维生素E及其中间体绿色化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学科学与化学工程技术的进步为国民经济增长、人民群众生活水平的提高与社会的发展做出了十分重要的贡献。但另外一方面,传统的化学工业也产生了大量的工业污染,造成了严重的环境问题,危及到可持续发展。上世纪90年代中期逐步发展起来的绿色化学从原理和方法上给传统的化工生产带来了显著的变化,是近年来化学工业尤其是精细化工研究的热点和重点。本论文以绿色化学的基本原理和思路为指导,以结构简单、价格便宜具有十分广阔的可工业化前景的简单铵型离子液体为主要手段,对维生素E及其中间体绿色化学问题进行研究。
     论文首先对维生素E中间体2,2—二烷氧基丙烷的合成进行了研究。针对传统方法中需要用到挥发性的有机溶剂以及对设备造成腐蚀的氯化氢酸性催化剂的不足,运用简单铵型离子液体为反应介质和催化剂,替代传统方法需要用到挥发性的有机溶剂以及对设备造成腐蚀的氯化氢酸性催化剂,减小了对环境造成的污染。
     论文第二部分以2—烷氧基丙烯与脱氢芳樟醇为原料,在酸性简单铵型离子液体中经过Saucy-Marbet反应制备维生素E中间体假紫罗兰酮。假紫罗兰酮是维生素E侧链原料异植物醇的关键中间体。简单铵型离子液体在反应中起到催化剂的作用。引入酸性离子液体,替代了传统方法中需要用到的挥发性有机溶剂,提高了反应的选择性。在成功进行了2,2—二烷氧基丙烷和假紫罗兰酮的研究后,我们进而采用简单铵型离子液体以异植物醇与三甲基氢醌为原料,经过缩合反应合成维生素E,取得了良好的实验结果。反应结束后,在反应体系中加入水,由于维生素E不溶于水,而简单铵型离子液体易溶于水,从而简单地实现了产物的分离。离子液体能够循环重复套用。
     论文的第三部分对2,2—二烷氧基丙烷裂解生成2—烷氧基丙烯反应进行了系统的实验与理论研究。首先合成了三种新型DMF型简单铵型离子液体,并将其
    应用于裂解反应。针对传统裂解反应温度高、副反应多、需要用到挥发性的有机溶剂、产物难于提纯等缺点,对2,2—二烷氧基丙烷裂解反应从气相和凝聚相反应两个方面进行了实验研究。在实验工作基础上,运用量子化学结合反应动力学计算对裂解反应进行了理论研究。研究发现,四元环的过渡态是烷氧基丙烷裂解反应的主反应通道。随后的反应动力学研究表明,在气相反应中,低温区强烈的量子隧道效应是2,2—二乙烷氧基丙烷和2,2—二甲烷氧基丙烷反应体系反应速率常数比值趋近于1的主要因素。在凝聚相中动力学研究发现,考虑电子相关的溶剂效应是使2,2—二乙烷氧基丙烷和2,2—二甲烷氧基丙烷反应体系在溶液相中裂解反应速率常数趋近于1的主要因素,同时由于反应在低温区(<400K)进行,强烈的量子隧道效应又是不得不考虑的另外一个因素。综合考虑溶剂效应与量子隧道效应,很好的解释了为什么2,2—二乙烷氧基丙烷和2,2—二甲烷氧基丙烷在凝聚相中(液相)裂解反应有大致相同的反应速率的实验现象。
Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of poisonous materials. Current and future chemists are being attracted to design products and processes with an increased awareness for environmental pollutions. So far, chemistry and chemical engineering have been regarded as the major contributors to economic progress over the past century, and yet the chemical industry is often taken to task for many serious environmental problems. One of the most attractive concepts for pollution protection is green chemistry: it is better to prevent waste than to treat or clean up waste after it is formed.
    Vitamin E is the most important antioxidant in the biological system and is widely used as an additive for foodstuffs, pharmaceuticals, cosmetics and animals feeds. It is reported that more than 20,000 tons Vitamin E is produced in our country annually. On the other hand, a lot of wastes are formed.
    In order to reduce or eliminate the use and generation of poisonous materials during the Vitamin E and its intermediates synthesis and achieve clean production we report here that the simple ammonium ionic liquids have been used as dual catalyst and environmental benign reaction medium for Vitamin E and its intermediates: dialkoxypropanes, 2-alkoxypropenes and pseudoionone preparation, eliminating the need for a volatile organic solvents and poisonous hydrogen chloride catalysts. These simple ammonium ionic liquids are air and water stable, easy to synthesis from amine and acid, and relatively cheap, which makes them suitable for industrial application. The results clearly demonstrate that these ionic liquids can be easily separate and reused without losing their activity. These ionic liquids provide a good alternative for industrial preparation of Vitamin E and its intermediates.
    The experimental results show that the decompositions of 2,2-Dimethoxypropane (DMP) and 2,2-Diethoxypropane (DEP) have nearly identical rate ratio of 2-methoxypropene (MPP) and 2-ethoxypropene (EPP) in ionic liquids. The yields ratio of MPP/methanol and EPP/ethanol were nearly 1.0. The
    four-center cyclic transition state was found in B3LYP Density Functional Theory of level. Surprisingly, the experimental observations and theoretical rate constants ratio (k_(DEP)/k_(DMP)) appeared to differ about ten magnitudes at the experimental temperatures range. Further dynamics study indicated that the significant tunneling effect played an important role in the identical rate constants ratio of the decomposition reactions at low temperatures range. Further dynamics studies in the condensed phase show that the solvent effect and tunneling effect are particularly important and are the main contributors to the identical rate constant ratio which observed in our experiment of the decomposition reactions at low temperatures (below 400K). Due to the introduction of condensed phase, the decomposition reactions that formerly performed at high temperatures range could take place at relatively low temperature. To such kind of decomposition reactions in the condensed phase, the solvent effect and tunneling effect should be taken into account. More accurate solvent model and methods for computing the solvent effect and tunneling effect are underway in our group.
    All in all, experimental and theoretical study on the preparation of Vitamin E and its intermediates aim to reduce or eliminate the use and generation of poisonous materials. We expect that these methods are applicable to investigate more important phenomena in green chemistry.
引文
1.中国共产党十六届六中全会公报。新华通讯社,北京,2006年10月11日。
    2. Anastas, P. T., Heine L. G., Williamson, T. C., Green Chemical Syntheses and Processes: Introduction. In Green Chemical Syntheses and Processes, Anastas, P. T., Heine, L. G., Williamson T. C., Eds., American Chemical Society: Washington DC, 2000, Chapter 1.
    3. Anastas, P. T., KirchhoffM. M. Origins Current Status and Future Challenges of Green Chemistry. Acc. Chem. Res., 2002, 35, 686.
    4. Anastas, P. T., Warner, J. C., Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, 30.
    5. Trost, B. M., The Atom Economy A Search for Synthetic Efficiency. Science 1991, 254, 1471.
    6. Trost, B. M., Atom Economy. A Challenge for Organic SynthesissHomogeneous Catalysis Leads the Way. Angew. Chem., Int. Ed. Engl., 1995, 34, 259.
