature CO Oxidation over Platinum and Cobalt Oxide Catalysts[J]. J Catal, 1999, 188:300~310.
    [45] WANG C B, TANG C W, TSAI H C, et al. Characterization and Catalytic Oxidation of Carbon Monoxide over Supported Cobalt Catalysts[J]. Catal Lett, 2006, 107:223-230
    [46] ZOU H B, DONG X F, LIN W M. Selective CO Oxidation in Hydrogen-rich Gas over CuO/CeO_2 Catalysts[J]. Appl Surf Sci, 2006, 253:2893-2898.
    [47] LUO M F, SONG Y P, WANG X Y, et al. Preparation and Characterization of Nanostructured Ce_(0.9)Cu_(0.1)O_(2-δ) Solid Solution with High Surface Area and its Application for Low Temperature CO Oxidation[J] Catal Comm, 2007, 8:834-838
    [48] ZHU B L, ZHANG X X, WANG S R, et al. Synthesis and Catalytic Performance of TiO_2 Nanotubes-supported Copper Oxide for Low-temperature CO Oxidation[J]. Microporous and Mesoporous Materials, 2007 (In Press).
    [49] LU C Y, WEY M Y. The Performance of CNT as Catalyst Support on CO Oxidation at Low Temperature[J]. Fuel, 2007, 86:1153-1161.
    [50] WANG S P, WANG X Y, HUANG J, et al. The Catalytic Activity for CO Oxidation of CuO Supported on Ce_(0.8)Zr_(0.2)O_2 Prepared via Citrate Method[J], Catal Commu, 2007, 8:231-236.
    [51] 郑修成,王向宇,于丽华,等.非贵金属催化剂上CO氧化的研究与进展[J].化学进展,2006,18(2/3):159-167.
    [52] 郑修成,黄唯平,张守民,等.负载型金属CO氧化催化体系的研究进展[J].无机化学学报,2003,19(11):1153-1159.
    [53] 王东辉,郝郑平,程代云,等.金催化剂的研究进展及在环保催化中的应用[J].自然科学进展,2002,12(8):794-799.
    [54] 王东辉,程代云,郝郑平,等.纳米金催化剂上CO低(常)温氧化的研究[J].化学进展,2002,14(5):360-367.
    [55] 尉士民,杜芳林,张志琨.CO氧化催化剂研究进展[J].工业催化,2003,11(1):31-36.
    [56] 毕玉水,吕功煊.一氧化碳低温催化氧化研究进展[J].分子催化,2003,17(4):313-320.
    [57] 杨小毛,罗来涛.低温一氧化碳催化氧化研究进展[J].现代化工,2002,22(8):22-205.
    [58] 王永钊,赵永祥,刘滇生.低温CO催化氧化催化剂研究进展[J].环境污染治理技术与设备,2003,4(8):8-12.
    [59] 施申忠.国内外CO氧化触媒的研究动向[J].煤矿安全,2002,33(4):36-38.
    [60] 吴树新,尹燕华,马智,等.非贵金属CO氧化催化剂的研究进展[J].天然气化工,2005.30(2):65-69.
    [61] KNELL A, BARNICKEL P, BAIKER A, et al. CO Oxidation over Au/ZrO_2 Catalysts: Activity, Deactivation Behavior, and Reaction Mechanism[J]. J Catal, 1992, 137(2):306-321
    [62] HARUTA M, YAMADA N, KOBAYASHI, et al. Gold-catalysis Prepared by Copreciptation for Low-temperature Oxidation of Hydrogen and Carbon Monoxide[J]. J Catal, 1989, 115(2):301-309.
    [63] LIU Z M, VANNICE M A. CO and O 2 Adsorption on Model Au-TiO 2 Systems[J]. Catal Lett, 1997, 43(1-2):51-54.
    [64] MOREAU F, BOND G C, TAYLOR A O. The Influence of Metal Loading and pH during Preparation on the CO Oxidation Activity of Au/TiO_2 Catalysts[J]. Chem Comm, 2004:1642-1643.
    [65] KOBAYASHI T, HARUTA M, TSUBOTA S, et al. Thin Films of Supported Gold Catalysts for CO Detection[J]. Sensor and Actuators B, 1990, 1:222-227.
    [66] OKUMURA M, TANAKA K, UEDA A, et al. The Reactivities of Dimethylgold(Ⅲ) β-diketone on the Surface of TiO_2 : A novel Preparation Method for Au Catalysts[J]. Solid State Ionics, 1997, 95:143-149.
    [67] YUAN Y, ASAKURA K, WAN H, et al. Preparation of Supported Gold Catalysts from Gold Complexes and their Catalytic Activities for CO Oxidation[J]. Catal Lett, 1996, 42:15-20.
