基于锰铁掺杂的铬酸锶镧的燃料电池阳极复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种全固态的发电装置,它具有高效率,低污染的优点,基于这些优点,对SOFC的研究达到了空前的热度。传统的SOFC以氧化钇稳定氧化锆(YSZ)为电解质、使用氢气(H_2)作为燃料,其阳极通常使用Ni/YSZ金属陶瓷材料,在H_2条件下它表现出卓越的性能。但是,H_2主要是通过电解水或裂解石油制备,造成SOFC燃料成本偏高,为了降低运行成本、推进SOFC的实用化,需要直接使用含碳燃料,但以Ni/YSZ为阳极的SOFC在对含碳燃料的测试中却出现了明显的性能衰退。这就迫使我们去寻找一种全新的阳极材料。钙钛矿氧化物凭借自己在氧化和还原气氛下突出的稳定性优势,作为SOFC阳极材料引起了广泛的关注。
     研究发现,用碱土和过渡族元素分别对LaCrO_3的La位和Cr位进行掺杂能够有效地改善材料的电催化性能,使这种原本用于SOFC连接体的材料被成功改造为具有抗御碳沉积能力的阳极材料。其中,掺杂较为成功的材料是La_xSr_(1-x)Cr_yMn_(1-y)O_(3-δ)(LSCrM)和La_xSr_(1-x)Cr_yFe_(1-y)O_(3-δ)(LSCrFe),它们在还原气氛中表现出了良好的稳定性,但这两种材料的电导率都不够高、电催化能力也非常有限。本文的研究重点就是将具有高离子导电性的SDC,高电子导电性并具有阳极催化能力的Ni,Cu,Ag等掺入到LSCrM和LSCrFe中,形成复合阳极材料,以提升和改善其阳极的性能。以纯LSCrM为阳极,YSZ为电解质,(La,Sr)MnO_3(LSM)为阴极的SOFC在H_2条件下850oC的输出功率密度为230mW/cm~2。在同样的测试条件下,以浸渍SDC的LSCrM为阳极的SOFC输出性能达到了400mW/cm~2,如果将具有高催化性能的Ni和高离子电导率的SDC同时浸渍到LSCrM电极材料中,电池的性能达到1100mW/cm~2,这是迄今为止有关LSCrM报道的最高值。在对含碳燃料CH_4的测试中电池的输出性能提高的更为明显,由Ni和SDC浸渍的LSCrM阳极使SOFC的输出功率密度达到645mW/cm~2。与LSCrM一样,LSCrFe电极的掺杂也同样取得了显著的成效,以Ni和SDC浸渍LSCrFe为阳极的SOFC在H_2和CH4条件下的输出功率密度分别达到了783和214mW/cm~2(850oC)。
     本文还对传统的机械混合和新的溶液浸渍复合阳极制备方法做了相应的对比,证明浸渍方法更为有效。在对浸渍Ni的钙钛矿电极进行6h的连续运行测试过程中性能衰退并不明显,并且在最终的电镜照片中也没有发现碳沉积。这表明,微量Ni催化剂的存在并不会引起明显碳沉积,因此只要有效控制Ni在电极中的含量,可以在不引起碳沉积的情况下极大的提升电极的催化性能。为了确保浸渍的纳米颗粒能够在电极内部分布得更加均匀,我们采取了真空浸渍的手段,并对常压浸渍和真空浸渍结果进行了对比。为了考察复合阳极中Ni的含量对其性能的影响,我们采用不同浓度的Ni(NO_3)_2溶液对电极进行浸渍处理,最终的测试结果表明电极的催化性能随Ni含量的增加而不断改善。
     上述研究结果表明,在LSCrM和LSCrFe基础上制备的SOFC复合阳极材料具有很好的发展前景。
The Solid oxide fuel cell (SOFC) is an all solid energy conversion device with high efficiency and very low greenhouse emission. For this reason, different types of fuel cells are currently under development, and in most cases they use Y-doped ZrO_2 (YSZ) as the electrolyte, Ni/YSZ as the anode and hydrogen as the fuel. Although hydrogen is the most appropriate fuel for SOFC to achieve high peroformance, it can only be obtained through reforming of hydrocarbons, electrolysis or photo-electrolysis. Economically, it is ideal to use any hydrocarbons directly instead of being converted to hydrogen as the fuel for SOFC. Furthermore, the conventional Ni-based (Ni/YSZ) cermets anodes could produce excellent performance with hydrogen fuel at SOFC operating conditions, but, they degrade rapidly when operated in weakly humidified hydrocarbons. Thus, there is also considerable impetus to develop alternative materials to replace the Ni-cermet as the SOFC anode. Currently, perovskite oxides have been developed as Ni-free SOFC anodes due to their excellent stability both in an oxidizing and a reducing atmosphere.
