稀土催化己二酸酐和碳酸亚乙酯开环聚合及其聚合物的降解和生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物可降解高分子材料被广泛应用于药物控制释放,手术缝合线,人造皮肤,骨固定和修复以及细胞组织工程等领域。与非生物降解型高分子材料相比,生物降解型具有更大的优点,它不需要二次手术,是生物医用高分子材料发展的主流方向,本文概述了生物可降解高分子材料的研究进展。其中聚酸酐类和脂肪族聚碳酸酯类可降解性高分子材料是80年代初发展起来的一类新型可生物降解材料。由于其具有良好的生物相容性、表面溶蚀降解性、降解速度可调及易加工性等优异性能,很快在医学前沿领域得到应用。本文概述了聚酸酐和脂肪族聚碳酸酯合成进展和临床应用概况。
     采用低毒性的芳氧基稀土催化剂——二(2,6-二叔丁基-4-甲基苯氧基)稀土[Ln(DBMP)_3]在温和的条件下单组分催化己二酸酐的开环均聚合,并系统研究了溶剂,温度、聚合时间、单体催化剂比例等因素对聚合的影响,发现不同的稀土元素配合物对于催化己二酸酐开环均聚合都具有较高的活性。PAA通过~1H NMR分析分子量为1,500。使用La(DBMP)_3催化己二酸酐与己内酯的嵌段共聚,制备了一系列不同单体比例的嵌段共聚物,共聚物结构通过GPC,′H NMR、DSC等手段表征证实。而相同条件下己二酸酐与2,2-二甲基三亚甲基环碳酸酯和三亚甲基环碳酸酯开环共聚合证明只有PAA和聚碳酸酯的共混物。
     使用三氟甲磺酸稀土[Ln(OTf)_3]催化己二酸酐和环氧丙烷开环共聚合。详细讨论了不同的稀土催化剂等反应条件对于共聚合的影响。可以通过调节反应条件制备AA和PO的交替共聚物。在[AA]:[PO]=1:1,[AA+PO]/[Y(OTf)_3]=1000,80℃反应48小时,可以制备AA与PO的交替共聚物(M_n=4,600)。使用。~1H NMR分析反应机理,发现反应非常复杂,需要进一步研究。
     使用Ln(DBMP)_3单组分催化碳酸亚民乙酯和CL开环共聚合,成功制备了一系列具有较高分子量、EC含量不同的Poly(CL-co-EC)s。详细研究了不同稀土元素的Ln(DBMP)_3的催化活性,发现轻稀土La和Nd具有最好的催化活性,Nd(DBMP)_3催化制备的共聚物分子量最高。详细研究了Nd(DBMP)_3催化EC和CL开环共聚合的聚合特征。得出了最佳聚合条件为:单体投料比[EC]:[CL]=30:70,[EC+CL]=1.0 mol/L,[EC+CL]/[Nd(DBMP)_3]=500,T=25℃,甲苯溶液,聚合时间3 h。共聚物的数均分子量15.97万,分子量分布为1.81。使用~1H NMR检测表明没有发生EC单体的均聚合和脱CO_2副反应发生,所得共聚物为无规共聚物,共聚物中的EC含量最高为22 mol-%。使用XRD测定了不同EC含量共聚物的结晶度,结果表明EC的含量越高,共聚物的结晶度越低。使用DMA检测了共聚物的热学和力学性能。结果显示共聚物只有一个玻璃化转变温度(T_g)(-35.6℃),随着EC含量的增加,T_g有所增加,但是T_m有较大下降(44.5℃)。拉伸测试测定了共聚物在25℃时的强度、杨氏模量和断裂伸长率的变化趋势。从结果中可以得到随着EC含量的增加,共聚物代表刚性的模量和强度指标大幅下降,而代表柔韧性的断裂伸长率大幅增加(2383%)的结论。
     采用“原位聚合”的方法合成了一系列分子量不同的PAA与PCL-b-PAA、PDTC和PTMC共混物。通过浇铸成膜的技术制备了几种共混物薄膜,并与简单溶液共混制备的相应的共混物薄膜做了在PBS溶液(pH=7.42)体外降解试验。实验表明PAA在24h内已降解完毕,是一种快速降解材料。PAA的降解对剩余的PCL、PDTC和PTMC的降解没有明显影响。通过观察比较“原位聚合”和溶液共混制备的聚合物薄膜的降解前后的形貌,发现“原位聚合”制备的共混聚合物中PAA的分散优于溶液共混制备的材料,体外降解后微孔在薄膜本体和表面分布得更均匀,有望用作生物医用材料如组织工程支架。
     采用Ln(DBMP)_3可以成功的催化制备可降解聚合物Poly(CL-co-EC)s。使用静电纺丝技术制备了直径为1μm数量级的无纺布。对共聚物材料的生物相容性试验的初步结果显示,共聚物具有良好的细胞粘附性;溶血试验、细胞增值实验和细胞毒性试验表明无明显细胞毒性:同时肌肉植入试验表明共聚物在肌肉组织内不会引起严重的炎症反应,无炎症薄膜的形成。通过细胞培养实验,发现静电纺丝制备的无纺布比光滑平面薄膜更容易粘附生长细胞,可以用作组织工程支架。
In recent years, biodegradable polymeric materials have been used for drug delivery, bone and cartilage repairing, tissue engineering. Compared to nonbiodegradable polymers, they have favorable advantages. That is, they do not need to be taken out and can degrade into small molecules in body. Biodegradable polymers are the most potential materials for biomedical applications. In this paper, recent developments of biopolymers were reviewed. Novel biodegradable polymers, polyanhydrides and aliphatic polycarbonate have been developed since 1980s'. These materials are highly biocompatible, demonstrated by tissue response and toxicological study. In addition, they show surface-eroding behavior, thus provide a sustained release rate over a long period of time, and the rate is adjustable. So these materials are very promising in biomedical applications. This paper presented an outline of recent researches and clinical applications of these polymers.
     Lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) was applied to catalyze the ROP of AA and the copolymerization of AA with CL. Various conditions were examined. The copolymer structures are identified by GPC, ~1H NMR and DSC. Only PAA/PDTC or PAA/ PTMC blends were obtained by the copolymerization of AA and DTC or TMC.
     The ring-opening copolymerization of adipic anhydride with propylene oxide has been carried out using yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. Poly(AA-alt-PO) with M_n=4,400, could be synthesized. The copolymerization procedure was tracked by ~1H NMR analysis and was found that the mechanism is very complex.
     The ring-opening copolymerization of ethylene carbonate (EC) with (CL) was carried out using Ln(DBMP)3 as a single component catalyst. Copolymers containing 22.0% EC contents with high molecular weights (up to 23.97×10~4) and moderate molecular weight distributions (between 1.66 and 2.03) were synthesized at room temperature. Compared with homopoly(ε-caprolactone), the copolymers with EC units (22.0%) exhibited higher glass transition temperatures (-35.6℃), lower melting temperatures (44.5℃) and greatly enhanced elongation at break (2383%) based on dynamic mechanic analysis. The crystallinities of the copolymers decreased with the increasing EC molar percentage in the products.