    7. Trost, B. M., Yian, S., Cycloisomerization for atom economy. Polycycle construction via tandem transition metal Catalyzed electroCyclic processes. J. Am. Chem. Soc., 1992, 114, 791.
    8. Trost, B. M., On Inventing Reactions for Atom Economy. Acc. Chem. Res., 2002, 35, 695.
    9.闵恩泽,吴巍,绿色化学于化工,北京化学工业出版社,北京,2000。
    10. Domenech, X., Ayllon, J. A., Peral J., Rieradevall J., How Green Is a Chemical Reaction? Application of LCA to Green Chemistry. Environ. Sci. Technol., 2002, 36,5517.
    
    11. Kirchhoff, M. M, Promoting Green Engineering through Green Chemistry. Environ. Sci. Technol., 2003, 37, 5349.
    
    12. Ritter, S. K., Green Chemistry, Chem. Eng. News. 2001, 79,27.
    
    13. Anastas, P. T., Bickart P. H., Kirchhoff M. M., Designing Safer Polymers, Wiley-Interscience: New York, 2000.
    
    14. Mesiano, A., Beckman E. J., Russell A. J., BioCatalytic Synthesis of Fluorinated Polyesters, Biotechnol. Prog, 2000,16, 64.
    15. Kravchenko, R., Waymouth R. M., Alternating Ethene/Propene Copolymerization with a Metallocene Catalyst, Angew. Chem., Int. Ed. 1998,37, 922.
    
    16. Matyjaszewski, K., Patten, T. E., Xia J., Controlled/Living Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. J. Am. Chem. Soc. 1997,119, 674.
    17. Darensbourg, D. J., Mackiewicz R. M, Phelps A. L., Billodeaux D. R., Copolymerization of CO_2 and Epoxides Catalyzed by Metal Salen Complexes, Acc. Chem. Res., 2004,37, 836.
    18. Anastas, P. T., Heine L. G., Williamson, T. C, Eds., American Chemical Society: Washington, DC, 2001, Chapter 10.
    19. Wool R, P., Affordable Composites from Renewable Sources (ACRES). In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients. EPA744-R-00-001, U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001, 9.
    20. Cargill Dow Polymers, LLC. Process to Produce Biodegradable Polylactic Acid Polymers. In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients, EPA744-R-00-001, U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001, 51.
    21. Anastas, P. T., Williamson, T. C, Eds., Oxford University Press: New York, 1998, Chapter 11.
    22. Leitner, W., Carbon Dioxide as Environmentally Benign Reaction Medium for Chemical Synthesis. Appl. Organomet. Chem. 2000,14, 809.
    23. Meehan, N. J., Sandee, A. J., Reek, N. H., Kamer, P. C. J., van Leeuwen, P. W. N. M., Poliakoff, M. Continuous, Selective Hydroformylation in Supercritical Carbon Dioxide Using an Immobilised Homogeneous Catalyst. Chem. Commun. 2000,1497.
    24. Giles, M. R., Griffiths, R. M. T., Aguiar-Ricardo, A. I., Silva, M. M. C. G., Howdle, S. M. Fluorinated Graft Stabilizers for Polymerization in Supercritical Carbon Dioxide: The Effect of Stabilizer Architecture. Macromolecules, 2001,34, 20.
    25. Zhang, J., Roek, D. P., Chateauneuf, J. E., Brennecke, J. F. A Steady-State and Time-Resolved Fluorescence Study of Quenching Reactions of Anthracene and 1,2-Benzanthracene by Carbon Tetrabromide and Bromoethane in Supercritical Carbon Dioxide. J. Am. Chem. Soc, 1997,119, 9980.
    26. Anastas, P. T., Heine, L. G., Williamson, T. C, Eds., American Chemical Society: Washington, DC, 2001, Chapter 7.
    27. Hughes Environmental Systems, Inc. DryWashTM: Carbon Dioxide Dry Cleaning Technology. In The Presidential Green Chemistry Challenge Awards Program: Summary of 1997 Award Entries and Recipients, EPA744-S-97-001, U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 1998,23.
    
    28. Hitzler, M. G., Poliakoff, M, Continuous Hydrogenation of Organic Compounds in Supercritical Fluids, Chem. Commun. 1997, 1667.
    
    29. Breton, G. W., Hughey, C. A., A Grignard-Like Organic Reaction in Water. J. Chem. Educ, 1998, 75, 85.
    
    30. Vincent, J.M., Rabion, A., Yachandra, V. K., Fish, R. H. Fluorous Biphasic Catalysis: Complexation of 1,4,7-[C_8F_(17)(CH_2)_3]3-1,4,7- Triazacyclononane with [M(C_8F_(17)(CH_2)_2CO_2)_2] (M) Mn, Co) To Provide Perfluoroheptane-Soluble Catalysts for Alkane and Alkene Functionalization in the Presence of t-BuOOH and O_2. Angew. Chem., Int. Ed. Engl. 1997, 36,2346.
    31. Anastas, P. T., Kirchhoff, M. M, Williamson, T. C. Catalysis as a Foundational Pillar of Green Chemistry. Appl. Catal. A: Gen., 2001, 221, 3.
    32. Dijksman, A., Marino-Gonza lez, A., I Payeras, A. M., Arends, W. C. E., Sheldon, R. A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System, J. Am. Chem. Soc. 2001,123, 6826.
    33. Mubofu, E. B., Clark, J. H., Macquarrie, D. J. A novel Suzuki Reaction system based on a supported palladium Catalyst. Green Chem. 2001, 3,23.
    34. Dias, E. L., Brookhart, M., White, P. S. Rhodium(I)-Catalyzed Homologation of Aromatic Aldehydes with Trimethylsilyldiazomethane. J. Am. Chem. Soc. 2001, 123, 2442.
    35. Murahashi, S.-L, Komiya, N., Oda, Y., Kuwabara, T., Naota, T. Ruthenium-Catalyzed Oxidation of Alkanes with tert-Butyl Hydroperoxide and Peracetic Acid. J. Org. Chem. 2000, 65, 9186.
    36. Zou, Z., Ye, J., Sayama, K., Arakawa, H. Direct Splitting of Water under Visible Llight Irradiation with an Oxide Semiconductor PhotoCatalyst. Nature, 2001, 414, 625.
    37. Gagani, R., Tempest in a Tiny Tube, Chem. Eng. News, 2002, 80, 25.
    38. Monsanto Company. The Catalytic Dehydrogenation of Diethanolamine. In The Presidential Green Chemistry Challenge Awards Program: Summary of 1996 Award Entries and Recipients, EPA744-K-96-001, U. S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 1996, 2.
