有机硅杂化光波导材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子技术和光子器件的迅猛发展对光子材料提出更高的要求,在众多的光电材料中,有机/无机杂化材料由于兼具有机聚合物材料的易加工和无机材料的耐高温等多种特性,成为近年来研究的热点。但是目前大多的有机/无机杂化材料存在易开裂、固化周期长和光学损耗大等缺陷,限制了其应用。
     本文首先以苯基三乙氧基硅烷和甲基丙烯酰氧丙基三甲氧基硅烷为前驱体,制备出可紫外固化聚倍半硅氧烷PSQ-S15。PSQ-S15结构中含有C=C和Si-OH两种可交联基团,分别以过氧化苯甲酰和1-羟基环己基苯基甲酮(IHT-PI 184)为C=C键的热和光引发剂,应用二甲基甲酰胺(DMF)为溶剂旋涂成膜并固化后,得到不发生开裂的高平整度(均方根表面粗糙度Rq小于0.5nm)薄膜。所得固化膜在1310nm和1550nm的光学损耗分别约为0.31dB·cm~(-1)和0.60dB·cm~(-1),折射率分别为1.535和1.532,双折射小于0.0005,热光系数均为-2.2×10~(-4)℃~(-1)。PSQ-S15固化膜在40~300℃范围内未出现玻璃化转变温度,并且在氮气氛围中热失重1.0wt%的温度大于370℃。
     为改善DMF在空气中吸水可能导致PSQ-S15薄膜表面破坏的问题,制备出可直接旋涂成膜的液态有机硅杂化材料PSQ-Ls(包括PSQ-LH和PSQ-LL)。PSQ-Ls类材料是以苯基三甲氧基硅烷、甲基三甲氧基硅烷和甲基丙烯酰氧丙基三甲氧基硅烷为前驱体,室温酸性水解缩聚得到。PSQ-Ls结构中含有C=C、Si-OH和Si-OCH_3三种活性基团,应用复合光引发剂体系(光阳离子引发剂IHT-PI 820+IHT-PI 184)和单光引发剂体系(IHT-PI 184)分别进行紫外(UV)辐照和加热两步固化并对固化工艺进行优化。对于单光引发剂固化体系可获得光学损耗较低的固化膜(在1550nm处约0.70~0.80dB·cm~(-1),在1310nm处约0.20~0.30dB·cm~(-1))。通过PSQ-LH和PSQ-LL以不同比例混合实现固化薄膜折射率在约1.450~1.520范围连续准确调节,且双折射均小于0.0005。PSQ-LH固化膜的热光系数在1310nm和1550nm处均为-2.4×10~(-4)℃~(-1),PSQ-LL固化膜的热光系数在1310nm和1550nm处均为-2.2×10~(-4)℃~(-1)。所得固化膜的均方根表面粗糙度Rq小于0.6nm,且折射率和薄膜厚度均具有很好的均一性。PSQ-LH和PSQ-LL固化膜的耐热性能优异,在氮气下热失重1.0wt%的温度分别出现在330~347℃和365~376℃,在40~300℃范围内均未出现玻璃化转变温度。
     为进一步提高该类材料的折射率和力学强度,分别以六氟双酚A(6FDA),4',4-联苯二酚(DP)和4-(4-羟基-苯基)-2H-二氮杂萘-1-酮(DHPZ)为原料经二丙烯基醚化合物,合成出三种桥连型硅氧烷单体,进而以该三种桥连硅氧烷单体分别与二苯基硅二醇和甲基丙烯酰氧丙基三甲氧基硅烷为前驱体,制备出三种含芳环桥连结构的杂化材料P-6FDA、P-DP和P-DHPZ。经紫外和加热两步固化后所得薄膜同时具有较高的折射率和低损耗,在1310nm处的光学损耗分别为0.39dB·cm~(-1)、0.25dB·cm~(-1)和0.39dB·cm~(-1);在1550nm处,光学损耗分别为0.63dB·cm~(-1)、0.62dB·cm~(-1)和0.82dB·cm~(-1)。三种固化膜在1310nm处的折射率分别为1.525(TE)、1.550(TE)和1.558(TE),双折射分别为<0.0005、0.0012和0.0028,热光系数均为-3.0×10~(-4)℃~(-1);在1550nm处的折射率分别为1.522(TE)、1.548(TE)和1.556(TE),双折射分别为<0.0005、0.0010和0.0027,热光系数均为-2.9×10~(-4)℃~(-1)。三种固化膜在氮气中热失重1.0wt%的温度分别为333℃、334℃和366℃,在40~300℃的范围均未出现玻璃化转变温度。
     PSQ-Ls类材料基本满足制作集成光波导的性能要求。应用PSQ-LH为波导芯层,采用光刻刻蚀工艺、硬压印光刻和软压印光刻等方法制作出集成光波导结构,得到具有很好表面平整度和拐角垂直度的光波导结构,并实现直波导的导光(光刻刻蚀工艺)。应用PSQ-LH薄膜制作出非本征型Fabry-Perot光纤压力传感器,并得到很好的结果。
The rapid development of photonic technology and photonic components in telecom and datacom industries need advanced photic material with low-cost waveguide fabrication urgently.Optical polymer will play a key role in integrated photonics fileld due to their easier processibility and integration over inorganic counterparts.Organic silicone polymers can be viewed as organic-inorganic hybrids that combine many desirable properties of conventional organic and inorganic components,such as good thermal stability,rigidity, transparency to UV and visible light,and photostability.