     PAA/PCL-b-PAA, PAA/PDTC and PAA/PTMC blends were prepared by in situ copolymerization and solution blending methods. The matrices were degraded in vitro. PAA degraded fast within 24 h. Porous membranes were remained. It is founded the membranes of the matrices prepared by in situ polymerization have more regular cavities.
     Poly(CL-co-EC)s were proved as a suitable and biocompatible copolymer with the changeable physico-mechanical properties. Biocompatibility tests of the copolymers showed that they good cell adhesion, growth viability, morphology and mitochondrial activity of L929 cells. Hemolysis test and muscle transplantation approved poly(CL-co-EC)s could be used as biocompatible material.
引文
[1]Brocchini,S.,Combinatorial chemistry and biomedical polymer development.Adv.Drug Deliv.,Rev.,2001,53(1),123-130.
    [2]Stock U.A.,Vacanti J.P.,Annual Review of Medicine,2001,52,443-451.
    [3]Handra R.C,Rustgi R.,Biodegradable polymers.Prog.Polym.Sci.,1998,23(7),1273-1335.
    [4]Fulzele S.V.,Saturwar P.M.,Dorle A.K.,Study of the biodegradation and in vivo biocompatibility of novel biomaterials.Euro.J.Pharm.Sci.,2003,20(1),53-61
    [5]Abdul Shajahan,Poddar S.S.,A flexible technology for modified release of drugs:multi layered tablets.J.Controlled Release,2004,97(3),393-405.
    [6]Soppimath K.S.,Aminabhavi T.M.,Kulkami A.R.,Rudzinski W.E.,Biodegradable polymeric nanoparticles as drug delivery devices.J.Controlled Release,2001,70(1-2),1-20.
    [7]Greg Miller,Drug Targeting:Breaking Down Barriers.Science,2002,297,1116-1118.
    [8]Wallace D.G,Rosenblat J.,Collagen gel systems for sustained delivery and tissue engineering.Adv.Drug Deliv,Rev.,2003,55(12),1631-1649.
    [9]Deyl Z.,Miksik l.,Eckhardt A.,Preparative procedures and purity assessment of collagen proteins.J.Chromat.B:Analyt.Tech.Biomed.Life Sci.,2003,790(1-2),245-275.
    [10]Gopinath D.,Ahmed M.R.,Gomathi K.,Chitin K.,Sehgal P.K.,Jayakumar R.,Dermal wound healing processes with curcumin incorporated collagen films.Biomaterials,2004,25(10),1911-1917.
    [11]Olsen D.,Yang C.L.,Bodo M.,Recombinant collagen and gelatin for drug delivery.Adv.Drug Deliv.Rev.,2003,55(12),157-1567.
    [12]Ramshaw J.A.M.,Vaughan P.R.,Werkmeister J.A.,Applications of collagen in medical devices.Biomed.Eng.Appli.,Basis Commu.,2001,13(1),14-26.
    [13]Singh D.K.,Ray A.R.,Biomedical applications of chitin,chitosan,and their derivatives.J.Macromol.Sci.Rev.Macromol.Chem.Phys.,2000,40(C)(1),69-83.
    [14]Gupta K.C.,Ravikumar M.N.V.,Overview on chitin and chitosan applications with an emphasis on controlled drug release formulations.J.Macromol.Sci.Rev.Macromol.Chem.Phys.,2000,40(C)(4),273-308.
    [15]Dutta P.K.,Dutta J.,Ravikumar M.N.V.,Chitin and chitosan for versatile applications.J.Macromol.Sci.Polym.Rev.,2002,42(3),307-354.
    [16]Khor E.,Lim L.Y.,Implantable applications of chitin and chitosan.Biomaterials,2003,24(13),2339-2349.
    [17]Amass W.,Amass A.,Tighe B.,Review of biodegradable polymers:uses,current developments in the synthesis and characterization of biodegradable polyesters,blends of biodegradable polymers and recent advances in biodegradation studies.Polym.Int.,1998,47(2),89-144.
    [18]Sudesh K.,.Abe H,Doi Y.,Synthesis,structure and properties of polyhydroxyalkanoates:Biological polyesters.Prog.Polym.Sci.,2000,25(10),1503-1555.
    [19]Mochizuki M.,Hirami M.,Structural effects on the biodegradation of aliphatic polyesters.Polym.Adv,Tech.,1997,8(4),203-209.
    [20]Kumar N.,Langer R.,Domb A.J.,Polyanhydrides:An overview.Adv.Drug.Deliv.Rev., 2002,54(7),889-910.
    [21]Leong K.W.,Brott B.C.,Langer R.,Bioerodible polyanhydrides as drug-carrier.1:Characterization,degradation,and release characteristics.J.Biomed.Mater.Res.,1985,19(8),941-955.
    [22]Domb A.J.,Gallardo C.E,Langer R.,Poly(anhydrides).3.Poly(anhydrides)based on aliphatic-aromatic diacids.Macromolecules,1989,22(8),3200-3204.
    [23]Pulapura S.,Kohn J.,Trends in the development of bioresorbable polymers for medical applications.J.Biomater Appl.,1992,6(3),216-250.
    [24]Shieh S.J.,Zimmerman M.C.,Parsons J.R.,Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for there pair of soft tissue injuries.J.Biomed.Mater.Res.,1990,24(7),789-808.
    [25]Kellomaki M.,Heller J.,Tormala P.,Processing and properties of two diferent poly(orthoesters).J.Mater.Sci.Mater Med.,2000,11(6),345-355.
    [26]Heller J.,Barr J.,Ng S.Y.,Poly(orthoesters):Synthesis,characterization,properties and uses.Adv.Polym.Sci.,2002,54(7),1015-1039.
    [27]Zhou Q.X.,Kohn J.,Preparation of poly(L-serine ester).A structural analogue of conventional poly(L-serine).Macromolecules,1990,23(14),3399-3406.
    [28]Obst M.,Steinbuchel A.,Microbial degradation of poly(amino acid)s.Biomacromolecules,2004,5(4),1166-1176.
    [29]Ertel S.I.,Kohn J.,Evaluation of amino acid derived polymers as biomaterials-a review.Polym.Mater Sci.Eng.,1992,66,224-225.
    [30]Richards M.,Dahiyat B.I.,Leong K.W.,Interfacial polycondensation and characterization of polyphosphates and polyphosphonates.J.Polym.Sci.,Part A:Polym.Chem.,1991,29(8),1157-1165.
    [31]Mao H.Q.,Zhuo R.X.,Fan C.L.,Synthesis and biological properties of polymer immuno adjuvants.Polym.J.,1993,25(5),499-505.
    [32]Penczek S.,Baran J.,Biela T.,Poly(alkylene phosphates).Bioanalogous synthetic polymers.British Polym.J.,1990,23(3),213-220.
    [33]Schacht E.,Vandorpe J.,Dejardin S.,Lemmouchi Y.,Biomedical applications of degradable polyphosphazenes.Biotech.Bioeng.,1996,52(1),102-108.
    [34]Lakshmi S.,Kati D.S.,Laurencin C.T.,Biodegradable polyphosphazenes for drug delivery applications.Adv.Drug Deliv.Rev.,2003,55(4),467-482.