    39. Lilly Research Laboratories. Practical Application of a BioCatalyst in Pharmaceutical Manufacturing. In The Presidential Green Chemistry Challenge Awards Program: Summary of 1999 Award Entries and Recipients, EPA744-R-00-001, U. S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2000, 5.
    40. Roche Colorado Corporation. An Efficient Process for the Production of CytoveneTM, A Potent Antiviral Agent. In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients, EPA744-R-00-001, U. S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001, 5.
    41. BHC Company. BHC Company Ibuprofen Process. In The Presidential Green Chemistry Challenge Awards Program: Summary of 1997 Award Entries and Recipients, EPA744-S-97-001, U. S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 1998, 2.
    42. Skyler, D., Heathcock, C. H. A Simple Biomimetic Synthesis of Styelsamine B, Org. Lett., 2001, 3, 4323.
    43. Bowden, N. B., Weck, M., Choi, I. S., Whitesides, G. M., Molecule Mimetic Chemistry and Mesoscale Self-Assembly, Acc. Chem. Res. 2000, 34, 231-238.
    
    44. Rogers, R. D., Seddon, K. R., Ionic Liquids—Solvents of the Future? Science, 2003,302, 792.
    
    45. John S. W., Michael J. Z., Air and Water Stable 1-ethyl-3-methylimidazolium Based Ionic Liquids, J. Chem. Soc, Chem. Commun., 1992,13, 965.
    46. Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev., 1999, 99, 2071.
    47. Dupont, J., Souza, R. F., Suarez, P. A. Z., Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev., 2002,102, 3667.
    48. Hu, Y. F., Xu, C. M., Redox Ionic Liquid Phases: Ferrocenated Imidazoliums, Chem. Rev., 2006,106, ASAP Article, DOI: 10.1021/cr0502044
    49. Liu, Y., Zhang, Y., Wu, G., Hu, J., Coexistence of Liquid and Solid Phases of Bmim-PF_6 Ionic Liquid on Mica Surfaces at Room Temperature, J. Am. Chem. Soc, 2006,128, 7456.
    50. Yoshio, M., Kagata, T., Hoshino, K., Mukai, T., Ohno, H., Kato, T., One-Dimensional Ion-Conductive Polymer Films: Alignment and Fixation of Ionic Channels Formed by Self-Organization of Polymerizable Columnar Liquid Crystals, J. Am. Chem. Soc, 2006,128, 5570.
    51. He, Y., Li, Z., Simone, P., Lodge, T. P., Self-Assembly of Block Copolymer Micelles in an Ionic Liquid, J. Am. Chem. Soc, 2006,128, 2745.
    52. Huang, J.F., Luo, H., Liang, C, Sun, I.W., Baker, G. A., Dai, S., Ionic Thermotropic Liquid Crystal Dendrimers, J. Am. Chem. Soc, 2005,127, 12784.
    53. Martin, R. R., Marcos, M., Omenat, A., Barbera, J., Romero, P., Serrano, J. L., J. Am. Chem. Soc, 2005,127, 7397.
    54. Weng, J., Wang, C, Li, H., Wang, Y, Novel Quaternary Ammonium Ionic Liquids and Their Use as Dual Solvent-Catalysts in the Hydrolytic Reaction, Green Chem., 2006, 8, 96.
    55. Wang C, Guo L., Li H., Wang Y., Weng J., Wu L., Preparation of Simple Ammonium Ionic Liquids and Their Application in the Cracking of Dialkoxypropanes, Green Chem., 2006,8, 603.
    56. Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., Gratzel, M., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts, Inorg. Chem., 1996,35,1168.
    57. Armand, A. F., Jr. Danilo, A. F., Lowell, A. K., John, S. L., Bernard, J. P., Daniel, J. S., Robert L. V., John S. W., Williams, J. L., Properties of 1,3-dialkylimidazolium chloride-aluminum chloride Ionic Liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities, J. Phys. Chem., 1984,88,2614.
    58. John, S. W., Joseph A. L., Robert, A. W., Charles L. H., Dialkylimidazolium chloroaluminate melts: a new class of room-temperature Ionic Liquids for electrochemistry, spectroscopy and Synthesis, Inorg. Chem., 1996,21,1263.
    59. Gale, R. J., Osteryoung, R. A., Infrared spectral investigations of room-temperature aluminum chloride-1-butylpyridinium chloride melts, Inorg. Chem., 1980,19, 2240.
    60. Sun, J., Forsyth, M, MacFarlane, D. R., Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion, J. Phys. Chem. B., 1998,102, 8858.
    61. King, J., Joseph, A., Extractive method for the Preparation of quaternary salts, US 5,705,696.
    62. Zhao, D. B., Wu M., Kou Y., Min E. Z., Ionic Liquids: Applications in Catalysis, Catal. Today, 2002, 74, 157.
    63. Nasser, I., Habib, F., Roya, A., A New Diphenylphosphinite Ionic Liquid (IL-OPPh_2) as Reagent and Solvent for Highly Selective Bromination, Thiocyanation or Isothiocyanation of Alcohols and Trimethylsilyl and Tetrahydropyranyl Ethers, Tetrahedron Letters, 2006, 47, 5531.
    64. Shu, G., Zhengyin, D., Shiguo, Z., Dongmei, L., Zuopeng L., Youquan D., Clean Beckmann Rearrangement of Cyclohexanone Oxime in Caprolactam-Based Bronsted Acidic Ionic Liquids, Green Chem., 2006, 8, 296.
    65. Olivier, H., Recent Developments In the Use of Non-aqueous Ionic Liquids for Two-phase Catalysis, J. Mol. Catal. A. Chem., 1999, 146, 285.
    66. Wasserscheid, P., Keim, W., Preparation of Ionic Liquids for Catalysts, Angew. Chem. Int. Ed., 2000, 39, 3772.
    67. Sheldon, R., Catalytic Reactions in Ionic Liquids, Chem. Commun., 2001, 2399.
    68. Olivier, B. H., Magan, L., Ionic Liquids: Perspectives for Organic and Catalytic Reactions, J. Mol. Catal. A. Chem., 2002, 182, 419.
    69. Gordon, C. M., New Developments in Catalysis Using Ionic Liquids, Appl. Catal. A. Gen., 2001, 222, 101.
    70. Earle, M. J., Seddon, K. R., Ionic Liquids: Green Solvents for the Future, Pure Appl. Chem., 2000, 72, 1391.
    71.翁建阳.新型季铵型离子液体的合成及其应用,浙江大学硕士学位论文。杭州,2006。
    72. John, Q. A., Stephen, W. N., Free Radicals in Friedel-Crafts Reactions, J. Am. Chem. Soc., 1962, 84, 4355.
    73. Martyn, J. E., Kenneth, R. S., Christopher, J. A., Glyn, R., Friedel-Crafts Reactions in Room Temperature Ionic Liquids, Chem. Commun., 1998, 2097.
    74. Nara, S. J., Harjani, J. R., Salunkhe, M. M., Friedel-Crafts Sulfonylation in 1-Butyl-3-methylimidazolium Chloroaluminate Ionic Liquids, J. Org. Chem., 2001, 66, 8616.