     In this thesis,three hybrid materal systems have been developed for waveguides.The first one is solid UV curable polysilisesquoxane(PSQ-S15) derived from phenyltriethoxylsilane andγ-Methacryloxypropyltfimethoxysilane.Films with low surface roughness(Rq<0.5nm) can be obtained by spin-coating using dimethyl formamide(DMF) as solvent.Curing behavior and optical properties(at 1310nm and 1550nm) are discussed.Double bonds(C=C) and Si-OH as curable chemical groups are introduced to PSQ-S15.The optical losses of the films which are cured with different initiators(BPO or IHT-PI 184) are about 0.60dB·cm~(-1) at 1550nm and 0.31dB·cm~(-1) at 1310nm cured films.The refractive indexes of the cured film are 1.535 at 1550nm,and 1.533 at 1310nm,the thermal-optic coefficients are -2.2×10~(-4)℃~(-1) both at 1310nm and 1550nm,and the birefringence are lower than 0.0005.Besides,the cured films shows outstanding thermal stability(no Tg in the range of 40~300℃,and Td with 1.0wt% weight loss are above 370℃in nitrogen).
     To overcome possible defect of PSQ-S15 films because of the water absorption as using DMF at spin coating procedure,solvent-free liquid hybrid materials(named as PSQ-LH and PSQ-LL) are prepared base on sol-gel process using phenyltrimethoxylsilane, methyltrimethoxylsilane andγ-methacryloxypropyltrimeth-oxysilane as precursors.PSQ-Ls crack-free films with one to ten or more micrometers thickness which possess low surface roughness(Rq<0.5nm) can be obtained by spin coating without solvent.The refractive index of PSQ-Ls can be exactly tuned from 1.450 to 1.520 by blending PSQ-LH and PSQ-LL at room temperature.There are there reactive groups in PSQ-Ls,C=C,Si-OH and Si-OCH_3.In the simplex photoinitiator curing system,a majority of Si-OCH_3 is reserved but hardly find Si-OH in the films which undergo UV curing and thermal curing processes.And the optical loss of the corresponding waveguide film is as low as 0.70dB·cm~(-1).The curing process is optimized for the simplex photoinitiator system,and the dependence of optical properties on water feed,UV exposure time,thermal curing temperature and time is discussed.Optical losses of cured PSQ-LH films are about 0.70~0.80dB·cm~(-1) at 1550nm and 0.20~0.30dB·cm~(-1) and birefringence are lower than 0.0005 at both wavelength.The thermal-optic coefficients are-2.2×10~(-4)℃~(-1) for PSQ-LL cured films both at 1310nm and 1550nm,and -2.4×10~(-4)℃~(-1) for PSQ-LH cured films both at 1310nm and 1550nm.In addition,the cured films aren't exist Tg in the range of 40~300℃,and Td with 1.0wt%weight loss are 330~347℃for PSQ-LH films, and 322~328℃for PSQ-LL films in nitrogen.