    [35]Rokicki G,Aliphatic cyclic carbonates and spiro ortho carbonates as monomers.Prog.Polym.Sci.,2000,25(2):259-342.
    [36]Bucher J.E.,Slade W.C.,The anhydride of isophthalic and terephthalic acid.J.Am.Chem.Soc.,1909,31,1319-1321.
    [37]Hill J.W.,Studies on polymerization and ring formation.Ⅵ.Adipic anhydride,J.Am.Chem.Soc.,1930,52,4110-4114.
    [38]Hill J.W.,Carothers W.H.,Studies of polymerization and ring formation ⅪⅤ.A linear super polyanhydride and a cyclic dimerie anhydride from sedacic acid.J..Am.Chem.Soe.,1932,54,1569-1579.
    [39]Conix A.,Aromatic poly(anhydrides):a new class of high melting fiber-forming polymers,J.Polym.Sci.,Part A,1953,343-353.
    [40]Yoda N.,Miyake A.,Synthesis of polyanhydride.Ⅰ.Mixed anhydride of aromatic and aliphatic dibasic acids.Bull.Chem.Soc.Japan,1959,32,1120-1126.
    [41]Yoda N.,Synthesis of polyanhydrides.Ⅹ.Mixed anhydrides of aromatic and five-membered heterocyclic dibasic ac ids.Makromol.Chem.,1962,56,10-35.
    [42]Yoda N.Synthesis of polyanhydrides.Ⅱ.New aromatic polyanhydrides with high melting points and fiber-forming properties.Makromol Chem.,1959,32,1-12.
    [43]Yoda N.,Synthesis of poly(anhydrides).Ⅲ.Poly(anhydrides)of five-membered heterocyclic dibasic acids.Makromol.Chem.,1962,55,174-190.
    [44]Yoda N.,Synthesis of polyanhydrides.Ⅺ.Synthesis and properties of new polythioether polyanhydrides.Makromol.Chem.,1962,56,36-54.
    [45]Yoda N.,Synthesis of poly(anhydrides).Crystalline and high poly(amide)poly(anhydride)of methylene bis(p-carboxyphenyl)amide.J.Polym.Sci.,PartA,1963,1,1323-1338
    [46]Langer R.,Biomaterials in drug delivery and tissue engineering:one Laboratory's experience.Acc.Chem.Res.,2000,33(2),94-101.
    [47]Brem H.,Kader A.,Epstein J.Ⅰ.,Tamargo R.J.,Domb A.J.,Langer R.,Leong K.W.,Biocompatibility of a biodegradable controlled release polymer in rats.Selective Cancer Therapeutics,1988,5,55-65.
    [48]Leong K.W.,Amore P.D.,Marletta M.,et al.,Bioerodible polyanhydrides as drug carrier matrics.Ⅱ.Biocompatibal and chemical reactivity.J.Biomed.Mater.Res.,1986,20(1),51-64.
    [49]Brem H.,Lawson H.C.,The development of new brain tumor therapy utilizing the local and sustained deIivery of chemotherapeutic agents from biodegradable polymers.Cancer,1999,86(2),197-199.
    [50]Brem H.,Tamargo R.J.,Olivi A.,Pinn M.,Weingart J.D.,Wharam M.,Epstein J.Ⅰ.,Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain.J.Neurosur.,1994,80(2),283-290.
    [51]Domb A.J,Israel Z.,Elmalak O.,Teomim D.,Bentolila A.,Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors.Pharm.Res.,1999,16(5),762-765.
    [52]Domb A.J.,Maniar M.,Absorbable biopolymers derived from dimmer fatty acid..J.Polym.Sci,PartA:Polym.Chem.,1993,31(5),1275-1285.
    [53]Domb A.J.,Nudelman R.,Biodegradable polymers derived from natural fatty acids.J.Polym.Sci,PartA:Polym.Chem.,1995,33(4),717-725.
    [54]Domb A.J.,Gauardo C.E,Langer R.,Poly(anhydrides).3.Poly(anhydrides)based on aliphatic and Aromatic diacids.Macromolecules,1989,22(8),3200-3204.
    [55]Domb A.J.,Langer R.,Polyanhydrides.1.Preparation of high molecular weight polyanhydrides.J..Polym.Sci,PartA:Polym.Chem.,1987,25,3373-3386.
    [56]Albertsson A.C.,Lundmark S.,Synthesis of poly(adipic anhydride)by use of ketene.J.Macromol.Sci.Chem.,1988,A25(3),247-258.
    [57]Kricheldorf H.R.,Lubbers D.,New polymer syntheses,44.Synthesis of polyanhydrides from silylated dicarboxylic acids and thionyl chloride.Makromol.Chem.Rapid Commun.,1990,11(6),261-266.
    [58]Kricheldorf H.R.,Lubbers D.,New polymer syntheses,46.Thermotropic poly(ester-anhydride)s derived from terephthalic acid and various aromatic hydroxy acids.Makromol.Chem.Rapid Commun.,1990,11(7),303-307.
    [59]Kricheldorf H.R.,Lubbers D.,Polyanhydrides.2.Thermotropic poly(ester-anhydride)s derived from terephthalic acid,substituted hydroquinones,and 4-hydroxybenzoic acids.Macromolecules,1992,25(5),1377-1381.
    [60]Leong K.W.,Simonte V.,Langer R.,Synthesis of polyanhydride:melt-polycondensation dehydrochlorination and dehydrative coupling.Macromolecules,1987,20(4),705-712.
    [61]Windholzt R.,Polyanhydrides,U.S.Pat.3200097(May2 5,1959).
    [62]Domb A.J.,Ron E.,Langer R.Poly(arthydrides).2.One-step polymerization using phosgene or diphosgene as coupling agents.Macromolecules,1988,21(7),1925-1929.
    [63]Maeda Y.,Nakayama A.,Kawasaki N.,Hayashi K.,Aiba S.,Yamamoto N.,Ring-opening copolymerization of succinic anhydride with ethylene oxide initiated by magnesium diethoxide.Polymer,1997,38(18),4719-4725.
    [64]Takenouchi S.,Takasu A.,Inai Y.,Hirabayashi T.,Effects of geometrical structure in unsaturated aliphatic polyesters on their biodegradability.Polym.J.,2001,33(10),746-753.
    [65]Takenouchi S.,Takasu A.,Inai Y.,Hirabayashi T.,Effects of geometrical difference of unsaturated aliphatic polyesters on their biodegradability Ⅱ.Isomerization of poly(maleic anhydride-co-propylene oxide)in the presence of morpoholine.Polym.J.,2002,34(1),36-42.
    [66]Albertsson A.C.,Lundmark S.,Melt polymerization of adipic anhydride(oxepane-2,7-dione).J.Macromol.Sci.Chem.,1990,A27(4),397-412.
    [67]Albertsson A.C.,Lundmark S.,Polymerization of oxepan-2,7-dione in solution and synthesis of block copolymers of oxepan-2,7-dione and 2-oxepane.J.Macromol.Sci.Chem.,1991,A28(1),15-29.