     Substitution of alkaline earth ions, transition elements into the A- and B-site of LaCrO_3, respectively, can be effectively carried out to improve the performance of the perovskite materials. La_xSr_(1-x)Cr_yMn_(1-y)O_(3-δ) (LSCrM) and La_xSr_(1-x)Cr_yFe_(1-y)O_(3-δ) (LSCrFe) are stable under redox cycling and are physically and chemically compatible with interconnect materials, but their conductivity is very limited with 18S/cm in air and 9S/cm in hydrogen at 850oC for LSCrM and 10S/cm in air and 0.5S/cm in hydrogen at 850oC for LSCrFe. This paper will focus on addition of the ionic conducing phase such as SDC and the electric conducing phase such as Ni, Cu, Ag increasing the reaction sites and enhancing the performance of the perovskite anode. The performance of the conventional electrolyte-supported cell LSCrM/YSZ/(La,Sr)MnO_3 while operating on hydrogen was modest with a maximum power density of 300mW/cm2 at 850oC, and the corresponding value for the cell with SDC-impregnated LSCrM anode was 400 mW/cm2 at 850oC. When Ni and SDC were introduced into the LSCrM anode together the value reached to 1100 mW/cm2 at 850oC at the same testing conditions, and the corresponding value for the cell while operating on methane with a maximum power density of 645mW/cm2 at 850oC. For Ni and SDC dipping LSCrFe anode, enhanced performance was 783 and 214mW/cm2 in hydrogen and methane at 850oC, respectively. In this paper, we compared mixed and wet impregnation and demonstrated the great potential of the wet impregnation method in the development of high performance and nano-structured electrodes with specific functions. There was no coking in the Ni-doping perovskite anode after testing in methane for about 6 hours indicating that the introduction of the metal Ni not only caused no coking but also enhanced the catalytic activity of the perovskite anode. In order to ensure the evenly distribution of the nanoparticles impregnated in the electrode, the entire process of the impregnation was in a vacuum. In this paper, we compared the atmospheric with vacuum impregnation showing the advantages and disadvantages of them. In order to investigate the contribution of Ni to the enhanced performance of the electrode, the perovskite anodes containing different amount of Ni content were fabricated and tested indicating the electrocatalytic activity of the composite anodes enhanced with the increasing of the Ni content.
     These results above mentioned indicate that LSCrM- and LSCrFe-based are promising composite anode materials for SOFC.
引文
1.毛宗强.燃料电池(可再生能源丛书).化学工业出版社, 2005:5~8
    2.韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社, 2004:3
    3.李瑛,王林山.燃料电池.冶金工业出版社, 2002:1
    4.隋智通,隋升,罗东梅.燃料电池及其应用.冶金工业出版社, 2004:2~4
    5.卢俊彪,张中太,唐子龙.固体氧化物燃料电池的研究进展.稀有金属材料与工程. 2005, 34:8
    6.衣宝廉,燃料电池—原理技术应用.化学工业出版社, 2004:1~10
    7.燃料电池开发信息中心,石井弘毅.燃料电池原理与应用.科学出版社, 2003:1~19
    8.詹姆斯.拉米尼,安德鲁.迪克斯著,朱红译,衣宝廉校.燃料电池系统-原理设计应用.科学出版社, 2006:2~6
    9. A. Bodén, J. Di. Conductivity of SDC and (Li/Na)2CO3 Composite Electrolytes in Reducing and Oxidizing Atmospheres. J. Power Sources. 2007, 172:520~529
    10. P. Datta, P. majewski, F. Aldinger. Synthesis and Characterization of Gadolinia-Doped Ceria—Silver Cermet Cathode Material for Solid Oxide Fuel Cells. Mater. Chem. Phys. 2007, 8:1
    11. H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa. Thermal Expansionof Gd-Doped Ceria and Reduced Ceria. Solid State Ionics. 200, 132:227~233