    [68] BAIKER A, MACIEJEWSKI M, TAGLIAFERRI S, et al. Carbon-monoxide Oxidation over Catalysts Prepared by in-Situ Activation of Amorphous Gold-Silver-Zirconium and Gold-Iron-Zirconium Alloys[J]. J Catal, 1995, 151:407-415.
    [69] KANG Y M, WAN B Z. Pretreatment Effect of Gold/Iron/Zeolite-y on Carbon Monoxide Oxidation[J]. Catal Today, 1995, 26:59-69.
    [70] 吴世华,黄唯平,张守民,等.溶剂化金属原子浸渍法制备高分散Au/TiO_2低温CO氧化催化剂[J].催化学报,2000,21(5):419-422.
    [71] BAMWENDA G R, TSUBOTA S, NAKAMURA T, et al. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO_2 for CO oxidation[J]. Catal Lett, 1997, 44:83-87.
    [72] YUAN Y Z, KOZLOVA A P, ASAKURA K, et al. Supported Au Catalysts Prepared from Au Phosphine Complexes and As-Precipitated Metal Hydroxides: Characterization and Low-Temperature CO Oxidation[J]. J Catal, 1997, 170:191-199.
    [73] HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-temperature Oxidation of CO over Gold Supported on TiO_2, α-Fe_2O_3, and Co_3O_4[J]. J Catal, 1993, 144:175-192.
    [74] BOND G C, THOMPSON D T. Catalysis by Gold[J]. Catal Rev Sci Eng, 1999, 41:319-388.
    [75] VOGEL W, CUNNINGHAM D A H, TANAKA K, et al. Structural Analysis of Au/Mg(OH)_2 during Deactivation by Debye Function Analysis[J], Catal Lett, 1996, 40:175-181.
    [76] SCHUBERT M M, HACHENBERG S, VEEN A C V, et al. CO Oxidation over Supported Gold Catalysts—"Inert" and "Active" Support Materials and Their Role for the Oxygen Supply during Reaction[J]. J Catal, 2001,197:113-122.
    [77] GUCZI L, HORVATH D, PASZTI Z, et al. Modeling Gold Nanoparticles: Morphology, Electron Structure, and Catalytic Activity in CO Oxidation[J]. J Phys Chem B, 2000, 104:3183-3193.
    [78] GRISEL R J H, NIEUWENHUYS B E. A Comparative Study of the Oxidation of CO and CH_4 over Au/MO_x/Al_2O_3 Catalysts[J]. Catal Today, 2001, 64:69-81
    [79] VALDEN M, LAI X, GOODMAN D W. Onset of Catalytic Activity Gold Clusters on Titania with Appearance of Nonmetallic Properties[J]. Science, 1998, 281:1647-1650.
    [80] MAVRIKAKIS M, STOLTZE P, NΦRSKOV J K. Making Gold less Noble[J]. Catal Lett, 2000, 64: 101-106.
    [81] GRUNWALDT J D, BAIKER A. Gold/Titania Interfaces and Their Role in Carbon Monoxide Oxidation[J]. J Phys Chem B, 1999, 103:1002-1012.
    [82] VISCO A M, DONATO A, MILONE C, et al. Catalytic Oxidation of Carbon Monoxide over Au/Fe_2O_3 Preparations[J]. React Kinect Catal Lett, 1997, 61:219-226.
    [83] 张文祥,陶玉国,贾明君,等.不同方法制备的纳米Au/NiO上CO常温常湿催化氧化性能的研究[J].高等学校化学学报,1998,19:1317-1319.
    [84] 王桂英,余加佑,廉红蕾,等.常温常湿CO氧化催化剂Au/Fe_2O_3的制备与稳定性研究[J].高等学校化学学报,2000,21:752-755.
    [85] IIZUKA Y, FUJIKI H, YAMAUCHI N, et al. Adsorption of CO on Gold Supported on TiO_2[J]. Catal Today, 1997, 36:115-123.
    [86] SU Y S, LEE M Y, LIN S D. XPS and DRS of Au/TiO_2 Catalysts: Effect of Pretreatment[J]. Catal Lett, 1999, 57:49-53
    [87] GUPTA N M, TRIPATHI A K. Microcalorimetry, Adsorption, and Reaction Studies of CO, O_2, and CO+O_2 over Fe_2O_3, Au/Fe_2O_3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment[J]. J Catal, 1999, 187:343-347.
    [88] 郝郑平,安立敦,王弘立.负载型金催化剂催化CO氧化的性能(Ⅱ)[J].分子催化,1998,12(1):63-66.
    [89] 郝郑平.负载型金催化剂的研究[D].中国科学院兰州化学物理研究所,博士论文.1996.