    [68]Albertsson A.C.,Eklund M.,Influence of molecular structure on the degradation mechanism of degradable polymers:in vitro degradation of poly(trimethylene carbonate),poly(trimethylene carbonate-co-caprolactone),and poly(adipic anhydride).J.Appl.Polym.Sci.,1995,57,87-103.
    [69]Ropson N.,Dubois Ph.,Jerome R.,Teyssie Ph.,Synthesis and characterization of biodegradable homopolymers and block copolymers based on adipic anhydride.J.Polym.Sci PariA:Polym.Chem.,1997,35,183-192.
    [70]Deng X.M.,Li Z.,Yuan M.L.,Hao J.Y.,Ring-opening polymerization of adipic anhydride initiated by novel allylmagnesium chloride grignard reagent.Chin.J.Synth.Chem.,2002,4,306-313.
    [71]Deng X.M.,Li Z.,Yuan M.L.,Hao J.Y.,Anionic ring-opening polymerization of adipic anhydride initiated by potassium poly(ethylene glycol)ate.J.Appl.polym.Sci.,2003,88,2194-2201.
    [72]Li Z.,Hao J.Y.,Yuan M.L.,Deng XM.,Ring-opening polymerization of adipic anhydride initiated by dibutylmagnesium initiator.Eur.Polym.J.,2003,39,313-317.
    [73]Li Z.,Gao M.Y.,Yuan M.L.,Him J.Y.,Deng X.M.,Synthesis and characterization of biodegradable poly(ester anhydride)based on ε-caprolactone and adipic anhydride initiated by potassium poly(ethylene glycol)ate.J.Polym.Sci.PartA:Polym.Chem.,2003,41,1511-1520.
    [74]Ren S.J.,Ling J.,Shen Z.Q.,A novel catalyst of lanthanum tris(2,6-di-tert-buty1-4-methylphenolate)for ring-opening polymerization of adipic anhydride.Eur.polym.J.2004,40,647-650.
    [75]Domb A.J.,Langer R.,High molecular weight polyanhydride and preparation there of.U.S. Pat.4,757,128(Jul.12,1988).
    [76]Brem H.,Domb A.J.,Lenartz D.,Dureza C.,Olivi A.,Epstein J.Ⅰ.,Brain Biocompatibility of a Biodegradable controlled release polymer consisting of anhydride copolymer of fatty acid dimer and sebacic acid.J.Contr.Rel.,1992,19,325-330.
    [77]Leong K.W.,Brott B.C.,Langer R.,Biodegradable polyanhydrides as drug carrier matrices.Ⅰ.Characterization,degradation and release characteristics.J.Biomed.Mater.Res.,1985,19(8),941-955.
    [78]Shieh L.,Tamada J.,Chen Ⅰ.,Pang J.,Domb A.,Langer R.,Erosion of a new family of biodegradable polyanhydrides.J.Biomed.Mater.Res.,1994,28(12),1465-1475.
    [79]Domb A.J.,Rock M.,Perkin C.,et al,Excretion of a radiobelled anticancer biodegradable polymericimplant from the rabbit brain.Biomaterials,1995,16(14),1069-1072
    [80]Tamargo R.J.,Epsein J.Ⅰ.,Reinhard C.S.,Chasin M.,Brem H.,Brain biocompatibility of a biodegradable,controlled-release polymer in rats,J.Biomed.Mater.Res.,1989,23(2),253-266.
    [81]Brem H.,Ewend M.,Sills A.,et al.Biocompatibility of a biodegradable,controlled-release polymer in the rabbit brain.Selective Cancer Therapeutics,1989,5(2),55
    [82]Domb A.J.,Nudelrnan R.,In vivo and in vitro elimination of aliphatic polyanhydrides.Biomaterials,1995,16,319-323.
    [83]Carothers W.H.,Dorough G L.,Van Natta E J.,Studies on polymerization and ring formation.Ⅹ.The reversible polymerization of six-membered cyclic esters,J.Am.Chem.Sot.,1932,54(2),761-772.
    [84]Inoue S.,Tsuruta T.,Synthesis and thermal d gradation of carbon dioxide-epoxide copolymer.Appl.Polym.symp.,1975,26,257-267.
    [85]Zhu K.J.,Hendren R.W.,Jensen K.,Pit C.G.,Synthesis,properties,and biodegradation of poly(1,3-trimethylene carbonate).Macromolecules,1991,24(8),1736-1740.
    [86]Pego A.P,Poot A.A.,Grijpma D.W.,Feijen J.,In vitro degradation of trimethylene carbonate based(co)polymers.MacromoL Bio.sci.,2001,2,411-419.
    [87]Yasuhiro T.,Ryoji K.,Crystal structure of poly(trimethylene carbonate).Macromolecules,2003,36(14),5139-5143.
    [88]Pego A.P,Grijpma D.W.,Feijen J.,Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks.Polymer,2003,44(21),6495-6504.
    [89]Pego A.P,Poot A.A.,Grijpma D.W.,Feijen J.,Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers.J.Mater.Sci.Mater.Med.,2003,14(9),767-773.
    [90]Matsuo J.,Aoki K.,Sanda E,Endo T.,Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates.Macromolecules,1998,31,4432-4438.
    [91]Ariga T.,Takata T.,Endo T.,Cationic ring-opening polymerization of cyclic carbonates with alkyl halides to yield polycarbonate without the ether unit by suppression of elimination of carbon dioxide.Macromolecules,1997,30(4),737-744.
    [92]Keul H.,Hocker H.,Leitz Z.,Ott K.H.,Morbitzer L.,Copolymers obtained by means of anionic polymerization.Poly(2,2-dimethyltrimethylene carbonate-tapered-ε-caprolactone).Makromol.Chem.,1988,189(10),2303-2321.
    [93]Colomb E.,Novat C.,Hamaide T.,Heterogeneous catalytic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate with metal alkoxides as initiators in protic conditions. Macramol.Chem.Phys.,1999,200(11),2525-2532.
    [94]Ling J.,Shen Z.Q.,Zhu W.P.,Synthesis,characterization and mechanism studies on novel rare-earth calixarene complexes initiating ring-opening polymerization of 2,2-dimethyltrimethylene carbonate.J.Polym.Sci.,Part A:Polym.Chem.,2003,41(9),1390-1399.
    [95]Inoue S.,Koinuma H.,Tsumta T.,Copolymerization of carbon dioxide and epoxide,J.Polym.Sei.PartB:Polym.Lett.,1969,7(4),287-292.
    [96]Koinuma H.,Hirai H.,Copolymerization of carbon dioxide and some oxiranes by organoaluminium catalysts.Makromol.Chem.,1977,178(5),1283-1294.
    [97]Gorecki W.,Kuran W.,Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide:activity in copolymerization and eopolymer destruction processes.J.Polym.Sci.,Polym.Lett.Ed.,1985,23(6),299-304.
    [98]Liu B.,Zhao X.,Wang X.,Wang E,Copolymerization of carbon dioxide and propylene oxide with Ln(CCl_3COO)_3-based catalyst:the role of rare-earth compound in the catalytic system.J.Polym.Sci.Part A:Polym.Chem.,2001,39(16),2751-2754.