    12. Y. Ji, J. Liu, T. M. He, L. G. Cong, J. X. Wang, W. H. Su. Single Intermedium-Temperature SOFC Prepared by Glycine-Nitrate Process. J. Alloys Com. 2003, 353:257~262
    13. J. D. Zhang, Y. Ji, H. B. Gao, T. M. He, J. Liu. Composite Cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for Intermediate Temperature SOFCs. J. Alloys Compd. 2005, 39:322~325
    14. S. Y. Li, Z. Lv, B. Wei, X. Q. Huang, J. P. Miao, G. Cao, R. B. Zhu, W. H. Su. A Study of (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3-δas a Cathode for IT-SOFCs. J. Alloys Compd. 2006, 426:408~414
    15. J. Wan, J. H. Zhu, J. B. Goodengough. La0.75Sr0.25Cr0.5Mn0.5O3-δ+Cu Composite Anode Running on H2 and CH4 Fuels. Soli State Ionics. 2006, 177:1211~1217
    16. J. Pena-Martínez, D. Msrrero-López, D. Pérez-Coll, J. C. Ruiz-Morales, P. Nú?ez, Performance of XSCoF (X=Ba, La and Sm) and LSCrX' (X'=Mn, Fe and Al) Perovskite-Structure Materials on LSGM Electrolyte for IT-SOFC. Electrochmica Acta. 2007, 52:2950~2958
    17. S. Li, X. L. Sun, W. Z. Sheng, J. C. Sun. A New Candidate as the Cathode Material for Intermediate an Low Temperature SOFCs. Rare Materials. Vol. 25. Spec. Issue, Oct. 2006, P. 213
    18. M. Kawano, H. Youshida, K. Hashino, H. Ijichi, S. Suda, K. Kawahara, T. Inagaki. Synthesis of Matrix-Type NiO-SDC Composite Particles by Spray Pyrolysis with Acid Addition for Development of SOFC Cermet Anode. J. Power Sources. 2007, 173:45~52
    19. S. Xu, X. Niu, M. Chen, C. Y. Wang, B. Zhu. Caron Doped Mo-SDC Material as an SOFC Anode. J. Power Sources. 2007, 165:82~86
    20. W. Z. Zhu, S. C. Deevi. A Review on the Status of Anode Materials for Solid Oxide Fuel Cells. Mat. Sci. Eng. A-STRUCT. 2003, 362:228~239
    21. R. Pérez-Hernández, A. Gutiérrez-Martínez, C. E. Gutiérrez-Wing
    22. Effect of Cu loading on CeO2 for Hydrogen Production by Oxidative Steam Reforming of Methanol. Int. J. Hydrogen Energ. 2007, 2:2888~2894J. W. Fergus. Oxide Anode Materials for Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177:1529~1541
    23. T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski. Application of Fe–16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell. Solid State Ionics. 2001, 143:131~150
    24. Z. M. Zhong. Stoichiometric Lanthanum Chromite Based Ceramic Interconnects with Low Sintering Temperature. Solid State Ionics. 2006, 177:757~764
    25. H. Koide, Y. Someya, T. Yoshida, T. Maruyama. Properites of Ni/YSZ Cermet as Anode for SOFC. J. Power Sources. 2000, 132:253~260
    26. J. Y. Hu, Z. Lü, K. F. Chen, X. Q. Huang, N. Ai, X. B. Du, C. W. Fu, J. M. Wang, W. H. Su. Effect of Composite Pore-Former on the Fabrication and Performance of Anode-Supported Membranes for SOFCs. J. Membrane Sci. 2008, 318:445~451
    27. H. Koide, Y. Someya, T. Yoshida, T. Maruyama. Properites of Ni/YSZ Cermet as Anode for SOFC. J. Power Sources. 2000, 132:253~260
    28. A. S. Carrillo, T. Tagawa, S. Goto. Application of Mist Pyrolysis Method to Preparation of Ni/ZrO2 Anode Catalyst for SOFC Type Reactor. J. Power Sources. 2001, 36:1017~1027
    29. M. Guilldo, P. Vernoux, J. Fouletier. Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells Effect of Current Collecting. Solid State Ionics. 2000, 127:99~107