    [90] 王桂英,张文祥,蒋大振,等.常温常湿条件下Au/MeO_x催化剂上CO氧化性能[J].化学学报,2000,58(12):1557-1562.
    [91] 王桂英,廉红蕾,徐跃,等.沉淀剂对Au/ZnO催化剂上CO氧化性能及催化剂结构的影响[J].高等学校化学学报,2001,22(11):1873-1876.
    [92] 索掌怀,安立敦,贺红军,等.Au/Fe_2O_3催化剂在CO低温氧化中的催化活性[J].燃料化学学报,1999,27(5):451-454.
    [93] 齐世学,邹旭华,徐秀峰,等.制备条件对Au/TiO_2催化CO氧化性能的影响[J].分子催化,2002,16(2):139-143
    [94] 邹旭华,齐世学,索掌怀,等.预处理条件对Au/Al_2O_3催化CO氧化性能的影响[J].催化学报,2004,25(2):153-157.
    [95] 邹旭华,齐世学,索掌怀,等.CO低温氧化Au/Al_2O_3催化剂的失活及稳定性[J].催化学报,2006,27(2):161-165.
    [96] MCKINNEY P V. Reduction of Pallladium Oxide by Carbon Monoxide[J]. J Am Chem Soc, 1932, 54(12):4498-4504.
    [97] BADDOUR R F, MODELL M, GOLDSMITH R L. Palladium-catalyzed Carbon Monoxide Oxidation. Catalyst "break-in" Phenomenon[J]. J Phys Chem, 1970, 74(8): 1787-1796.
    [98] ENGER T, ERTL G. Molecular Beam Studies on the Catalytic Oxidation of Carbon Monoxide on a Pd(111) Surface[J]. J Chem Phys, 1978, 69:1267-1281.
    [99] SHEINTUCH M, SCHMIDE J, LECTHMAN Y, et al. Modelling Catalyst--support Interactions in Carbon Monoxide Oxidation Catalysed by Pd/SnO_2[J]. Appl Catal, 1989, 49:55-65.
    [100] SCHRYER D R, UPCHURCH B T, NORMAN J D V, et al. Effects of pretreatment conditions on a Pt/SnO_2 catalyst for the oxidation of CO in CO_2 lasers[J]. J Catal, 1990, 122:193-197.
    [101] BERNAL S, BLANCO G, CAUQUI M A, et al. Cerium-terbium Mixed Oxides as Alternative Components for Three-way Catalysts: a Comparative Study of Pt/CeTbO_x and Pt/CeO_2 model system[J]. Catal Today, 1999, 53:607-612.
    [102] MARTINEZ-ARIAS A, CORONADO J M, CATALUNA R, et al. Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO_2/Al_2O_3 Catalyst[J]. J Phys Chem B, 1998, 102(22): 4357-4365
    [103] FERNANDEZ-GARCIA M, MARTINEZ-ARIAS A, SALAMANCA L N, et al. Influence of Ceria on Pd activity for the CO+O_2 Reaction[J]. J Catal, 1999, 187:474-485.
    [104] KIM D H, WOO S I, LEE J M, et al. The Role of Lanthanum Oxide on Pd-only Three-way Catalysts Prepared by Co-impregnation and Sequential Impregnation Methods[J]. Catal Lett, 2000, 70:35-41.
    [105] ROH H S, POTDAR H S, JUNK W, et al. Low Temperature Selective CO Oxidation in Excess of H_2 over Pt/Ce-ZrO_2 Catalysts[J]. Catal Lett, 2004, 93:203-207
    [106] WATANABE M, UCHIDA H, IGARASHI H, et al. Pt Catalyst Supported on Zeolite for Selective Oxidation of CO in Reformed Gases[J]. Chem Lett, 1995, 24:21-22.
    [107] IGARASHI H, UCHIDA H, SUZUKI M, et al. Remove of Carbon Monoxide from Hydrogen-rich Fuels by Selective Oxidation over Platinum Catalyst Supported on Zeolite[J]. Appl Catal A: Gen, 1997, 159:159-169.
    [108] ROSSO I, GALLETTI C, SARACCO G, et al. Development of A Zeolites-supported Noble-metal Catalyst for CO Preferential Oxidation: H_2 Gas Purification for Fuel Cell[J]. Appl Catal B: Environmental, 2004, 48:195-203.
    [109] WATANABE M, UCHIDA H, OHKUBO K, et al. Hydrogen Purification for Fuel Cells: Selective Oxidation of Carbon Monoxide on Pt-Fe/Zeolite Catalysts[J]. Appl Catal B: Environmental, 2003, 46:595-600.