    [99]Chiellini E.,Bemporad L.,Solaro R.,Novel hydroxyl containing polyesters and polycarbonates by the copolymerization of glycidyl ethers of protected alditols and cyclic anhydrides.J.Bioact.Compat.Polym.,1994,9(2),152-169.
    [100]Kuran W.,Pasynkiewicz J.,Skupinska A.,Organozinc catalyst systems for the copolymerization of carbon dioxide with propylene oxide.Macromol.Chem.,1977,178(1),47-54.
    [101]Chen X.H.,Shen Z.Q.,Zhang Y.E,New catalytic system for the fixation of carbon dioxide.Ⅰ.Copolymerization of dioxide and propylene oxide with new rare earth catalysts-RE(P_(204))_3-Al(i-Bu)_3-R(OH)_n.Macromolecules,1991,24,5305-5308.
    [102]Shen Z.Q.,Chen X.H.,Zhang Y.E,New catalytic system for the fixation of carbon dioxide.Ⅱ.Synthesis of high molecular weight epichlrorohydrin/carbon dioxide copolymer with rare earth phophonates/triisobutylaluminum systems,Macromol.Chem.Phys.,1994,195,2003-2011.
    [103]Darensbourg D.J.,Yarbrough,J.C.,Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides,using achiral salen chromium chloride catalyst.J.Am.Chem.Soc.,2002,124(22),6335-6342.
    [104]Quan Z.L.,Wang X.H,Zhao X.J.,Wang E S.,Copolymerization of CO_2 and propylene oxide under rare earth ternary catalyst:design of ligand in yttrium complex.Polymer,2003,44,5605-5610.
    [105]Guo J.T.,Wang X.Y.,Xu Y.S.,Sun J.W.,Copolymerizations of carbon dioxide and epoxides in the presence of rare earth coordinate catalyst.J.Appl.Polym.Sci.,2003,87,2356-235.
    [106]叶晓光,庞浩,黄玉惠,丛广民,脂肪族聚碳酸酯-二氧化碳共聚物的性能及应用,化学通报,1997,10,29-34。
    [107]Ivin K.J.,Saegusa T.,Ring-opening polymerization,vol(1-3).London,Elsevier,1984.
    [108]McGrath J.E.,Ring-opening polymerization:kinetics,mechanisms and synthesis.Washington,D.C.:ACS,1985,P25.
    [109]Shibasaki Y.,Sanda F,Endo T.,Cationic ring-opening polymerization of seven-membered cyclic carbonate with water-hydrogen chloride through activated monomer process.Macromolecules,2000,33(10),3590-3593.
    [110] Keul H., Hocker H., Anionic ring-opening polymerization of carbonates and formation of block Copolymers, integrated fundamentals of polymer science and technology. P. G Lemstra, Ed., 1988, Vol(12), P1887.
    [111] Carter K. R., Richter R., Kricheldorf H. R., Hedrick J. L., Synthesis of amine-terminated aliphatic polycarbonates via Al(Et)_2(OR)-initiated polymerizations. Macromolecules, 1997, 30(20), 6074-6076.
    [112] McNeill I. C, Rincon A., Degradation studies of some polyester and polycarbonates-6. Poly(neopentylene carbonate) and poly(2-phenyl trimethylene carbonate). Polym. Degrad. Stab., 1989,234(3), 171-184.
    [113] Duda, A. Synthesis of aliphatic polyesters of various architectures by the controlled ring-opening polymerization of cyclic esters. Polimery/Polymers, 2002,47(7-8), 469-478.
    [114] Clements J. H., Reactive applications of cyclic alkylene carbonates. Ind. Eng. Chem. Res., 2003,42,663-674.
    [115] Kuran W., Coordination polymerization of heterocyclic and heterounsaturated monomers. Prog. Polym. Sci., 1998, 23,919-992.
    [116] Rokicki G, Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog. Polym. Sci., 2000,25,259-342.
    [117] Ochiai B., Endo T., Carbon dioxide and carbon disulfide as resources for functional polymers. Prog. Polym. Sci., 2005, 30,183-215.
    [118] Vogdanis L, Martens B., Uchtmann H., Hensel F., Heitz W., Synthetic and thermodynamic investigations in the polymerization of ethylene carbonate. Macromol. Chem., 1990, 191(3), 465-472.
    [119] Soga K., Tazuke Y., Hosoda S., Iketa S., Polymerization of propylene carbonate. J. Polym. Sci. Polym. Lett. Ed., 1977,15(1), 219-229.
    [120] Vogdanis L., Heitz W., Carbon dioxide as a monomer, 3. The polymerization of ethylene carbonate. Makromol. Chem. Rapid Commun., 1986, 7(9), 543-547.
    [121] Storey R. R, Hoffman D. C., Formation of poly(ethylene ether carbonate) diols: proposed mechanism and kinetic analysis. Macromolecules, 1992,25, 5369-5382.
    [122] Soos L, Deak G. Y., Keki S., Zsuga M., Anionic bulk oligomerization of ethylene and propylene carbonate initiated by bisphenol-A/base systems. J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 545-550.
    [123] Kricheldorf H. R., Berl M., Schamagl N., Polylactones. 9. Polymerization mechanism of metal alkoxide iniated polymerizations of lactide and various lactones. Macromolecules, 1988, 21(2), 286-293.
    [124] Kricheldorf H. R., Jenssen J., Polylactones. 16. Cationic polymerization of trimethylene carbonate and other cyclic carbonates. J. Macromol. Sci. Pure Appl. Chem., 1989, A26(4), 631-644.
    [125] Lee J. C, Litt M. H., Ring-opening polymerization of ethylene carbonate and depolymerization of poly(ethylene oxide-co-ethylene carbonate). Macromolecules, 2000, 33, 1618-1627.
    [126] Elmer A. M., Jannacsh P., Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes. J. Polym. Sci., Part A: Polym. Chem., 2006,44(7), 2195-2205.
    [127] Kadokawa J., Iwasaki Y, Tagaya H., Ring-opening polymerization of ethylene carbonate catalyzed with ionic liquids:imidazolium chloroaluminate and chlorostannate melts.Macromol.Rapid Commun.,2002,23,757-760.
    [128]Haba O.,Tomizuka H.,Endo T.,Anionic ring-opening polymerization of methyl 4,6-o-Benzylidene-2,3-o-carbonyl-α-D-glucopyranoside:a first example of anionic ring-opening polymerization of five-membered cyclic carbonate without elimination of CO_2.Macromolecules,2005,38,3562-3563.
    [129]Kuran W.,Listos T.,Copolymerization of epoxides and five-membered cyclic carbonates in the presence of zinc coordination catalysts.Makromol.Chem.,1992,193,945-956.
    [130]Cervellera R.,Ramis X.,Salla J.M.,Mantec6n A.,Serra A.,Crosslinking study of mixtures of DGEBA and 1,3-dioxan-2-one catalyzed by lanthanide triflates.J.Polym.Sci.,Part A:Polym.Chem.,2005,43(23),5799-5813.