    30. N. Nakagawa, H. Sagara, K. Kato. Catalytic Activity of Ni-YSZ-CeO2 Anode go the Steam Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell. J. Power Sources. 2001, 92:88~94
    31. H. B. Wang, H. Z. Song, C. R. Xia, D. K. Peng, G. Y. Meng. Aerosol-Assisted MOCVD Deposition of YDC Thin Films on (NiO+YDC) Substrates. Mater. Res. Bull. 2000, 35:2363~2370
    32. J. B. Goodenough, Y. H. Huang. Alternative Anode Materials for Solid Oxide Fuel Cells. J. Power Sources. 2007, 173:1~10
    33. S. W. Zha, P. Tsang, Z. Cheng, M. L. Liu. Electrical Properties and Sulfur Tolerance of La0.75Sr0.25CrxMn1-xO3 under Anodic Conditions. J. Solid State Chem. 2005, 178:1844~1850
    34. S. W. Tao, J. T. S. Irvine, S. M. Plint. Methane Oxidation at Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ. J. Phys. Chem. B. 2006, 110:21771~21776
    35. G. Avgouropoulos, J. Papavasiliou, T. Ioannides. PROX Reaction Over CuO-CeO2 Catalyst with Reformate Gas Containing Methnol. Catal. Commun. 2008, 9:1656~1660
    36. T.Yang. A Nafion-Based Self-Humidifying Membrane with Ordered Dispersed Pt Layer. Int. J. Hydrogen Energ. 2008, 33:2530~2535
    37. X. Xu, Z. Jiang, X. Fan, C. Xia. LSM-SDC Electrodes Fabricated with an Ion-Imprgnation Process for SOFCs with Doped Ceria Electrolytes. Solid State Ionics. 2006
    38.何恩全,马文会,刘荣辉,于洁,戴永年.新型SOFC阳极材料La0.7Sr0.3Cr0.5-yMn0.5-zCo(y+z)O3的制备和性能表征.稀有金属. 2007, 31:4
    39. S. W. Tao, J. T. S. Irvine. Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5O3-δObserved by in Situ High-Temperature Neutron Powder Diffraction. Chem. Mater. 2006, 18:5453~5460
    40. E. S. Raj, J. A. Kilner, J. T. S. Irvine. Oxygen Diffusion and Surface ExchangeStudies on (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ. 2006, 177:1747~1752
    41. S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A. Khor. La0.75Sr0.25Cr0.5Mn0.5O3/YSZ Composite Anodes for Methane Oxidation Reaction in Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177:149~157
    42. X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon, K. A. Khor. High performance Cathode-Supported SOFC With SOFC Perovskite Anode Operating in Weakly Humidified Hydrogen and Methane. Electrochem. Commun. 2009, 9:767~772
    43. J. C. Ruiz-Morales, J. Canales-vázquez. LSCM-(YSZ-CGO) Composite as Improed Symmetrical Electrodes for Solid Oxide Fuel Cells. J. Eur. Ceram, Soc. 2007
    44. X. Li, H. L. Zhao, W. Shen, F. Gao, X. L. Huang, Y. Li, Z. M. Zhu. Systhesis and Properties of Y-Doped SrTiO3 as an Anode Material for SOFCs. J. Power Sources. 2007, 166:47~52
    45. L. A. Wauters, D. G. Preatoni, A. Molinari, G. Tosi. Radio-Tracking Squirrels: Performance of Home Range Density and Linkage Estimators with Small Range and Sample Size. Ecol. Model. 2007, 202:333~344
    46. X.L. Huang, H.L. Zhao, W. Shen, W. H. Qiu, W. J. Wu. Effect of Fabrication Parameters on the Electrical Conductivity of YxSr1-xTiO3 for Anode Materials. J Phys. Chem. Solids. 2006, 67:2609~2613
    47. X. Li, H. L. Zhao, W. Shen, F. Gao, X. L. Huang, Y. Li, Z. M. Zhu. Synthesis and Properties of Y-Doped SrTiO3 as an Anode Material for SOFCs. J. Power Sources. 2007, 166:47~52
    48. Y. Ji, Y. H. Huang, J. R. Ying, J. B. Goodenough. Electrochemical Performance of La-Doped Sr2MgMoO6-δin Natural Gas. Electrochem. Commun. 2007, 9:1881~1885
    49. C. Bernuy-Lopez, M. Allix, C. A. Bridges, J. B. Claridge, M. J. Rosseinsky. Sr2MgMoO6-δ: Structure, Phase Stability, and Cation Site Order Control of Reduction. Chem. Mater. 2007, 19:1035~1043