    [110] 李春花,许红兵,安立敦.室温下消除CO的催化剂[J].环境科学,1992,13(3):37-39.
    [111] 嵇天浩,孟宪平,吴念祖,等.嵌入Y型沸石中Pd簇的合成及其催化性能.高等学校化学学报,1997,18(1):6-10.
    [112] AVGOUROPOULOS G, IOANNIDES T, MATRALIS H K, et al. CuO-CeO_2 Mixed Oxide Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen[J]. Catal Lett, 2001, 73(1):33-40.
    [113] AVGOUROPOULOS G, IOANNIDES T. Selective CO oxidation over CuO-CeO_2 Catalysts Prepared via the Urea-nitrate Combustion Method[J]. Appl Catal A: Gen, 2003, 244(1):155-167.
    [114] SEDMAK G, HOCEVAR S, LEVEC J. Kinetics of Selective CO Oxidation in Excess of H_2 over the Nanostructured Cu_(0.1)Ce_(0.9)O_(2-y) Catalyst[J]. J Catal, 2003, 213(2):135-150.
    [115] MARTINEZ-ARIAS A, FERNANDEZ-GARCIA M, GALVEZ O, et al. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO_2 and CuO/ZrCeO_4 Catalysts[J]. J Catal, 2000, 195:207-216.
    [116] 郑修成.南开大学化学系博士论文.2005.
    [117] ZHEGN X C, HUANG W P, ZHANG S M, et al. Low-temperature CO Oxidation on CuO/CeO_2 Catalyst Prepared by Sol-Gel Method[J]. Chinese Journal of Catalysis, 2003, 24(12):887-888.
    [118] ZHENG X C, HAN D Z, WANG S P, et al. Preparation, Characterization of CuO/CeO_2 Catalysts and Their Application in Low-temperature CO Oxidation[J]. J Rare Earths, 2005, 23(1):47-51
    [119] ZHENG X C, WU S H, WANG S P, et al. The Preparation and Catalytic Behavior of Copper-cerium Oxide Catalysts for Low-temperature Carbon Monoxide Oxidation[J]. Appl Catal A." Gen, 2005, 283:217-223.
    [120] LIU W, FLYTZANI-STEPHANOPOULOS M. Total Oxidation of Carbon Monoxide and Methane over Transition-metal Fluorite Oxide Composite Catalysts, Ⅰ. Catalyst Composition and Activity[J]. J Catal, 1995, 153:304-316.
    [121] LIU W, FLYTZANI-STEPHANOPOULOS M. Total Oxidation of Carbon Monoxide and Methane over Transition-metal Fluorite Oxide Composite Catalysts, Ⅱ. Catalyst Characterization and Reaction Kinetics[J]. J Catal, 1995, 153:317-332.
    [122] 刘源,孙海龙,刘全生,等.氧化铈气凝胶担载氧化铜催化剂上的一氧化碳氧化反应[J].催化学报,2001,22(5):453-456.
    [123] ZHANG S M, HUANG W P, QIU X H, et al. Comparative Study on Catalytic Properties for Low-Temperature CO Oxidation of Cu/CeO_2 and CuO/CeO_2 Prepared via Solvated Metal Atom Impregnation and Conventional Impregnation[J]. Catal Lett, 2002, 80(1/2):41-46.
    [124] LUO M F, ZHONG Y J, YUAN X X, et al. TPR and TPD Studies of CuO/CeO_2 Catalysts for Low Temperature CO Oxidation[J]. Appl Catal A:Gen, 1997, 162:121-131.
    [125] JIANG X Y, LUG L, ZHOU R X, et al. Studies of Pore Structure, Temperature-programmed Reduction Performance, and Micro-structure of CuO/CeO_2 Catalysts[J]. Appl Surf Sci, 2001,173:208-220.
    [126] 张继军,刘英俊,林炳雄,等.CO催化氧化中CuO对CeO_2的调变作用[J].物理 化学学报,1999,15(1):15-21.
    [127] 刘英俊,张继军,林炳雄,等.CO_2对Cu-Ce-O催化剂催化氧化CO活性的影响[J].物理化学学报,1999,15(2):97-100.
    [128] PARK J W, JEONG J H, YOON W L, et al. Activity and Characterization of the Co-promoted CuO-CeO_2/γ-Al_2O_3 Catalyst for the Selective Oxidation of CO in Excess Hydrogen[J]. Appl Catal A: Gen, 2004, 274( 1-2):25-32.
    [129] WANG C B, TANG C W, GAU S J. et al. Effect of the Surface Area of Cobaltic Oxide on Carbon Monoxide Oxidation[J]. Catal Lett, 2005, 101:59-63.