    75. Jeffrey, A. B., Joseph, A. L, J., Lloyd, P., John S. W., Friedel-Crafis Reactions in ambient-temperature molten salts, J. Org. Chem., 1986, 51, 480.
    76. Kumar, A., Pawar, S. S., Converting exo-Selective Diels-Alder Reaction to endo-Selective in Chloroloaluminate Ionic Liquids, J. Org. Chem., 2004, 69, 1419.
    77. Van der Eycken, E., Appukkuttan, P., De Borggraeve, W., Dehaen, W., Dallinger, D., Kappe, C. O., High-Speed Microwave-Promoted Hetero-Diels-Alder Reactions of 2(1H)-Pyrazinones in Ionic Liquid Doped Solvents, J. Org. Chem., 2002, 67, 7904.
    78. Kumar, A., Salt Effects on Diels-Alder Reaction Kinetics, Chem. Rev., 2001, 101, 1-20.
    79. Petra, L., Nazira K., Phosphonium tosylates as Solvents for the Diels-Alder Reaction, Tetrahedron Lett., 2001, 42, 2011.
    80. Carlos, W. L., Diels-Alder Reactions in Chloroaluminate Ionic Liquids: Acceleration and Selectivity Enhancement, Tetrahedron Lett., 1999, 40, 2461.
    81. Hagiwara, H., Sugawara, Y., Isobe, K., Hoshi, T., Suzuki, T., Immobilization of Pd(OAc)_2 in Ionic Liquid on Silica: Application to Sustainable Mizoroki-Heck Reaction, Org. Lett., 2006, 8, 1749.
    82. Masllorens, J., Moreno-Manas, M., Pla-Quintana, A., Roglans, A., First Heck Reaction with Arenediazonium Cations with Recovery of Pd-Triolefinic MacroCyclic Catalyst, Org. Lett., 2003,5,1559.
    83. Littke, A. F., Fu, G. C, A Versatile Catalyst for Heck Reactions of Aryl Chlorides and Aryl Bromides under Mild Conditions, J. Am. Chem. Soc, 2001, 123, 6989.
    84. Beletskaya, I. P., Cheprakov, A. V., The Heck Reaction as a Sharpening Stone of Palladium Catalysis, Chem. Rev., 2000,100, 3009.
    85. Vincenzo, C, Angelo, N., Luigi, L., Nicola, M., Heck Reaction in Ionic Liquids Catalyzed by a Pd-Benzothiazole Carbene complex, Tetrahedron Lett., 2000, 41, 8973.
    86. Mahesh, K. P., Swapnil, S. M., Manikrao, M. S., Coumarin syntheses via Pechmann Condensation in Lewis Acidic chloroaluminate Ionic Liquid, Tetrahedron Lett., 2001, 42, 9285.
    87. Jiajian, P., Youquan, D., Ionic Liquids Catalyzed Biginelli Reaction under Solvent-Free Conditions, Tetrahedron Lett, 2001, 42, 5917.
    88. Rex X. R., Larisa, D. Z., Wei, O., Formation of ε -Caprolactam via Catalytic Beckmann Rearrangement Using P_2O_5 in Ionic Liquids, Tetrahedron Lett., 2001, 42, 8441.
    89. Shu, G., Youquan, D., Environmentally Friendly Beckmann Rearrangement of Oximes Catalyzed by Metabolic Acid in Ionic Liquids, Catalysis Communications, 2005, 6, 225.
    90. De, Luca, L., Giacomelli, G., Porcheddu, A., Beckmann Rearrangement of Oximes under Very Mild Conditions, J. Org. Chem., 2002, 67,6272.
    91. Seyama, M., Iwasaki, Y., Tate, A., Sugimoto, I., Room-Temperature Ionic-Liquid-Incorporated Plasma-DEPosited Thin Films for Discriminative Alcohol-Vapor Sensing, Chem. Mater., 2006,18,2656.
    92. Susan, M. A. B. H., Kaneko, T., Noda, A., Watanabe, M., Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, J. Am. Chem. Soc, 2005,127, 4976.
    93. Ding, S., Radosz, M., Shen, Y., Ionic Liquid Catalyst for Biphasic Atom Transfer Radical Polymerization of Methyl Methacrylate, Macromolecules, 2005,38, 5921.
    94. Harrisson, S., Mackenzie, S. R., Haddleton, D.M., Pulsed Laser Polymerization in an Ionic Liquid: Strong Solvent Effects on Propagation and Termination of Methyl Methacrylate, Macromolecules, 2003,36, 5072.
    95. Strehmel, V., Laschewsky, A., Wetzel, H., Gornitz, E., Free Radical Polymerization of n-Butyl Methacrylate in Ionic Liquids, Macromolecules, 2006, 39, 923.
    96. Mu, X.., Meng, J., Li, Z.C., Kou, Y., Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids: Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation, J. Am. Chem. Soc, 2005,127, 9694.
    97. Geldbach, T. J., Dyson, P. J., A Versatile Ruthenium Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation: Conventional vs Task-Specific Catalysts, J. Am. Chem. Soc, 2004,126, 8114.
    98. Brown, R. A., Pollet, P., McKoon, E., Eckert, C. A., Liotta, C. L., Jessop, P. G., Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide, J. Am. Chem. Soc, 2001,123, 1254.
    99. Dan-Qian, X., Zhi-Yan H., Wei-Wei L., Shu-Ping L., Zhen-Yuan X, Hydrogenation in Ionic Liquids: An Alternative Methodology toward Highly Selective Catalysis of Halonitrobenzenes to Corresponding Haloanilines, J. Mol. Catal, A: Chem., 2005,235, 137.
    100. Shiding, M., Zhimin, L., Buxing, H., Jun, H., Zhenyu, S., Jianling, Z., Tao, J., Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids: A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene, Angew.Chem. Int. Ed, 2005, 45,266.
    101. Alexandre, P. U., Giovanna, M, Gerhard, H., Fecher, J., M., Jairton, D., Selective Hydrogenation of 1,3-Butadiene to 1-Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids, Advanced Synthesis & Catalysis, 2005, 347, 1401.
    102. Jacques, M., Ionic Liquids as Solvents for Catalyzed Oxidations of Organic Compounds, Advanced Synthesis & Catalysis, 2006,348,275.
    103. Cinzia, C, Lisa, N., Daniela, P., Application of Hydrophilic Ionic Liquids as Co-Solvents in Chloroperoxidase Catalyzed Oxidations, Tetrahedron Lett., 2006, 47, 5089.
    104. Bhupender, S. C, Ramesh, C, Vibha, T., J. Cata., 2005,230, 436.
    105. Sun, H., Harms, K., Sundermeyer, J., Aerobic Oxidation of 2,3,6-Trimethylphenol to Trimethyl-1,4-benzoquinone with Copper(II) Chloride as Catalyst in Ionic Liquid and Structure of the Active Species, J. Am. Chem. Soc, 2004,126, 9550.