    50. X. J. Chen, Q. L. Liu, K. A. Kohr, S. H. Chan. High-Performance (La,Sr)(Cr,Mn)O3/(Gd,Ce)O2-δComposite Anode for Direct Oxidation of Methane. J. Power Sources. 2007, 165:34~40
    51. B. Huang, S. R. Wang, R. Z. Liu, X. F. Ye, H. W. Nie, X. F. Sun, T. L. Wen. Performance of La0.75Sr0.25Cr0.5Mn0.5O3-δPerovskite-Structure Anode Material atLanthanum Gallate Electrolyte for IT-SOFC Running on Ethanol Fuel. J. Power Sources. 2007, 167:39~46
    52. J. Pe?a-Martínez, D. Marrero-López, J. C. Ruiz-Morales, B. E. Buergler, P. Nú?ez, L. J. Gauckler. SOFC Test Using Ba0.5Sr0.5Co0.8Fe0.2O3-δas Cathode on La0.9Sr0.1Ga0.8Mg0.2O2.85 Electrolyte. Solid State Ionics. 2006, 177:2143~2147
    53. T. Shimonosono, Y. Hirata, Y. Ehira, S. Sameshima, T. Horita, H. Yokokawa. Electronic Conductivity Measurement of Sm- and La-Doped Ceria Ceramics by Hebb–Wagner Method. Solid State Ionics. 2004, 174:27~33
    54. J. C. Ruiz-Morales, J. Canales-vázquez, J. Pe?a-Martínez, D. M. L?pez, P. Nú?ez. On the Simulaneous Use of La0.75Sr0.25Cr0.5Mn0.5O3-δas Both Anode and Cathode Material with Improved Microstructure in Solid Oxide Fuel Cells. Electrochimica. Acta. 2006, 52:278~284
    55. S. P. Jiang. A Review of Wet Impregnation-An Alternative Method for the Fabrication of High Performance and Nano-Structured Electrodes of Solid Oxide Fuel Cells. MAT. SCI. ENG A-STRUCT. 2006, 418:199~210
    56. B. Wei, Z. Lü, X. Q. Huang, M. L. Liu, K. F. Chen, W. H. Su. Enhanced Performance of a Single-Chamber Solid Oxide Fuel Cell with an SDC-Impregnated Cathode. J. Power Sources. 2007, 167:58~63
    57. K F. Chen, Z. Lü, N. Ai, X. J. Chen, J. Y. Hu, X. Q. Huang, W. H. Su. Effect of SDC-Impregnated LSM Cathodes on the Performance of Anode-Supported YSZ Films for SOFCs. J. Power Sources. 2007, 167:84~89
    58. S. W. Tao, J. T. S. Irvine, J. A. Kilner. An Efficient Solid Oxide Fuel Cell Based Upon Single-Phase Perovskite. Adv. Mater. 2005, 17:1734~1737
    59. H. P. He, J. M. Hill. Carbon Deposition on Ni/YSZ Composites Exposed to Humidified Methane. Appl. Catal. A-Gen. 2007, 317:284~292
    60. S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok. GDC-Impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 Anodes for Direct Utilization in Solid Oxide Fuel Cells. J. Electrochem. SOC. 2006, 153:A850~A856
    61. N. Laosiripojana, S. Assabumrungrat. Catalytic Dry Reforming of Methane over High Surface Area Ceria. Appl. Catal. B-Environ. 2005, 60:107~116
    62. N. Laosiripojana, W. Sangtongkitcharoen, S. Assabumrungrat. Catalytic Steam Reforming of Ethane and Propane over CeO2-Doped Ni/Al2O3 at SOFC Temperature: Improvement of Resistance Toward Carbon Formation by theRedox Property of Doping CeO2. Fuel. 2006, 85:323~332
    63. X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon, K. A. Khor. High Performance Cathode-Supported SOFC with Perovskite Anode Operating in Weakly Humidified Hydrogen and Methane. Electrochem. Commun. 2007, 9:767~772
    64. S. W. Tao, J. T. S. Irvine. Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-δin Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material. Chem. Mater. 2004, 16: 4116~4121
    65. J. Liu, B. D. Madsen, Z. Q. Ji, S. A. Barnett. A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells. Electrochem. Solid St. 2002, 5(6):A122~A124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700