    [130] 贾明君,张文祥,陶玉国,等.纳米Co_3O_4的制备,表征及CO低温催化氧化[J].高等学校化学学报,1998,20(4):637-639.
    [131] LIN H K, WANG C B, CHIU H C, et al. In situ FTIR Study of Cobalt Oxides for the Oxidation of Carbon Monoxide[J]. Catal Lett, 2003, 86:63-68.
    [132] MOCHIDA I, IWAI Y, KAMO T, et al. Remarkable Catalytic Activity of Cobalt Tetraphenylporphyrin Modified on a Titania for the Oxidation of Carbon Monoxide below Room Temperature[J]. J Phys Chem, 1985, 89(25):5439-5442.
    [133] OMATA K, KOBAYASHI Y, YAMADA M. Artificial Neural Network-aided Design of Co/SrCO3 Catalyst for Preferential Oxidation of CO in Excess Hydrogen[J]. Catal Today, 2006, 117:311-315.
    [134] WANG C B, TANG C W, TSAI H C, et al. Characterization and Catalystic Oxidation of Carbon Monoxide over Supported Cobalt Catalysts[J]. Catal Lett, 2006, 107:223-230.
    [135] MENG M, LIN P Y, FU Y L. The Catalytic Removal of CO and NO over Co-Pt (Pd, Rh)/γ-Al_2O_3 Catalysts and their Structural Characterizations. Catal Lett, 1997, 48: 213-222.
    [136] MERGLER Y J, AALST A V, DELFT J V, et al. CO oxidation over Promoted Pt Catalysts[J]. Appl Catal B: Environmental, 1996, 10:245-261.
    [137] MARGITFALVI J L, BORBATH I, HEGEDUS M, et al. Low-Temperature CO Oxidation over New Types of Sn-Pt/SiO_2 Catalysts[J]. J Catal, 2000, 196:200-204.
    [138] 吴世华,李保庆,张守民,等.溶剂化金属原子浸渍法制备Pd-Cu/γ-Al_2O_3低温CO氧化催化剂[J].无机化学学报,2002,18(8):811-814.
    [139] PARK E D, LEE J S. Effects of Copper Phase on CO Oxidation over Supported Wacker-Type Catalysts [J]. J Catal, 1998, 180:123-131.
    [140] TAGUCHI H, YAMADA S, NAGAO M, et al. Surface Characterization of LaCoO_3 Syntherized Using Citric Acid[J]. Mater Research Bull, 2002, 37:69-76.
    [141] DAI H X, HE H, LI W, et al. Perovskite-type Oxide ACo_(0.8)Bi_(0.2)O_(2.87)(A=La_(0.8)Ba_(0.2)): a Catalyst for Low-temperature CO Oxidation[J]. Catal Lett, 2001, 73:149-455.
    [142] YANG X M, LUO L T, ZHONG H. Preparation of LaSrCoO_4 Mixed Oxides and their Catalytic Properties in the Oxidation of CO and C_3H_8[J]. Catal Comm, 2005, 6:13-17.
    [143] HODGE N A, KIELY C J, WHYMAN R. Microstructural Comparison of Calcined and Uncalcined Gold/iron-oxide Catalysts for Low-temperature CO Oxidation[J]. Catal Today, 2002, 72:133-144.
    [144] HARUTA M. Novel Catalysts of Gold Deposited on Metal Oxides[R]. Catal Survey of Japan, 1997, 1:61-73.
    [145] LIU H C, KOZLOV A I, KOZLOVA A P, et al. Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO_2-Supported Au Catalyst Prepared from Au(PPh_3)(NO_3) and As-Precipitated Titanium Hydroxide[J]. J Catal, 1999, 185(2):252-264.
    [146] HAO Z P, FEN L B, LUG Q, et al. In situ Electron Paramagnetic Resonance (EPR) Study of Surface Oxygen Species on Au/ZnO Catalyst for Low-temperature Carbon Monoxide Oxidation[J]. Appl Catal A: Gen, 2001, 213:173-177.
    [147] HERZ R K, MARIN S P. Surface Chemistry Models of Carbon Monoxide Oxidation on Supported Platinum Catalysts[J]. J Catal, 1980, 65(2):281-296.
    [148] BOURANE A, BIANCHI D. Oxidation of CO on a Pt/Al_2O_3 Catalyst: From the Surface Elementary Steps to Light-Off Tests: Ⅰ. Kinetic Study of the Oxidation of the Linear CO Species[J]. J Catal, 2001,202(1):34-44.
    [149] VENEZIA A M, LIOTTA L F, DEGANELLO G, et al. Catalytic CO Oxidation over Pumice Supported Pd-Ag Catalysts[J]. Appl Catal A: Gen, 2001, 211:167-174.