     In order to increase refractive index and improve mechanical property of above hybrid materials,three hybrid materials containing bridged structures(P-6FDA,P-DP and P-DHPZ) are synthesized from(6FDA-Si,DP-Si,and DHPZ-Si),diphenylsilanediol andγ-methacryloxypropyltrimethoxysilane respectively.After UV(IHT-PI 184 as photoinitiator) and thermal curing process,the optical losses of P-6FDA,P-DP and P-DHPZ films are 0.39, 0.25,and 0.39dB·cm~(-1) at 1310nm respectively,and 0.63,0.62 and 0.82dB·cm~(-1) at 1550nm respectively,the refractive index are 1.525(TE),1.550(TE),and 1.558(TE) at 1310nm respectively,and 1.522(TE),1.548(TE) and 1.556(TE) at 1550nm respectively. Birefringences are<0.0005,0.0012 and 0.0028 at 1310nm respectively,and<0.0005,0.0010 and 0.0027 at 1550nm respectively.Three cured films also show outstanding thermal stability (Td with 1.0wt%weight loss are 333℃,334℃and 366℃in nitrogen,and no Tg in the range of 40~300℃).
     PSQ-Ls material system can satisfy requirements for integrated optical waveguide. Conventional lithographic patterning,hard nanoimprint and soft nanoimprint are applied to fabricate optical waveguides using PSQ-Ls.And high quality sidewalls of waveguides are obtained,and achieve propagation light by a straight waveguide.In addition,PSQ-Ls also applied to fabricate Fabry-Perot fiber pressure sensor successfully.
引文
[1]江源,邹宁宇.聚合物光纤.北京:化学工业出版社,2002.
    [2]Dr.Arpad A B.Future technology and business opportunities in photonics:a view from the optoelectronics industry development association(OIDA).Proc.SPIE,1999,3897:2-11.
    [3]Hideo K.Photonics technologies towards next generation broadband networks.Proc.SPIE,2007,6774:6774021-6774028.
    [4]Louay E.Toward the optoelectronic ULSI:drivers and barriers.Proc.SPIE,2004,5363:1-15.
    [5]张彤,崔一平.集成光学国际研究进展.电子器件,2004,27(1):196-201.
    [6]唐天同,王兆宏.集成光学.北京:科学出版社,2005.
    [7]张以谟.光互连网络技术.北京:电子工业出版社,2006.
    [8]Francis T S Yu,Suganda J,Shi z Y.光信息技术及应用.冯国英,陈建国,李大义等译.北京:电子工业出版社,2006.
    [9]Louay E.Advances in polymer-based dynamic photonic components,modules and subsystems.Proc.SPIE,2006,6351:63510Y1-63510Y10.
    [10]Hong M,Alex K J,Larry R D.Polymer-based optical waveguides:materials,processing and devices.Adv.Mater.,2002,14(19):1339-1365.
    [11]H G Unger.Planar optical waveguides and fibres.Oxford:Clarendon press,1977.
    [12]C Vassallo.Optical waveguide concepts.New York:Elsevier,1991.
    [13]S J Ben Yoo.Advanced optical components for next generation photonic networks.Proc.SPIE,2003,5246:224-234.
    [14]王军锋,李跃进,杨银堂.光互连的研究与新进展.激光与光电子学进展,2005,42(1):16-21.
    [15]张以谟.计算机光互连技术的应用前景.激光与光电子学进展,2007,44(7):16-26.
    [16]吕新杰,杨军,明海.聚合物光波导器件的最新进展.光电子技术与信息,2004,17(6):6-11.
    [17]S V Frolov,J Shmulovich,A Bruce.Advances in planar waveguide integration.Proc.SPIE,2006,6389:6389051-6389056.
    [18]Louay E,Lawrence W S.Advances in polymer integrated optics.IEEE J.Selected Topics in Quantum Electronics,2000,6(1):54-68.
    [19]Koo J S,Smith P G R,Williams R B,et al.UV written waveguides using crosslinkable PMMA-based eopolymers.Opt.Mater.,2003,23(3-4):583-592.