    106. Jiang, N., Ragauskas, A. J., Copper(II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [Bmpy]PF_6, Org. Lett., 2005, 7, 3689.
    107. Choong, E., S., Eun, J., R., Sang-gi L., Woo, H., S., Jung H., C., Ionic Liquids as Powerful Media in Scandium Triflate Catalysed Diels-Alder Reactions: Significant Rate Acceleration, Selectivity Improvement and Easy Recycling of Catalyst, Chem. Commun., 2001, 1122.
    108. Jiajian, P., Jiayun, L., Huayu, Q., Jianxiong, J., Kezhi. J., Jianjiang, M., Guoqiao, L., d. Mol. Cata., A: Chem., 2006, 255, 16.
    109. Anil, K., Sanjay, S. P., J. Mol. Cata., A: Chem., 2004, 208, 33.
    110. Xiaofang, W., Peng, L., Xiaohua, Y., Shiwei L., Synthesis of Symmetrical 1,3-diarylureas by Sulfur-Catalyzed Carbonylation in Ionic Liquids, J. Mol. Cata., A: Chemical, 2006, 255, 25.
    111. Ernesto, J. A, and Mark, G. W., Ionic Liquid Structure Effect upon Reactivity of Toluene Carbonylation: 1. Organic Cation Structure, J. Mol. Cata., A: Chem., 2005, 238, 163.
    112. Doherty, S., Goodrich, P., Hardacre, C., Luo, H. -K., Nieuwenhuyzen, M., Rath, R. K., Lewis Acid Platinum Complexes of Conformationally Flexible NUPHOS Diphosphines: Highly Efficient Catalysts for the Carbonyl-Ene Reaction, Organometallics, 2005, 24, 5945.
    113. Kim, H. S., Kim, Y. J., Bae, J. Y., Kim, S. J., Lah, M. S., Chin, C. S., Organometallics, 2003, 22, 2498.
    114. Long, T., Li. D., Wei-Xing, C., Jing, L., SnCl_2-Mediated Carbonyl Allylation of Aldehydes and Ketones in Ionic Liquid, Tetrahedron Lett., 2006, 47, 303.
    115. Yong-Chua, T., Ee-Ling, G., Teck-Peng, L., Catalytic EnantioSelective Allylation of Aldehydes via a Chiral Indium(Ⅲ) Complex in Ionic Liquids, Tetrahedron Lett., 2005, 46, 4573.
    116. Zerth, H. M., Leonard, N. M., Mohan, R. S., Synthesis of Homoallyl Ethers via Allylation of Acetals in Ionic Liquids Catalyzed by Trimethylsilyl Trifluoromethanesulfonate, Org. Lett., 2003, 5, 55.
    117. Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C., Davis, J. H., Jr., Novel Bronsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts, J. Am. Chem. Soc., 2002, 124, 5962.
    118. Joan, F. D., Khadidja, B., Mustapha, R., Jean, P. B., Jack, H., Catalysed esterifications in room temperature Ionic Liquids with Acidic counteranion as Recyclable Reaction media, Catalysis Commu., 2002, 3, 185.
    119. Li, D., Shi, F., Peng, J., Guo, S., Deng, Y., Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes, J. Org. Chem., 2004, 69, 3582.
    120. Wu, H., Yang, F., Cui, P., Tang, J., He, M., An Efficient Procedure for Protection of Carbonyls in Bronsted Acidic Ionic Liquid [Hmim]BF_4. Tetrahedron Lett., 2004, 45, 4963.
    121. Hua-Ping, Z., Fan, Y., Jie T., Ming-Yuan, H., Bronsted Acidic Ionic Liquid 1-Methylimidazolium Tetrafluoroborate: a Green Catalyst and Recyclable Medium for Esterification, Green Chem., 2003, 5, 38.
    122. Bao, W., Wang, Z., Li, Y., Synthesis of Chiral Ionic Liquids from Natural Amino Acids, J. Org. Chem., 2003, 68, 591.
    123. Qian, W. X., Jin, E. L., Bao, W. L., Zhang, Y. M., Clean and Highly Selective Oxidation of Alcohols in an Ionic Liquid by Using an Ion-Supported Hypervalent Iodine(Ⅲ) Reagent, Angew. Chem. Int. Ed., 2005, 44, 952.
    124.钱卫星.离子液体及离子载体化合物在有机合成中的应用,浙江大学博士学位论文.杭州,2005。
    125. Chang, LC, Chang, HT., Sun, SW., Cyclodextrin-Modified Microemulsion Electrokinetic Chromatography for Separation of Alpha-, Gamma-, Delta-Tocopherol and Alpha-Tocopherol Acetate, J. Chrom., A, 2006,110, 227.
    126. Unnithan, Unnikrishnan, R., Refining of Edible Oil Rich in Natural Carotenes and Vitamin E, US 5,932,261, 1999.
    127. Mayer, H., Schudel, P., Rvegg, R., Isler, O., Uber die Chemiie des Vitamin E Die Totalsynthese von (2R, 4'R, 8'R)-und (2S, 4'R, 8'R)-α-Tocopherol, Helv. Chim. Acta, 1963, 43,650.
    128. Jhon, WS., Fred, TB., David, RP., Gabeiel, S., Synthesis of (2R,4'R,8'R)-α-Tocopherol and (2R,3'E, 7'E)-α-Tocotrienol, Helv. Chim. Acta, 1976,59,650.
    129.Lowack, R., Meyer, J., Eggersdorfer, M., Grafen, P., Preparation of alpha-tocopherol and alpha-tocopheryl acetate in liquid or supercritical carbon dioxide, US 5,523,420,1996.
    130. Grafen, P., Kiefer, H., Jaedicke, H., Preparation of vitamin E, US 5,468,883, 1995.
    131. Kuipers, A., Becker, H., Tiefenbacher, H., Schumacher, H., Preparation of a vitamin E dry powder, US 4,262,017,1981.
    132. Paul, K., Otto, I., Process For the Preparation of Synthetic dl-α-Tocopherols, US 2,411,968,1946.
    133. Heinrich, F., Niklaus, H., Willy, V., Method for Producing Chromanols, US 3,789,086,1974.
    134. Olson, L., Saucy, G., Synthesis of Vitamin E, US 4,243,598,1981.
    135. Yoshino, Y., Kondo, K., Process for the Preparation of Dl-.Plpha.-Tocopherol of High Purity, US 4, 217, 285, 1980.
    136. Dhainaut, J., Durand, T., Process for the Preparation of Vitamin E, US 6,790,967, 2004.
    137. Royals, E., Preparation of Unsaturated Ketones in Cyclic Carbonates. Ind. Eng. Chem. 1946, 38, 546.
    138. Webb R L. 2-Substituted-2,6-Dimethyl-7-Octenes and Process for Preparing Same. US 2,902,510, 1959.
    139. Oseph, S., 4-(6-ethyl-2, 6-dimethyl-2-cyclohexenyl)-3-buten-2-one. US 2, 815, 380, 1957.
    140. Nongyuan, S., Bernd, D., Process for the Preparation of Unsaturated Ketones. US 6, 586, 635, 2002.
    141. Saucy, G., Marbet, R. Ueber Eine Neuartige Synthese von β-Ketoallenen Durch Reaktion von Tertiaeren Acetylencarbinolen. Hel. Chim. Acta., 1967, 50, 1158.