    [150] PAVLOVA S N, SAVCHENKO V I, SADYKOV V A, et al. Low-temperature CO Oxidation on Iron Oxide Supported Palladium[J]. React Kinet Catal Lett, 1996, 59(1):103-110.
    [151] KULSHRESHTHA S K, GADGIL M M. Physico-chemical Characteristics and CO Oxidation Studies over Pd/(Mn_2O_3+SnO_2) Catalyst[J]. Appl Catal B: Environmental, 1997, 11, (3-4):291-305.
    [152] SLINKO M M, KURKINAE S, LIAUW M A, et al. Mathematical Modeling of Complex Oscillatory Phenomena during CO Oxidation over Pd Zeolite Catalysts[J]. J Chem Phys, 1999, 111(17):8105-8114.
    [153] LABERTY C, MARQUEZ-ALVAREZ C, DROUET C, et al. CO Oxidation over Nonstoichiometfic Nickel Manganite Spinels[J]. J Catal, 2001, 198:266-276.
    [154] FEDERICO G, NATILE M M, GLISENTI A. Low Temperature Oxidation of Carbon Monoxide: the Influence of Water and Oxygen on the Reactivity of a Co_3O_4 Powder Surface[J]. Appl Catal B: Environmental, 2004, 48:267-274.
    [155] VEPREK S, COCKED L, KEHL S, et al. Mechanism of the Deactivation of Hopcalite Catalysts Studied by XPS, ISS, and other Techniques[J]. J Catal, 1986, 100:250-263.
    [156] GULARIA E, GULDUR C, SRIVANNAVIT S, et al. CO Oxidation by Silver Cobalt Composite Oxide[J]. Appl Catal A: General, 1999, 182:147-163.
    [157] MIN K, SONG M W, LEE C H. Catalytic Carbon Monoxide Oxidation over CoO_x/CeO_2 Composite Catalysts[J]. Appl Catal A: Gen, 2003, 251:143-156.
    [1] 郝郑平,安立敦,王弘立.负载型金催化剂用于室温下CO的消除[J].环境污染与防治,1996,18(4):4-5.
    [2] LAMB A B, BRAY W C, FRAZER J C W. The Removal of Carbon Monoxide from Air[J]. Ind Eng Chem, 1920, 12:213-221.
    [3] YAMAURA H, MORIYA K, MIURA N, et al. Mechanism of Sensitivity Promotion in CO Sensor Using Indium Oxide and Cobalt[J]. Sens Actuators B, 2000, 65:39-41.
    [4] SNYTNIKOV P V, SOBYANIN V A, BELYAEV V D, et al. Selective Oxidation of Carbon Monoxide in Excess Hydrogen over Pt-, Ru- and Pd-Supported Catalysts[J]. Appl Catal A: Gen, 2003, 239:149-156.
    [5] 王正祥,陈洪.一种高性能一氧化碳氧化催化剂及其制备方法[P].中国发明专利CN 1559681 A.2004.
    [6] SCHRYER D R, UPCHURCH B T, VAN NORMAN J D, et al. Effects of Pretreatment Conditions on a Pt/SnO_2 Catalyst for the Oxidation of CO in CO_2 Lasers[J]. J Catal, 1990, 122:193-197.
    [7] CHIANG C W, WANG A Q, WAN B Z, et al. High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures[J]. J Phys Chem, 2005, 109:18042-18047.
    [8] 贾明君,张文祥,陶玉国,等.纳米Co_3O_4的制备、表征及CO低温催化氧化[J].高等学校化学学报,1999,20:637-639.
    [9] THORMAHLEN P, SKOGLUNDH M, FRIDELL E, et al. Low-temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts[J]. J Catal, 1999, 188:300-310.
    [10] LIN H K, CHIU H C, TSAI HC, et al. Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide[J]. Catal Lett, 2003, 88:169-174.
    [11] CUNNINGHAM D A H, KOBAYASHI T, KAMIJO N, et al. Influence of Dry Operating Conditions: Observation of Oscillations and Low Temperature CO Oxidation over Co_3O_4 and Au/Co_3O_4 Catalysts[J]. Catal Lett, 1994, 25:257-264.
    [12] JANSSON J. Low-temperature CO oxidation over Co_3O_4/Al_2O_3[J]. J Catal, 2000, 194: 55-66.
    [13] 赵永祥,王永钊,高春光,等.一氧化碳低温氧化催化剂及其制备方法[P].中国 发明专利CN1762587,2005.
    [14] 王永钊,赵永祥,高春光,等.焙烧温度对Co_3O_4常温氧化CO催化性能的影响[J].分子催化(印刷中)
    [15] WANG Y Z, ZHAO Y X, GAO C G, et al. Preparation and Catalytic Performance of Co_3O_4 Catalysts for Low-temperature CO Oxidation[J]. Catal Lett, (In Press).