    [131]S.J.Garcia,A.Serra,J.Suay,Lanthanide triflates as curing initiators for solid DGEBA resin:thermal and mechanical characterization.J.Appl.Polym.Sci,2007,105(5),3097-3107.
    [132]Kricheldorf H.R.,Petermann O.,New polymer syntheses.CⅪ.Aliphatic polyesters by the ring-opening polycondensation of glutaric anhydride with ethylene or trimethylene carbonate.J.Polym.Sci.,Part A:Polym.Chem.,2002,40(23),4357-4367.
    [133]Evans W.J.,Katsumata H.,Copolymerization of ethylene carbonate and ε-caprolactone using samarium complexes.Macromolecules,1994,27,4011-4013.
    [134]Shirahama H.,Kanetani A.,Yasuda H.,Synthesis and biodegradability of copolymers of ethylene carbonate with lactones.Polym.J.,2000,32,280-286.
    [135]Agarwal S.,Naumann N.,Xie X.L.,Synthesis and microstructural characterization of ethylene carbonate-ε-capmlactone/L-lactide copolymers using one- and two-dimensional NMR spectroscopy.Macromolecules,2002,32,7713-7717.
    [136]Schmitz F.,Keul H.,H6cker H.,Alternating copolymers of tetramethylene urea with 2,2-dimethyltrimethylene carbonate and ethylene carbonate;preparation of the corresponding polyurethanes.Macromol.Rapid Commun.,1997,18,699-706.
    [137]Schmitz F.,Keul H.,Hocker H.,Copolymerization of 2,2-dimethyltrimethylene carbonate with tetramethylene urea:a new mute to the polyurethane.Polymer,1998,39,3179-3186.
    [138]Ubaghs L.,Novi C.,Keul H.,Hocker H.,Copolymerization of ethylene carbonate and 1,2-pmpylene carbonate with tetramethylene urea and characterization of the polyurethanes,Macromol.Chem.Phys.,2004,205,888-896.
    [139]Tomita H.,Sanda F.,Endo T.,Structural analysis of polyhydroxyurethane obtained by polyaddition ofbifunctional five-membered cyclic carbonate and diarnine based on the model reaction.J.Polym.Sci.,Part A:Polym.Chem.,2001,39,851-859.
    [140]Tomita H.,Sanda F.,Endo T.,Reactivity comparison of five-and six-membered cyclic carbonates with diamines:basic evaluation of synthesis of poly(hydroxyurethane).J.Polym.Sci.,Part A:Polym.Chem.,2001,39,162-168.
    [141]Tomita H.,Sanda F.,Endo T.,Polyaddition of bis(seven-membered cyclic carbonate)with diamines:a novel and efficient synthetic method for polyhydroxyurethanes.J.Polym.Sci.,Part A:Polym.Chem.,2001,39,4091-4100.
    [142]Kihara N.,Endo T.,Synthesis and properties of poly(hydroxyurethane)s.J.Polym.Sci.,Part A:Polym.Chem.,1993,31,2765-2773.
    [143]Kihara N.,Kushida Y.,Endo T.,Optically active poly(hydroxyurethane)s derived from cyclic carbonate and L-lysine derivatives.J.Polym.Sci.,Part A:Polym.Chem.,1996,34, 2173-2179.
    [144] Tomita H., Sanda F., Endo T., Polyaddition behavior of bis(five-and six-membered cyclic carbonate)s with diamine. J. Polym. Sci., Part A: Polym. Chem., 2001,39, 860-867.
    [145] Tamami B., Sohn S., Wilkes, G. L, Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane network. J. Appl. Polym. Sci., 2004, 92, 883-891.
    [146] Suzuki A., Nagai D., Ochiai B., Endo T., Facile synthesis and crosslinking reaction of bifunctional five-membered cyclic carbonate and dithiocarbonate. J. Polym. Sci., Part A: Polym. Chem., 2004,42, 5983-5989.
    [147] Rokicki G, Piotrowska A., A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer, 2002,43, 2927-2935.
    [148] Ubaghs L, Fricke N., Keul H., Hocker H., Polyurethanes with pendant hydroxyl groups: synthesis and characterization. Macromol. Rapid Commun., 2004, 25, 517-521.
    [149] Albertsson A. C, Sjoling M., Homopolymerization of l,3-dioxan-2-one to high molecular weight poly(trimethylene carbonate). J. Macromol. Sci. Pure Appl. Chem., 1992, A29(1), 43-54.
    [150] Ariga T., Takata T., Endo T., Alkyl halide-initiated cationic polymerization of cyclic carbonate. J. Polym. Sci. Part A: Polym. Chem., 1993, 31(2), 581-584.
    [151] Kricheldorf H. R., Dunsing R., Albet A. S., Polylactones. 12. Cationic polymerization of 2,2-dimethyltrimethylene carbonate. Macromol. Chem., 1987,188(10), 2453-2466.
    [152] Kricheldorf H. R., Weegen-Schulz B., Polymers of carbonic acid. 13. Polymerization of cyclotrimethylene carbonate with tin tetrahalides. Polymer, 1995,36(26), 4997-5003.
    [153] Kricheldorf H. R., Weegen-Schulz B., Polymers of carbonic acid. XIV. High molecular weight poly(trimethylene carbonate) by ring-opening polymerization with butyltin chlorides as initiators. J. Polym. Sci. Part A: Polym. Chem., 1995,33(13), 2193-2201.
    [154] Murayama M., Sanda F., Endo T., Anionic ring-opening polymerization of a cyclic carbonate having a norbornene structure with amine initiators. Macromolecules, 1998,31(3), 919-923.
    [155] Takata T., Sanda F., Ariga T., Nemoto H., Endo T., Cyclic carbonates, novel expandable monomers on polymerization. Macromol. Rapid Chem., 1997,18(6), 461469.
    [156] Keul H., Bacher R., Hocker H., Anionic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. Macromol. Chem., 1986,187,2579-2589.
    [157] Cervellera R., Ramis X., Maria J.; Serra A., N,N-dimethylaminopyridine as initiator in the copolymerization of diglycidylether of bisphenol A with six-membered cyclic. J. Polym. Sci. Part A: Polym. Chem., 2006,44, 2873-2882.
    [158] Matsuo J., Sanda F., Endo T., A novel observation in anionic ring-opening polymerization behavior of cyclic carbonates having aromatic substituents. Macromol. Chem. Phys., 1998, 199(11), 2489-2494.
    [159] Chen X. H., Mecarthy S. P., Gross R. A., Preparation and characterization of polycarbonates from 2,4,8,10-tetraoxaspiro[5,5]undecane-3-one (DOXTC) trimethylene carbonate (TMC) ring-opening polymerizations. J. Appl. Polym. Sci., 1998, 67, 54 -558.
    
    [160] Van Denberg E. J., Tian D., A new, crystalline high melting bis(hydroxymethyl) polycarbonate and its acetone ketal for biomaterial applications. Macromolecules, 1999, 32(11), 3613-3619.
    [161] Kricheldorf H. R., Jessen J., Kreiser-Sounders I., Polymers of carbonic acid, 6. Polymerization of trimethylene carbonate(1,3-dioxan-2-one)with complexation catalysts,Makromol Chem.,1991,192(10),2391-2399.