    [20]Robert A N,Renyuan G,Jaya Set al.Sources of loss in single-mode polymer optical waveguides.Proc.SPIE,2001,4439:19-28.
    [21]张华.现代有机波谱分析.北京:化学工业出版社,2005.
    [22]冯新泸,史永刚.近红外光谱及其在石油产品分析中的应用.北京:中国石化出版社,2002.
    [23]Werner G.Overtone absorption in macromolecules for polymer optical fibers.Makromol.Chem.,1988,189:2861-2874.
    [24]K Okamoto.Fundamental of optical waveguides.San Diego:Academic Press,2000.
    [25]C Emslie.Review:polymer optical fibers.J.Materials Science,1988,23:2281-2292.
    [26]R G Hunsperger.Integrated optics:theory and technology.New York:Spfinger-Verlag,1985.
    [27]C C Teng.High-speed electro-optic modulators from nonlinear optical polymers.Nonlinear optics of organic molecules and polymers,Edited by H S Nalwa and S Miyata,New York:CRC Press,1997.
    [28]Taguchi S,Tanaka T.Fibrous Polyaniline as positive active material in lithium secondary batteries.J.Power Sources,1987,20:249-252.
    [29]杨柏,吕长利,沈家骢.高性能聚合物光学材料.北京:化学工业出版社,2005.
    [30]Toshio W,Naoki O,Yasuhiro H,et al.Influence of humidity on refractive index of polymers for optical waveguide and its temperature dependence.Appl.Phys.Lett.,1998,72(13):1533-1535.
    [31]T Matsuura,S Ando,S Sasaki.Synthesis and properties of partially fluorinated polyimides for optical application.New York:Plenum Press,1999.
    [32]A J Beuhler,D A Wargowski,K D Singer,et al.Fabrication of low loss polyimide optical waveguides using thin-film multichip module process technology.IEEE Trans Comp.,Packaging,Manuf.Tech.Part B,1995,18(2)232:239.
    [33]L Robitaille,C L Callender,J P Noad.Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnention.IEEE Photon.Technol.Lett.,1996,8(12):1647-1652.
    [34]Y S Liu,R J Wojnarowski,W A Hennessy,et al.Polymer optical interconnect technology(POINT)-optoelectronic packaging and interconnect for board and backplane applications.IEEE Electro.Comp.,Technol.Conf.Proceedings,1996,308.
    [35]T Matsuura,S Ando,S Sasaki,et al.Polyimides derived from 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl.4.optical properties of fluorinated polyinides for optoelectronic components.Macromolecules,1994,27:6665-6672.
    [36]J Kobayashi,T Matsuura,Y Hida,et al.Fluorinated polyimid waveguides with low polarization-dependent loss and their applications to thermooptic switches.J.Lightwave Technol.,1998,16(6):1024.
    [37]KHan,W H Jang,T H Rhee.Sythesis of fluorinated polyimides and their application to passive optical waveguides.Jpn.J.Appl.Phys.,2000,77:2172-2179.
    [38]Sung H B,Jae W K,Xiang D L,et al.Zero birefringent polyimide for polymer optical waveguide.Proceedings of SPIE,Organic Photonic Materials and Devices V,2003,4991:406-413.
    [39]Jae W K,Jae P K,Jae S L,et al.Low-loss polymer optical waveguides using fluorinated poly(arylene ether sulfides and sulfones).Proceedings of SPIE,Design and fabrication of planar optical waveguide devices and materials,2002,4805:9-18.
    [40]Xiang D L,Zhen X Z,Jang J K,et al.Zero-birefringence photosensitive poly(arylene ether) for optical waveguides.Proc.SPIE,Passive components and fiber-based devices,2005,5623:1029-1036.
    [41]Yinghua Q,Jianfu D,Michael D,et al.Cross-linkable highly fluorinated poly(arylene ether ketones/sulfones) for optical waveguiding applications.Chem.Mater.,2005,17(3):676-682.
    [42]Dennis W S J,Suresh M K,Shengrong Chen,et al.Property tailored perfluorocyclobutyl(PFCB)copolymers for optical devices.Proc.SPIE,2001,4439:51-62.