    [16] WANG C B, TANG C W, GAU S J. et al. Effect of the Surface Area of Cobalt Oxide on Carbon Monoxide Oxidation[J]. Catal Lett, 2005, 101:59-63.
    [17] JANSSON J, PALMQVIST A E C, FRIDELL E, et al. On the Catalytic Activity of Co_3O_4 in Low-Temperature CO Oxidation[J]. J Catal, 2002, 211:387-397.
    [1] 黄仲涛.工业催化[M].北京:化学工业出版社,2003.
    [2] 贾明君,张文祥,陶玉国,等.纳米Co_3O_4的制备,表征及CO低温催化氧化[J].高等学校化学学报,1998,20(4):637-639.
    [3] WANG C B, TANG C W, GAU S J, et al. Effect of the Surface Area of Cobaltic Oxide on Carbon Monoxide Oxidation[J]. Catal Lett, 2005, 101:59-63.
    [4] LANGFORD J I, WILSON A J C. Scherrer after 60 Years-surveyed and some new Results in Determination of Crystallite Size[J]. J Appl Crystallor, 1978, 11:102-113.
    [5] 李亚栋,贺蕴普,李龙泉,等.液相沉淀控制法制备纳米级Co_3O_4微粉[J].高等学校化学学报,1999,20(4):637-639.
    [6] SINGH R N, PANDEY J P, SINGH N K. Sol-gel Derived Spinel M_xCo_(3-x)O_4 (M=Ni, Cu; 0≤x≤1) Films and Oxygen Evolution[J]. Electrochim Acta, 2000, 45:1911-1919.
    [7] CHRISTOSKOVA S G, STOYANOVA M, GEORGIEV M, et al. Preparation and Characterization of a Higher Cobalt Oxide[J]. Mater Chem Phys, 1999, 60: 39-43.
    [8] 孟明,林培琰,伏义路.氧化态Co/γ-Al_2O_3催化剂的结构与反应性能研究Ⅰ.活性及体相、表相结构研究[J].分子催化,2000,14(2):87-91.
    [9] JI L, LIN J, ZENG H C. Metal-Support Interactions in Co/Al_2O_3 Catalysts: A Comparative Study on Reactivity of Support[J]. J Phys Chem B, 2000, 104:1783-1790.
    [10] 郝郑平.负载型金催化剂的研究[D].中国科学院兰州化学物理研究所博士论文,1996.
    [1] LAMB A B, BRAY W C, FRAZER J C W. The Removal of Carbon Monoxide from Air[J]. Ind Eng Chem, 1920, 12: 213-221.
    [2] YAMAURA H, MORIYA K, MIURA N, et al. Mechanism of Sensitivity Promotion in CO Sensor Using Indium Oxide and Cobalt[J]. Sens Actuators B, 2000, 65:39-41.
    [3] TRIPATHI A K, GUPTA N M, CHATTERJI U K, et al. An Improved Au/Fe_2O_3 Catalyst for Long Life Closed Cycle CO_2 Laser[J]. Indian J Technol, 1992, 30:107-112.
    [4] 郝郑平,安立敦,王弘立.负载型金催化剂用于室温下CO的消除[J].环境污染与 防治,1996,18(4):4-5.
    [5] SHELEF M, MCCABE R W. Twenty-five Years after Introduction of Automotive Catalysts: What Next?[J]. Catal Today, 2000, 62: 35-50.
    [6] THORMAHLEN P, FRIDELL E, CRUISE N, et al. The Influence of CO_2, C_3H_6, NO, H_2, H_2O or SO_2 on the Low-temperature Oxidation of CO on a Cobalt-aluminate Spinel Catalyst (Co_(1.66)Al_(1.34)O_4)[J]. Appl Catal B: Environmental, 2001, 31:1-12.
    [7] RIJKEBOER R C. Catalysts on Cars-practical Experience[J]. Catal Today, 1991, 11: 141-150.
    [8] SNYTNIKOV P V, SOBYANIN V A, BELYAEV V D, et al. Selective Oxidation of Carbon Monoxide in Excess Hydrogen over Pt-, Ru- and Pd-Supported Catalysts[J]. Appl Catal A: Gen, 2003, 239:149-156.
    [9] PARK J W, JEONG J H, YOON W L, et al. Activity and Characterization of the Co-promoted CuO-CeO_2/γ-Al_2O_3 Catalyst for the Selective Oxidation of CO in Excess Hydrogen[J]. Appl Catal A: Gen, 2004, 274( 1-2):25-32.