    [162]Wurm B.,Keul H.,Hocker H.,Polymerization of 2,2-dimethyltrimethylene carbonate with trisec-butoxyaluminium;a kinetic study,Maeromol.Chem.Phys.,1994,195,3489-3498.
    [163]Krieheldorf H.R.,Kreiser-Sounders Ⅰ.,Boetcher C.,Polylactones.31.Sn(Ⅱ)octoate-initiated polymerization of L-lactide.A mechanistic study.Polymer,1995,36(6),1253-1259.
    [164]Hovestadt W.,Keul H.,Hocker H.,Tetraphenylporphyrin-aluminium compounds as initiator for the ring-opening polymerization of 2,2-dimethyltrimethylene carbonate:synthesis of homopolymers and copolymers with caprolactone,ethylene oxide and propylene oxide.Polymer,1992,33,1941-1948.
    [165]Varmaa Ⅰ.,Albertsson A.C.,Rajkhowa R.,Srivastava R..Enzyme catalyzed synthesis of polyesters.Prog.Polym.Sci.,2005,30,949-981.
    [166]Yu X.,Zhuo R.,Feng J.,Liao J.,Enzymatic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate catalyzed by PPL immobilized on silica nanoparticles.Eur.Polym.J.,2004,40,2445-2450.
    [167]Shen Y.Q.,Shen Z.Q.,Zhang Y.E,A comparison of polymerization characteristics and mechanisms of ε-caprolactone and trimethylene carbonate with rare earth halides.J.Polym.Sci.,Part A:Polym.Chem.,1997,35,1339-1352.
    [168]Shen Y.Q.,Shen Z.Q.,Zhen J.L.,Characteristics and mechanism of ε-caprolactone polymerization with rare earth halide systems.MacromolecuIes,1996,29(10),3441-3446.
    [169]Shen Y.Q.,Zhu K.J.,Shen Z.Q.,Synthesis and characterization of highly random copolymer of ε-caprolactone and D,L-lactide using rare earth catalyst.J.Polym.Sci.,Part A:Polym.Chem.,1996,34(9),1799-1805.
    [170]Shen Y.Q.,Huang Q.H.,Shen Z.Q.,Random copolymerization of ε-caprolactone and trimethylene carbonate with rare earth catalysts.J.Appl.Polym.Sci.,1997,64,2131-2139.
    [171]Yamashita M.,Takemoto Y.,Ihara E.,Organolanthanide-initiated living polymerizations of ε-caprolactone,δ-valerolactone and β-propiolactone.Macromolecules,1996,29(5),1798-1806.
    [172]Agarwal S.,Puchner M.,Ring-opening polymerizations of cyclic esters and carbonate by rare earth LnCp_3.Eur.Polym.J.,2002,38(12),2365-2371.
    [173].Stevels W.M.,Ankone M.J.K.,Dijkstra P.J.,Feijen J.,Kinetics and mechanism of ε-caprolactone polymerization using yttrium as initiators.Macromolecules,1996,29(26),8296-8303.
    [174]Colomb E.,Novat C.,Hamaide T.,Heterogeneous catalytic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate with metal alkoxides as initiators in protic conditions.Macromol.Chem.Phys.,1999,200,2525-2532
    [175]Ling J.,Zhu W.P.,Shen Z.Q.,Controlling ring-opening copolymerization of ε-caprlactone with trimethylene by tris(2,6-di-tert-butyl-4-methylphenolate).Macromolecules,2004,37(3),758-763.
    [176]Ling J.,Shen Z.Q.,Huang Q.H.,Novel single rare earth aryloxide initiators for ring-opening polymerization of 2,2-dimethyltrimethyl.Macromolecules,2001,34,7613-7616.
    [177]Ling J.,Shen Z.Q.,Lanthanum tris(2,6-di-tert-butyl-4-methylphenolate)as a novel,versatile initiator for homo-and copolymerization of cyclic carbonates and lactones.Macromol.Chem.Phys.,2002,203,735-738
    [178]Yu C.P.,Zhang L.E,Shen Z.Q.,Ring-opening polymerization of 2,2-dimethyltrimethylene carbonate using rare earth tris(4-tert-butylphenolate)s as a single component initiator.J.MoL Catal A:Chem.,2004,212,365-369.
    [179]Ling J.,Shen Z.Q.,Zhu W.P.,Synthesis,characterization,and mechanism studies on novel rare-earth calixarene complexes initiating ring-opening polymerization of 2,2-dimethyltrimethyl carbonate.J.Polym.Sci.,Part A:Polym.Chem.,2003,41,1390-1399.
    [180]Zhu W.P.,Ling J.,Xu H.,Shen Z.Q.,Ring-opening polymerization of trimethylene carbonate catalyzed by novel single component rare earth calixarene complexes.Chin.J.Polym.Sci.,2005,23,407-410.
    [181]Ge L.,Shen Z.Q.,Zhang Y.E,Huang Q.H.,Ring-opening polymerization of trimethylene carbonate by calix[8]-arene neodymium.Chin.J.Polym.Sci.,2000,18,77-80.
    [182]Zhou L.Y.,Yao Y.M.,Zhang Y.,Xue M.Q.,Chen J.L.,Shen Q.,Synthesis and characterization of homoleptic lanthanide guanidinate complexes and their catalytic activity for the ring-opening polymerization of trimethylene carbonate.Eur.J.Inorg.Chem.,2004,2167-2172.
    [183]Zhou L.Y.,Sun H.M.,Chen J.L.,Yap Y.M.,Shen Q.,Homoleptic lanthanide guanidinate complexes:The effective initiators for the polymerization of trimethylene carbonate and its copolymerization with ε-caprolactone.J.Polym.Sci.Part A:Polym.Chem.,2005,43,1778-1786.
    [184]Kawaguchi K.,Takev K.,Yasuhiko Y.,et al.Examination of biodegradability of poly(ethylene carbonate)and poly(propylene carbonate)in the peritonea cavity in rats.Chem.Pharm.Bull.,1983,31(4),1400-1403.
    [185]Sugimoto H.,Inoue S.,Copolymerization of carbon dioxide and epoxide.J.Polym.Sci.,Part A:Polym.Chem.,2004,42,5561-5573.
    [186]Stoll G.,Nimmerfall E,Acemoglu M.,Bodmer D.,Bantle S.,Muller Ⅰ.,Mahl A.,Kolopp M.,Tullberg K.,Poly(ethylene carbonate)s,part Ⅱ:degradation mechanisms and parenteral delivery of bioactive agents.J.Contr.Rel,2001,76,209-225.
    [187]Acemoglu M.,Chemistry of polymer biodegradation and implications on parenteral drug delivery.Int.J.Pharm.,2004,277,133-139.
    [188]Dadsetan M.,Christenson E.M.,Unger E,Ausborn M.,Kissel T.,Hiltner A.,Anderson J.M.,In vivo biocompatibility and biodegradation ofpoly(ethylene carbonate).J.Control.Release,2003,93,259-270.