    [43]Ming Z.Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication.Proc.SPIE,2001,4580:83-94.
    [44]P E Cassidy,T M Aminabhavi,J M Farley,et al.Polymers derived from hexafluofoacetone.J.Macromol.Sci.,Rev.Macromol.Chem.Phys.,1989,C29(2&3):365-429.
    [45]Asahi Glass Company,Technical information of amorphous fluorocarbon polymer Cytop~(?).
    [46]N Keil,H H Yao,C Zawadzki,et al.4×4 polymer thermo-optic directional coupler switch at 1550nm.Electron.Lett.,1994,30(8):639-640.
    [47]M Ebelmen.Ann.Chem.Phys.,1984,16:129.
    [48]Brinker C J,Scherer,G W.Sol-Gel science.New York:Academic Press,1990.
    [49]Helmut S.New type of non-crystalline solids between inorganic and organic materials.J.Non-cryst.Solids,1985,73(1-3):681-691.
    [50]Garth L W,Bruce O,Hao-Hsin H.“CERAMERS”:hybrid material incorporating polymer/oligomeric species into inorganic glasses utilizeing a sol-gel approach.Polym.Prep.,1985,26(2):300-301.
    [51]吴璧耀,张超灿,章文贡等.有机/无机杂化材料及其应用.北京:化学工业出版社,2005.
    [52]Steffen H,Markus M,Michael M,et al.Sol-gel:a new tool for coatings chemistry.Prog.Org.Coat.,2002,45:159-164.
    [53]R L,Ballard,S J Tuman,D J Fouquette,et al.Effects of an acid catalyst on the inorganic domain of inorganic-organic hybrid materials.Chem.Mater.,1999,11:726-735.
    [54]Vious A,Leclercq D.Heterogeneous Chem.Rev.,1996,3:65-69.
    [55]Jhon N H,Hema M R.Synthesis of Organic-inorganic hybrids via the non-hydrolytic sol-gel process.Chem.Mater.,2001,13:2296-3403.
    [56]Wenxin Q,Z Sun,Y Zhou,et al.Optical and mechanical properties of TiO_2/SiO_2/organically modified silane composite films prepared by sol-gel processing.Thin Solid Films,2000,359(2):177-183.
    [57]M Yoshida,P Prasad.Appl.Opt.,1996,350:1550-1505.
    [58]R M Almeida,H C Vasconcelos.International Conference SPIE,Critical Revies 68,Sol-gel and Polymer Photonics Devices,1997,CR68:172-191.
    [59]R Buestrich,F Kahlenberg,M Popall.J.Sol-Gel Sci.Technol.,2001,200:181-186.
    [60]Ziao Z,Haijing L,Andrew M S,et al.Thick UV-patternable hybrid sol-gel films prepared by spin coating.J Mater.Chem.,2004,14:357-361.
    [61]黄剑锋 编.溶胶-凝胶原理与技术.北京:化学工业出版社,2005.
    [62]余锡宾,王华林,訾振军.无机-有机杂化材料的进展.材料导报,1997,11(2):49-52.
    [63]Ulrich S,Nicola H,Anne L.Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides.Chem.Mater.,1995,7:2010-2027.
    [64]Pedro C R,Clement S.Functional hybrid materials.Weinheim:Wiley-VCH Verlag GmbH & Co.KGaA,2004.
    [65]Karl-Heinz H,Sabine A S,Klaus R,et al.Functionalized coatings based on inorganic-organic polymers(ORMOCER~(?)s) and their combination with vapor deposited inorganic thin films.Surf.Coat.Technol.,1999,111(1):72-79.
    [66]Yoshimoto A,Takahiro G.Oligo- and polysiloxanes.Prog.Polym.Sci.,2004,29(1):149-182.
    [67]Gerhard S.Hybrid sol-gel-derived polymers:Applications of multifunctional materials.Chem.Mater.,2001,13:3422-3435.
    [68]Helmut K S,Herbert K,Reiner K,et al.Development of optical waveguides by sol-gel techniques for laser Patterning.Proc.SPIE,1991,1590:36-43.