    142. Saucy, G., Marbet, R. Conversion of 11-Keto-9-Beta, 10-Alpha-Steroids on 10-Alpha-Compounds. Hel. Chim. Acta., 1967, 50, 2091.
    143. Henrique, T., Norbert, R., Klaus, B., Dirk, D., Hartmut, H., Stefan, K., Heinz, E., Wulf, K., Preparation of Unsaturated Ketones. US 6, 184, 420, 2001.
    144. Witzeman, S., Nottinghm, D. Reactions of Substituted 2-tert-Butyladamantan. J. Org. Chem. 1991, 56, 1713.
    145. Walter, K., New Synthese method of Farnesylpropanone. J. Am. Chem. Soc., 1943, 65, 1992.
    146. Mehrotra R K., Preparation of 2-Substituted-2, 6-Dimethyl-7-Octenes. Can. J. Chem., 1961, 39, 765.
    147. Jiang, H., LI, H., Wang, C., Tan, T., Han, S., (Vapour+liquid) Equilibria for (2,2-Dimethoxypropane+Methanol) and (2,2-Dimethoxypropane+Acetone), J. Chem. Thermo., 2003, 35, 1567.
    148. Erley, D., 2, 2-Dimethoxypropane as a Drying Agent for Preparation of Infrared Samples, Anal. Chem., 1957, 29, 1564.
    149. Critchfield, F. E., Bishop, E. T., Water Determination by Reaction with 2, 2-Dimethoxypropane, Anal Chem., 1961, 33, 1034.
    150. Netzel, D. A., Turner, T. F., Miknis, F. P., Wallace, J. C., Jr., Butcher, C. H., Mitzel, J. M., Hurtubise, R. J. Use of 2, 2-Dimethoxypropane and ~1H NMR To Distinguish and Quantify the External and Internal Sorbed Water in Coals, Energy & Fuels, 1996, 10, 371.
    151. Lorette, N. B., Howard, W. L., Brown, J. H., Preparation of Ketone Acetals from Linear Ketones and Alcohols J. Org. Chem., 1959, 24, 1731.
    152. Krill, S., Kretz, S., Hafner, V., Markowz, G., Process for the Production of Isopropenyl Methyl Ether, US 6, 566, 559, 2003.
    153. Helmut, Z. A., Walter, S., Manufacture of Dialkyl-ketals, US4, 136, 124, 1979.
    154. Lorette, N. B., Howard W. L., Preparation of Ketals from 2,2-Dimethoxypropane, J. Org. Chem., 1960, 25, 521.
    155.吴连海,离子液体在维生素合成中的应用,浙江大学硕士学位论文,杭州,2006。
    156. Wang, Y., Li, H., Han, S., The Chemical Nature of the C-HX- (X=Cl or Br) Interaction in Imidazolium Halide Ionic Liquids, J. Chem. Phys., 2006, 124, 044504.
    157.刑其毅,裴伟伟,徐瑞秋,裴坚,基础有机化学(上册),519,高等教育出版社,北京,2005。
    158. Miao, W., Chan, T. H., Ionic-Liquid-Supported Synthesis: A Novel Liquid-Phase Strategy for Organic Synthesis, Acc. Chem. Res., 2006, ASAP Article, DOI: 10.1021/ar030252f.
    159. Kikumasa, S., Yoshie, K., Shigehiro, A., Synthesis of Isophytol, J. Org. Chem., 1963, 28, 45.
    160. Wang, S., Kienzle, F., The syntheses of pharmaceutical intermediates in supercritical fluids, Ind. Eng. Chem. Res., 2000, 39, 4487.
    161. Hyatt, J. A., Kottas, G. S., Effler, J., Development of synthetic routes to D,L-α-tocopherol (Vitamin E) from biologically produced geranylgeraniol, Org. Process Res. Dev., 2002, 6, 782.
    162. Kikumasa, S., Shioji, M., Masao, H., A total Synthesis ofphytol, J. Org. Chem., 1967, 32, 177.
    163. Witzeman, J S., Nottinghm, W D. Reactions of Substituted 2-tert-Butyladamantan. J. Org. Chem., 1991, 56, 1713.
    164. Walter, K., New Synthese method of Famesylpropanone. J. Am. Chem. Soc., 1943, 65, 1992.
    165. Mehrotra, R K., Preparation of 2-Substituted-2,6-Dimethyl-7-Octenes. Can. J. Chem., 1961, 39, 765.
    166. Weichet, J., Preparation of Unsaturated Ketones by the Carroll Reaction in Cyclic Carbonates. Chem. Comm., 1960, 1914.
    167. Kimel, W., Park, H., Sax, W., Falls, L., Preparation of Ketones. US 2, 795, 617, 1957.
    168. Heinz, E., Manfred, S., Preparation of Gamma, Delta -Unsaturated Ketones by the Carroll Reaction in Cyclic Carbonates or Gamma -Lactones. US 5,874,635, 1999.
    169. Heinz, E., Dietmar, W., Carsten, O., Hagen, J., Manfred, S., Bernhard, B., Lothar L., Klaus R. Preparation of Gamma, Delta -Unsaturated Ketones by the Carroll Reaction, Novel Catalysts therefor and the Preparation thereof, US 6, 051,741,2000.
    170. Saucy, G., Marbet, R., Uber die Reaktion von Tertiaren Vinylcarbinolen mit Isopropenylather Eine neue Methode zur Herstellung von γ,δ-ungesattigten Ketonen, Helv. Chim. Acta, 1967, 50,2091.
    171. Teles, J. H., Rieber, N., Breuer, K., Demuth, D., Hibst, H., Kaeshammer S., Etzrodt H., Kaiser W., Preparation of Unsaturated Ketones, US 6,184,420,2001.
    172. Shi, N., Drapal, B., Krill, S., Julino, M., Huthmacher K., Process for the Preparation of Unsaturated Ketones, US 6,586,635, 2003.
    173. Saucy, G., Marbet, R., Uber eine neuartige Synthese von β-Ketoallenen durch Reaktion von tertiaren Acetylencarbinolen mit Vinylathern eine ergiebige methode zur darstellung des Pseudojonons und verwandter verbindungen, Helv. Chim. Acta, 1967,50,1158.
    174. Saucy, G., Marbet, R., Preparation of Unsaturated Ketones, US 3,029,287, 1962.
    175. Miao, W., Chan, T. H., Ionic-Liquid-Supported Synthesis: A Novel Liquid-Phase Strategy for Organic Synthesis, Acc. Chem. Res., 2006, ASAP Article, DOI: 10.1021/ar030252f.