    [189]Unger E,Westedt U.,Hanefeld P.,Wombacherb R.,Zimmermann S.,Greiner A.,Ausbom M.,Kissel T.Poly(ethylene carbonate):A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?.J.Contr.Rel,2007,117,312-321.
    [190]程峰,高分子量生物可降解聚碳酸酯的酶促合成及改性,武汉大学硕士论文,2004。
    [191]Bostman O.M.,J.Bone.Joint.Surg.,1991,73,148-153.
    [192]James K.,Kohn J.,New biomaterials for tissue engineering.MRS Bull.,1996,21(11),22-26.
    [193]Nakano M.,Wakiyama N.,Kojima T.,et al.,Biodegradable microsphere for prolonged local anethisthesia.Microspheres Drug Ther.,Pharm.,immunol,Med.,Aspects,[pap.meet],1983(Pub.1984),327-335.
    [194]Kojima T.,Nakano M.,Juni K.,et al..Preparation and evaluation in vitro of Polycarbanat microspheres containing local anesthetics.Chem.Pharm.Bull,1984,32,2795-2802.
    [195]Kojima T.,Nakano M.,Juni K.,et al.,Preparation and evaluation in vitro and in vivo of polycarbonate microspheres containing dibacaine.Chem.Pharm.Bull.,1985,33,5119-5127.
    [196]Edlund U.,Albertsson A.C.,Copolymerization and polymer blending of trimethylene carbonate and adipic anhydride for tailored drug delivery.J.Appl Polym.Sci.,1999,72,227-239.
    [197]Wang H.,Dong J.H.,Qiu K.Y.,et al.,Synthesis of poly(1,4-dioxan-2-one-co-trimethylene carbonate)for application in drug delivery systems.J.Polym.Sci.Part A:Polym.Chem.,1998,36(8),1301-1307.
    [198]Pego A.P.,Poot A.A.,Grijprna M.,Feijen J.,Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides:synthesis and properties.J Biomat.Sci.Polym.Ed.,2001,12,35-53.
    [199]胡应乾,组织工程材料制备、支架构建与评价的若干研究,浙江大学博士论文,2005。
    [200]Huang Z.M.,Zhang Y.Z.,Kotaki M.,Ramakrishna S.A review on polymer nanofibers by electrospinning and their applications in nanocomposites.Compo.Sci.Tech.,2003,63,2223-2253.
    [201]Rayleigh L.,On the equilibrium of liquid conducting masses charged with electricity.Philos.Mag.,1882,14,184-186.
    [202]Formhals A.,Process and apparatus for preparing artificial threads.U.S.P 1,975,504,1934.
    [203]Doshi J.,Reneker D.H.,Electrospinning process and applications of electrospun fibers.J.Electrostatics,1995,35,151-160.
    [204]Reneker D.H.,Chun I.,Nanometer diameter fibres of polymer-produced by electrospinning.Nanotechnology,1996,7,216-223.
    [205]Reneker D.H.,Yarin A.L.,Fong H.,Koombhongse S.Bending instability of electrically charged liquid jets of polymer solutions in electrospinning.J.Appl.Phys.,2000,87,4531-4547.
    [206]Zhang Y.Z.,Ouyang H.W.,Lim C.T.,Ramakrishna S,Huang Z.M.,Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds.J.Biomed.Mater.Res.Part B,2005,72,156-165.
    [207]Deitzel J.M.,Kleinmeyer J.,Harris D.,Tan NCB.,The effect of processing variables on the morphology of electrospun nanofibers and textiles.Polymer,2001,42,261-272.
    [208]Fong H.,Chun I.,Reneker D.H.,Beaded nanofibers formed during electrospinning.Polymer,1999,40,4585-4592.
    [209]Demir M.M.,Yilgor I.,Yilgor E.,Erman B.,Electrospinning of polyurethane fibers.Polymer,2002,43,3303-3309.
    [210]Fong H.,Reneker D.H.,Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer.J.Polym.Sci.,Part B:Polym.Phys.,1999,37,3488-3493.
    [211]Zong X.H.,Kim K.,Fang D.F.,Ran S.F.,Hsiao B.S.,Chu B.,Structure and process relationship of electrospun bioabsorbable nanofiber membranes.Polymer,2002,43,4403-4412.
    [212]Choi J.S.,Lee S.W.,Jeong L.,Bae S.H.,Min B.C.,Youk J.H.,Park W.H.,Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate).Int.J.Bio.Macromol.,2004,34,249-256.
    [213]Deitzel J.M.,Kleinmeyer J.D.,Hirvonen J.K.,Tan NCB.,Controlled deposition of electrospun poly(ethylene oxide)fibers.Polymer,2001,42,8163-8170.
    [214]Li W.J.,Laurencin C.T.,Caterson E.J.,Tuan R.S.,Ko F.K.Electrospun nanofibrous structure:a novel scaffold for tissue engineering.J.Biomed.Mater.Res.,2002,60,613-621.
    [215]MacNeill B.D.,Pomerantseva I.,Lowe H.C.,Oesterle S.N.,Vacanti J.P,Toward a new blood vessel.Vascul.Med.,2002,7(3),241-246.
    [216]Riboldi S.A.,Sampaolesi M.,Neuenschwander P,Cossu G.,Mantero S.,Electrospun degradable polyester urethane membranes:potential scaffolds for skeletal muscle tissue engineering.Biomaterials,2005,26(22),4606-4615.
    [217]Williamson M.R.,Shuttleworth A.,Canfield A.E.,Black R.A.,Kielty C.M.,PCL-PU composite vascular scaffold production for vascular tissue engineering:Attachment,proliferation and bioactivity of human vascular endothelial cells.Biomaterials,2006,27,3608-3606.
    [218]Vaz C.M.,Van Yuijl S.,Bouten C.V.C.,Baaijens E P.T.,Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique.Acta Biomater.,2005,1,575-582.
    [219]Hitchcock E B.,Lappert M.E,Singh A.,Three- and four-coordinate,hydrocarbon soluble aryloxides of scandium,ytrium,and the lanthanoxides;X-ray crystal structure of tris(2,6-di-t-butyl-4-methylphenoxo)scandium.J.Chem.Soc.Chem.Commun.,1983,1499.
    [220]Albertsson A.C.,Liu Y.,Comparison between physical and copolymerization of poly(trimethylyne carbonate)and poly(adipic anhydride)with special regard to compatibility,morphology and degradation.J.Macromol Sci.Pure Appl.Chem.,1997,A34,1457-1482.
    [221]Dietmar W.H.,Scaffolds in tissue engineering bone and cartilage.Biomaterials,2000,21(24),2529-2543.
    [222]Jung Y,Kim S.H.,Kim S.,et al.Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.J.Biomater.Sci.Polym.Ed.,2008,19(1),61-74.
    [223]Fohn M,Bannasch H.,Artificial skin.Methods Mol.Med.,2007,140,167-182.
    [224]Au P.,Tam J.,Fukumura D.,et al.,Small blood vessel engineering.Methods Mol.Med.2007,140,183-195.
    [225]Healy K.E.,Guldberg R.E.,Bone tissue engineering.J.Musculoskelet Neuronal Interact.,2007,7(4),328-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700