    [69]Herbert K,Frank T,Peter W O,et al.Organic-inorganic composite materials:optical properties of laser-patterned and protective-coated waveguides.Proc.SPIE,1992,1758:448-455.
    [70]Helmut S.Sol-gel nanocomposites as functional optical material.Proc.SPIE,1992,1758:396-402.
    [71]F D Matteis,P Prosposito,F Sarcinelli,et al.Silica based sol-gel films optically functionalized through doping with organic molecules.J.Non-tryst.Solids,1999,245:15-19.
    [72]S Motakef,T Suratwala,R L Roncone,et al.Processing and optical properties of inorganic-organic hybrids PDMS-based waveguides.J.Non-cryst.Solids,1994,178:37-43.
    [73]Wen-Chang C,Wei-Chi L,Pei-Tzu W,et al.Syntesis and characterization of oligomeric phenylsilsesquioxane-titania hybrid optical thin films.Mater.Chem.Phys.,2004,83:71-77.
    [74]Carol A C,Angela B S.Optical properties and structure of a new,low-loss,hybrid organic-inorganic host material for molecular dopants.Proc.SPIE,1994,2288:340-349.
    [75]Xiao-Ming Chen,Bryan E,Feihong W,et al.Strengthening of glass rods with ormosil polymeric coatings.J.Non-tryst.Solids,1995,185:1-17.
    [76]M Oubaha,R K Kribich,R Copperwhite,et al.New organic inorganic sol-gel material with high transparency at 1.551arn.Opt.Commu.,2005,253:346-351.
    [77]Sunho J,Woo-Hyuk J,Jooho M.Fabrication ofphoto-patternable inorganic-organic hybrid film by spin-coating.Thin Solid Films,2004,466:204-208.
    [78]Woo-Soo K,Kwang-Soo K,Young-Joo E,et al.Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure.J.Mater.Chem.,2005,15:465-469.
    [79]Karl-Heinz H,Sabine A S,Klaus R.Functionalized coating materials based on inorganic-organic polymers.Thin Solid Films,1999,351:198-203.
    [80]O S Rosch,W Bernhard,R Muller-Fiedler,et al.High performance low cost fabrication method for integrated polymer optical devices.Proc.SPIE,3799:214-224.
    [81]Nick P,Nancy C,John F,et al.Progress toward the development of manufacturable integrated optical data buses.Proc.SPIE,2004,5358:71:79.
    [82]Lawrence W S,Robert A N,Louay E,et al.Polymer optical interconnects:meeting the requirements for datacom and telecom applications.Proc.SPIE,1997,3147:222-232.
    [83]黄春辉,李富有,黄岩谊著.光电功能超薄膜:第一版.北京:北京大学出版社,2001.65-69.
    [84]Emi W,Kouhe O,Takeshi O,et al.Fabrication and optical properties of the multilayered waveguide made by photobleaching process.Proc.SPIE,2006,6389:63890D1-63890D11.
    [85]Louary E,Chengzeng X,Kelly M S,et al.Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers.J.Lightwave Technol.,1996,14(7) 1704-1713.
    [86]Shuping W,Brad B,Ye L,et al.Laser direct writing of inorganic-organic hybrid polymeric channel waveguide for optical integrated circuits.Proc.SPIE,2006,6389:63890B 1-63890B7.
    [87]Jager M,Stegeman G I,Brinker W,et al.Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5μm.Appl.Phys.Lett.,1996,68(9)1183-1185.
    [88]Hiroshi T,Emi W,Saori Y,et al.Novel manufacturing process of waveguide using selective photobleaching of polysilane films by UV light irradiation.Proc.SPIE,2003,5246:119-130.
    [89]Stephen Y C,Preston J R.Imprint of sub-25nm vias and trenches in polymers.Appl.Phys.Lett.,1995,67(1):3114-3116.
    [90]H C Scheer,Nanoimprint lithograph techniques - an introduction.Proc.SPIE,2006,6281:62910N1-62910N10.
    [91]L J Guo.Nanoimprint lithography:methods and material requirements.Adv.Mater.,2007,19:495-513.
    [92]Yifu D,Hyun W R,Jack F D,et al.Polymer viscoelasticity and residual stress effects on nanoimprint lithography.Adv.Mater.,2007,19:1377-1382.