    176. Baldenius, K., Bussche-Hunnefeld L., Hilgemann E., Hoppe P., Sturmer R., Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27, VCH, Weinheim, 1996,478.
    177. Schneider, M., Zimmermann, K., Aquino, F., Bonrath, W., Industrial Application of Nation-Systems in Rearrangement-Aromatisation, Transesterification, Alkylation, and Ring-Closure Reactions, Applied Catalysis A: General, 2001, 220, 51.
    178. Wang, H., Xu, B. Q., Catalytic Performance ofNafion/SiO_2 Nanocomposites for the Synthesis of α-Tocopherol, Applied Catalysis A: General 2004, 275, 247.
    179. Wang, S., Wemer, B., Horst, P., Frank, K., The Synthesis of D, L-α-Tocopherol in Supercritical Media, J. Supercritical Fluids, 2000, 17, 135.
    180. Wemer, B., Alois, H., Eike, H., Thomas, N., Horst, P., Frank, S., Angela, W., Synthesis of (all-rac)-α-Tocopherol Using Fluorinated NH-Acidic Catalysts, Adv. Syn. Catal. 2002, 344, 37.
    181. Wang, S., Kienzle, F., The Syntheses of Pharmaceutical Intermediates in Supercritical Fluids, Ind Eng. Chem. Res., 2000, 39, 4487.
    182. Frank, S., Werner, B., Synthesis of D, L-α-Tocopherol Using microencapsulated Catalysts, Applied Catalysis A: General, 2000, 202, 117.
    183. Juergen, S., Stefan, B. Preparation of Enol Ethers. US 5,767,325, 1998.
    184. Henrique, T J., Norbert, R., Klaus, B., Dirk, D., Hartmut, H., Heinz, E., Udo R. Method for Producing Enol Ethers. US 6,211,416, 2001.
    185. Toni, D., Eckhard, H., Process for the Preparation of Unsaturated Compounds by Elimination Reaction. EP 197, 283, 1986.
    186. Arthur, F., Method of preparing Unsaturated Ethers. J. Chem. Soc., 1972, 22, 94.
    187. Wang, Y., Li, H., Wang, C., Jiang, H., Ionic Liquids as Catalytic Green Solvents for Cracking Reactions, Chem. Commun., 2004, 1938.
    188.李浩然,王从敏,催伟,张荣,胡兴邦,徐林祥,叶志翔,浙江省科技计划重点项目:烯醚绿色化学研究鉴定报告,2005,杭州。
    189.李浩然,王从敏,崔伟,邓东顺,张荣,胡兴邦,徐林祥,叶志翔,一种合成二烷氧基丙烷的方法,中国专利,专利号:ZL03151120.1。
    190.李浩然,王从敏,崔伟,胡兴邦,姜辉,邓东顺,徐林祥,叶志翔,2-烷氧基丙烯的合成新工艺,中国专利,公开号:CN1660742。
    191.李浩然,王从敏,郭丽萍,王勇,翁建阳,徐林祥,杨晓光,一种2-烷氧基丙烯的合成工艺,中国专利,公开号:CN1800129。
    192.李浩然,姜辉,王从敏,崔伟,一种在离子液体中制备缩酮的方法,中国专利,公开号:CN1858048。
    193.张荣,生化模型分子及生物小分子水溶液弱相互作用的研究,浙江大学博士学位论文,2006,杭州。
    194. Kobko, N., Paraskevas, L., Rio, E., Dannenberg J. J., Cooperativity in Amide Hydrogen Bonding Chains: Implications for Protein-Folding Models, J. Am. Chem. Soc. 2001, 123, 4348.
    195. Sitkoff, D., Case, D. A., Density Functional Calculations of Proton Chemical Shifts in Model Peptides, J. Am. Chem. Soc. 1997, 119, 12262.
    196. Mark, S. G., Stephen, J. B., John, A. P., William J. P., Warren J. H., Self-Consistent Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements, J. Am. Chem. Soc., 1952, 104, 2797.
    197. Pleune, B., Morales, D., Meunier-Prest, R., Richard, P., Collange, E., Fettinger, J. C., Poli, R., Stable Paramagnetic Half-Sandwich Mo(V) and W(V) Polyhydride Complexes. Structural, Spectroscopic, Electrochemical, Theoretical, and Decomposition Mechanism Studies of [Cp~*MH_3(dppe)]~+ (M = Mo, W), J. Am. Chem. Soc, 1999,121, 2209.
    198. Hohenberg, P., Kohn, W., Inhomogeneous electron gas, Phys., Rev., 1964, B136: 864.
    199. Kohn, W., Sham, L., Self-consistent equations including exchange and correction effects, Phys., Rev., 1965, A 140,1133.
    200. Becke, A. D., Density-functional thermochemistry. I. The effect of the exchange-only gradient correction, J. Chem. Phys., 1993, 96, 2155.
    201. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648.
    202. Stephens, P. J., Devlin F. J.,. Chabalowski C. F, Frisch M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem., 1994, 98, 11623.
    203. Ming, W. W., Kenneth, B. W., Michael J. F., Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study, J. Am. Chem. Soc, 1992,114,1645.
    204. Onsager, L., Electric Moments of Molecules in Liquids, J. Am. Chem. Soc, 1936, 58,1486.
    205. Cances, E., Mennucci, B., Tomasi, J., A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics, J. Chem. Phys., 1997, 707, 3032.
    206. Mennucci, B., Tomasi, J., Continuum solvation models: A New Approach to the Problem of Solute's Charge Distribution and Cavity Boundaries, J. Chem. Phys., 1997,106,5151.
    207. Barone, V., Cossi, M., Tomasi, J., New Definition of Cavities for the Computation of Solvation free Energies by the Polarizable Continuum Model, J. Chem. Phys., 1997, 707, 3210.
    208. Wu, T., Werner, H., J., Manthe, U., First-Principles Theory for the H + CH_4→ H_2 + CH_3 Reaction, Science, 2004,306, 2227.
    209. Lei, Y., Li, H., Pan, H., Structures and Hydrogen Bonding Analysis of N,N-Dimethylformamide and N,N-Dimethylformamide-Water Mixtures by Molecular Dynamics Simulations, J. Phys. Chem. A., 2003, 707,1574.
    210. Xu, Z., Li, H., Wang, C, Wu, T., Han, S., Is the Blue Shift of C-H Vibration in DMF-Water Mixture Mainly Caused by C-H Center Sot Center Dot Center Dot O Interaction? Chem. Phys. Lett., 2004,394,405.
    211. Huang, J., Baker, G. A., Luo, H., Hong, K., Li Q., Bjerrum, N. J., Dai, S., Bronsted Acidic Room Temperature Ionic Liquids Derived from N,N-Dimethylformamide and Similar Protophilic Amides, Green Chem., 2006,8, 599.