    [10] HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-temperature Oxidation of CO over Gold Supported on TiO_2, α-Fe_2O_3, and Co_3O_4[J]. J Catal, 1993, 144:175-192.
    [11] CUNNINGHAM D A H, KOBAYASHI T, KAMIJO N, et al. Influence of Dry Operating Conditions: Observation of Oscillations and Low Temperature CO Oxidation over Co_3O_4 and Au/Co_3O_4 Catalysts[J]. Catal Lett, 1994, 25:257-264.
    [12] THORMAHLEN P, SKOGLUNDH M, FRIDELL E, et al. Low-tepmerature CO Oxidation over Platinum and Cobalt Oxide Catalysts[J]. J Catal, 1999, 188:300-310.
    [13] 贾明君,张文祥,陶玉国,等.纳米Co_3O_4的制备、表征及CO低温催化氧化[J].高等学校化学学报,1999,20:637-639.
    [14] 王桂英,张文祥,蒋大振,等.常温常湿条件下Au/MeO_x催化剂上CO氧化性能[J].化学学报,2000,58:1557-1562.
    [1] 贾明君,张文祥,陶玉国,等.纳米Co_3O_4的制备,表征及CO低温催化氧化[J].高等学校化学学报,1998,20(4):637-639.
    [2] JANSSON J. Low-temperature CO oxidation over Co_3O_4/Al_2O_3[J]. J Catal, 2000, 194: 55-66.
    [3] JANSSON J, SKOGLUNDH M, FRIDELL E, et al. A Mechanistic Study of Low Temperature CO Oxidation over Cobalt Oxide[J]. Topics in Catalysis, 2001, 16/17: 385-389.
    [4] JANSSON J, PALMQVIST A E C, FRIDELL E, et al. On the Catalytic Activity of Co_3O_4 in Low-Temperature CO Oxidation[J]. J Catal, 2002, 211:387-397.
    [5] LIN H K, WANG C B, CHIU H C, et al. In situ FTIR Study of Cobalt Oxides for the Oxidation of Carbon Monoxide[J]. Catal Len, 2003, 86:63-68.
    [6] BIELAN'SKI A, HABER J. Oxygen in Catalysis on Transition Metal Oxides[J]. Catal Rev-Sci Eng, 1979, 19(1):1-41.
    [7] 孟明,林培琰,伏义路.氧化态Co/γ-Al_2O_3催化剂的结构与反应性能研究Ⅰ.活性及体相、表相结构研究[J].分子催化,2000,14(2):87-91.
    [8] JI L, LIN J, ZENG H C. Metal-Support Interactions in Co/Al_2O_3 Catalysts: A Comparative Study on Reactivity of Support[J]. J Phys Chem B, 2000, 104:1783-1790.
    [9] www.lasurface.com/database
    [10] WANG C B, TANG C W, TSAI H C, et al. In situ FT-IR Spectroscopic Studies on the Mechanism of the Catalytic Oxidation of Carbon Monoxide over Supported Cobalt Catalysts[J]. Catal Lett, 2006, 107:31-37.
    [11] GRILLO F, NATILE M M, GLISENTI A. Low-temperature Oxidation of Carbon Monoxide: the Influence of Water and Oxygen on the Reactivity of a Co_3O_4 powder surface[J]. Appl Catal B: Environ, 2004, 48:267-274.
    [12] BOCCUZZI F, CHIORINO A, MANZOLI M, et al. FTIR Study of the Low Temperature Water-gas Shift Reaction on Au/Fe_2O_3 and Au/TiO_2 Catalysts[J]. J Catal, 1999, 188: 176-185.
    [13] JACOBS G, WILLIAMS L, GRAHAM U, et al. Low-temperature Water-gas Shift: in-situ DRIFT Reaction Study of a Pt/CeO_2 Catalysts for Fuel Cell Reformer Applications[J]. J Phys Chem B, 2003, 107:10398-10404.
    [1] 郝郑平.负载型金催化剂的研究[D].中国科学院兰州化学物理研究所博士论文,1996.
    [2] HAO Z P, ZHANG S C, LIU Z M, et al. In situ IR, Pulse Reaction and TPD-ITD Study of Catalytic Performance of Room-temperature Carbon Monoxide Oxidation on Supported Gold Catalysts[J]. J Environ Sci, 2002, 14:489-494.
    [3] MEERSON O, SITJA G, HENRY C R. Low Temperature and Low Pressure CO Oxidation on Gold Clusters Supported on MgO(100)[J]. Eur. Phys. J. D, 2005, 34:119-124.
    [4] 钟承德.脉冲色谱H_2-O_2滴定法测定焦油加氢Pd/Al_2O_3催化剂中Pd的分散度[J].石油化工,1980,9(9):511-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700