    [93]Atsunori M,Teruyuki S,Masahiro T,et al.Micropatteming on Methylsilsesquioxane-Phenylsilsesquioxane thick films by the sol-gel method.J.Am.Ceram.Soc.,2000,83(12):3222-3213.
    [94]Yoshimoto A,Keiko K,Norihiro T,et al.Preparation and properties of polysilsesquioxanes:function and characterization of coating agents and films.J.Non-cryst.Solids,2000,261:39-51.
    [95]何卫东编.高分子化学实验.合肥:中国科学技术大学出版社,2002.
    [96]Peter V Z.芯片制造-半导体工艺制程实用教程.赵树武,朱践知,于世恩译.北京:电子工业出版社,2004.
    [97]Michael Q,Julian S.半导体制造技术.韩郑生译.北京:电子工业出版社,2004.
    [98]Sumio S.Handbook of Sol-Gel Science and Technology Vol Ⅰ.Kluwer Academic Publishers,2004.
    [99]W C Batchelder,J Bremmer,D Gray,Solid State Technol.,1999,42:29-30.
    [100]Long-Hua L,Wen-Chang C,Wei-Chih L.Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties.J Polym.Sci.,Part A Polym.Chem.,2002,40:1560-1571.
    [101]Libor M,Oxana D,Drahomira H,et al.Cyclizaion and self-organization in polymerization of trialkoxysilanes.Macromolecules,2001,34:6904-6914.
    [102]Alan R B,Zhihua L,lain A M,et al.A higher yielding route for T8 Silsesquioxane cages and X-ray crystal structures of some novel spherosilicates.Dalton Trans.,2003,14:2945-2949.
    [103]Dunba P B.Rational solvent selection strategies to combat striation formation during spin coating of thin films.J.Mater.Res.,2001,16(4):1145-1154.
    [104]吴世康.高分子光化学导论:基础和应用.北京:科学出版社,2003.
    [105]邱凤仙,杨冬亚,曹国荣等.聚酰亚胺基偶氮聚合物的合成及热光性能的研究.功能材料,2006,37(12):1902-1906.
    [106]冯圣玉,张洁,李美江等.有机硅高分子及其应用.北京:化学工业出版社,2004.
    [107]Zvi R,Yitzhak A.The Chemistry of Organic Silicon Compounds,Vol 3.John Wiley & Sons,Ltd.,2001.
    [108]Kalaichelvi S,Xin M D,Mark P A,et al.Photoinduce structural relaxation and densification in sol-gel-derived nanocomposite thin films:implications for integrated optics device fabrication.Can.J.Chem.,1998,76:1717-1729.
    [109]Zhi-Hui Xu,David R.Nanoindentation on diamond-like carbon and alumina coationgs.Surface and Coatings Technology,2002,161:44-51.
    [110]黄永力.用纳米压痕法表征薄膜的应力-应变关系.湘潭大学硕士论文,2006.
    [111]Michael H A,Ian H,John B R,et al.Hydrogen bonding.Part 18 Gas-liquid chromatographic measurements for the design and selection of some hydrogen bond acidic phases suitable for use as coatings on piezoelectric sorption detectors.J.Chem.Soc.Perkin Trans.,1991,2:1417-1423.
    [112]萧斌,戴延凤,李凤仪.负载型铂催化剂催化苯乙烯硅氢加成反应.化学通报,2006,8:631-635.
    [113]S Penner,D Wang,D S Su,et al.Platinum nanocrystals supported by silica,alumina and ceria:metal-support interaction due to high-temperature reduction in hydrogen.Surf.Sci.,2003,532-535:276-280.
    [114]蹇锡高,朱秀玲,陈连周.二氮杂萘联苯型聚芳醚聚合机理的探讨.大连理工大学学报,1999,39(5):629-634.
    [115]Dioumaev V K,Bullock R M,A recyclable catalyst that precipitates at the end of the reaction.Nature,2000,424(6948):530-532.
    [116]李光亮.有机硅高分子化学.北京:科学出版社,1998.
    [117]幸松民,王一璐.有机硅合成工艺及产品应用.北京:化学工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700