    212. Gonzalez, C. H. B., Reaction path following in mass-weighted internal coordinates,.J. Phy. Chem. 1990, 94, 5523.
    213. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman,J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C, Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C, Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Bennucci, B., Pomelli, C, Adamo, C, Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ciwslowski, J., Ortiz, J. V. Baboul, A. G., Stevanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C, Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzelez, C, Head-Gordon, M., Replogle, E. S., and Pople, J. A., GAUSSIAN 98, A.3 ed., Gaussian, Inc.: Pittsburgh, PA, 1998.
    214. Chuang, Y. -Y., Corchado, J. C, Fast, P. L., Villa, J., Hu, W.-P., Liu, Y.-P., Lynch, G. C, Jackels, C. F., Nguyen, K. A., Gu, M. Z., Rossi, I., Coitin~o, E. L., Clayton, C, Melissas, V. S., Lynch, B. J., Steckler, R., Garrett, B. C, Isaacson, A. D., Truhlar, D. G. POLYRA TE, 8.4.1 ed ., University of Minnesota: Minneapolis, MN, 1999.
    215. Eric, W.-G. D., Jennifer, L. H., Zee, H. K., Ahmed H. Z., Femtosecond Activation of Reactions and the Concept of Nonergodic Molecules, Science, 1998,
    279, 547.
    216. Salai, C.u A., Hiroshi, Y., Misako A., Michel D., Dynamics-Driven Reaction Pathway in an Intramolecular Rearrangement, Science,2003, 299,1555.
    217. Hayase, S., Hrovat, D. A., Borden, W. T., A B3LYP Study of the Effects of Phenyl Substituents on 1,5-Hydrogen Shifts in 3-(Z)-1,3-Pentadiene Provides Evidence Against a Chameleonic Transition Structure, J. Am. Chem. Soc, 2004, 126, 10028.
    218. Tsao, M.-L., Gritsan, N., James, T. R., Platz, M. S., Hrovat, D. A., Borden, W. T., Study of the Chemistry of ortho- and para-Biphenylnitrenes by Laser Flash Photolysis and Time-Resolved IR Experiments and by B3LYP and CASPT2 Calculations, J. Am. Chem. Soc, 2003, 125, 9343.
    219. Jhon, J. N., Joseph, S. F. Unimolecular Decomposition Pathways of Dimethyl Ether: An ab Initio Study, J. Phys. Chem. A. 1998,102, 236.
    220. Francisco, J. S., Mechanistic Study of the Gas-Phase Decomposition of Methyl Formate, J. Am. Chem. Soc, 2003,125,10475.
    221. Wang, Z., Schleyer, P., Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons, Science, 2001,292,2465.
    222. Diau, E., Herek, J., Kim, Z., Zewail, A., Femtosecond Activation of Reactions and the Concept of Nonergodic Molecules, Science, 1998,279, 847.
    223. David, S., Hideki, A., Heinz, G., Wolfgang, W. S., Didier, B., Guy, B., Singlet Diradicals: from Transition States to Crystalline Compounds, Science, 2002,295, 1880.
    224. Khuong, K. S., Beaudry, C. M., Trauner, D., Houk, K. N., Dienophile Twisting and Substituent Effects Influence Reaction Rates of Intramolecular Diels-Alder Cycloadditions: A DFT Study, J. Am. Chem. Soc, 2005,127,3688.
    225. Garcia-Viloca, M., Alhambra, C, Truhlar, D. G., Gao, J., Quantum Dynamics of Hydride Transfer Catalyzed by Bimetallic Electrophilic Catalysis: Synchronous Motion of Mg~(2+) and H" in Xylose Isomerase, J. Am. Chem. Soc, 2002,124, 7268.
    226. Pang, J., Pu,J., Gao, J., Truhlar, D. G.,Allemann, R. K., Hydride Transfer Reaction Catalyzed by Hyperthermophilic Dihydrofolate Reductase Is Dominated by Quantum Mechanical Tunneling and Is Promoted by Both Inter- and Intramonomeric Correlated Motions, J. Am. Chem. Soc, 2006,128, 8015.
    227. Skodje, R. T., Truhlar, Donald G., Parabolic Tunneling Calculations, Phys. Chem., 1981,85, 624.
    228. Truhlar, D. G., Garrett, B. C, Klippenstein, S. J., Current Status of Transition-State Theory, J. Phys. Chem., 1996,100,12771.
    229. Wigner, E., Calculation of the Rate of Elementary Association Reactions, J. Chem. Phys., 1937,5, 720.
    230. Truhlar, D. G., Garrett, B. C, Variational Transition-State Theory, Acc. Chem. Res., 1980,13,440.
    231. Truhlar, D. G., Isaacson, A. D., Skodje, R. T., Garrett, B. C, Incorporation of Quantum Effects in Generalized-Transition-State Theory, J. Phys. Chem., 1982, 86, 2252.
    232. Liu, Y-P., Lynch, G. C, Truong, T. N., Lu, Da-H., Truhlar, D. G., Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene, J. Am. Chem. Soc, 1993,115,2408.
    233. Truong, T. N., Thermal Rates of Hydrogen Exchange of Methane with Zeolite: A Direct ab Initio Dynamics Study on the Importance of Quantum Tunneling Effects, J. Phys. Chem. B, 1997,101, 2750.
    234. McMahon, R. J., Chemical Reactions Involving Quantum Tunneling, Science, 2003, 299, 833.
    235. Pugliano, N., Saykally, R.J., Measurement of Quantum Ttunneling Between Chiral Isomers of the Cyclic Water Trimer, Science, 1992,257,1937.
    236. Jiang, H., Li, H., Wu, T., Han, S., The Importance of Tunneling effect to the Decomposition of 2,2-Dimethoxypropane and 2,2-Diethoxypropane, Chem. Phys. Lett., 2005,406, 489.
    237. Acevedo, O., Jorgensen, W. L., Evanseck, J. D., Elucidation of Rate Variations for a Diels-Alder Reaction in Ionic Liquids from QM/MM Simulations, J. Chem. Theory and Comput, 2006, ASAP Article, DOI: 10.1021/ct6002753.
    238. Mellein, B. R., Aki, S. N. V. K., Ladewski, R. L., Brennecke, J. F., Solvatochromic Studies of Ionic Liquid/Organic Mixtures, J. Phys. Chem. B., 2006, ASAP Article, DOI: 10.1021/jp0653353.
    239. Wu, L., Wang, C, Hu, X., Li, H., Han, S., (Vapour + liquid) equilibria for (2-ethoxypropene + acetone) and (2-ethoxypropene + butanone), J. Chem. Thermodyn., 2006,38, 889.
    240. Lorette, N. B., Howard, W. L, Brown J. H., Preparation of Ketone Acetals from Linear Ketones and Alcohols, J. Org. Chem., 1959,24, 1731.
    241. Lynch, B. J., Zhao, Y., Truhlar, D. G., Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory, J. Phys. Chem. A.; 2003,107,1384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700