钒基催化剂作用下苯直接氨基化和羟基化反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯直接氨基化和羟基化制苯胺和苯酚的反应涉及稳定C-H键的活化,是合成化学中颇具挑战性的课题之一,受到越来越多的关注。本文主要研究了钒基催化剂作用下苯以羟胺作为氨基化试剂的直接氨基化制苯胺反应机理和以双氧水为氧化剂的苯直接氧化形成苯酚的反应机理。
     采用羟胺作为氨基化试剂的苯直接氨基化反应涉及五价钒氧化羟胺的过程。因此,首先本文研究了气相中VO2+氧化羟胺形成初级产物HNO的反应机理以确定钒在羟胺溶液中的主要存在形态。理论模拟研究采用密度泛函B3LYP方法结合6-311++G**基组。对基态和第一个三重激发态反应途径上所有中间体和过渡态进行了几何结构优化和频率计算。研究了两个不同的反应机理,即单电子机理和双电子机理。单电子机理通过VO2+氧化羟胺形成NH2O·和·NHOH自由基复合物([VO(OH)(NH2O)]+和[VO(OH)(NHOH)]+);然后VO2+氧化中间产物NH2O·自由基形成产物HNO和VO(OH)+。计算结果表明,单电子机理是自旋守恒的,其决速步骤为第一步中的O-H键断裂,活化能为27.92 kcal/mol。双电子机理的前半部分也是形成NH2O·和·NHOH自由基复合物,然后NH2O·和·NHOH自由基复合物通过分子内氢转移形成产物复合物,同时,四价钒被还原为三价钒。双电子机理中,单重态势能面和三重态势能面的交叉导致稳定产物为三重态V(OH)2+。双电子机理可以描述为LS-VV[VO2(NH2OH)+, d0]→LS-VIV [VO(OH)(NH2O)+, d1]→HS-VIV[VO(OH)(NH2O)+ , d1]→HS-VIII [V(OH)2(HNO)+ , d2]过程。仅仅当自旋交叉很容易发生的时候,双电子机理才可能与单电子机理在动力学上相互竞争。但是,在热力学上单电子机理明显比双电子机理占优势。因此,气相中VO2+氧化羟胺形成初级产物HNO主要通过单电子机理进行。这也表明VO2+与NH2OH在水溶液中的反应也主要通过单电子机理来完成。基于梯度场的电子局域泛函拓扑分析表明,所有氢转移首先涉及O-H或N-H键断裂,然后形成O-H共价键。这类型反应可以看成一个共价过程。但是,V(H)区域的较小布居数值表明,这些过渡态并不完全是共价的,第二个氢转移的离子性要比第一个氢转移的大。
     采用密度泛函理论方法在UB3LYP/6-311G**(IEF-PCM)// UB3LYP/6-311G**水平下研究了钒基催化剂作用下羟胺为氨基化试剂的苯直接氨基化形成苯胺反应的机理。采用了三种催化剂模型,即VO2+, VO(H2O)52+和VO(Ac)(H2O)3+,模拟了反应机理并对结果进行了比较。计算结果表明,VO2+作为催化剂时,加成消除机理和C-H键活化机理的决速步骤均为氨基复合物形成中的氢转移步骤,且加成消除机理要比C-H键活化机理要有利得多。苯环中心的核独立化学位移(NICS)值表明,加成消除机理中,所有驻点中苯部分或苯基中的苯环均保持其芳香性。相反,在C-H键活化机理中,所有驻点中的苯环均保持反芳香性。片段分子轨道(FMO)分析表明,钒的3d轨道在氨基化过程中通过接受环己二烯胺自由基的单电子来稳定环己二烯胺复合物中间体。对于纯水溶剂,弱结合水分子通过静电相互作用降低了决速步骤的活化自由能。氨基自由基复合物产生过程的活化自由能和反应自由能表明,Ac-配位的氨基自由基复合物的中间体形成要比裸的氨基自由基复合物和水配位的氨基自由基中间的体形成容易得多。计算结果与实验结果的对照表明,VO(Ac)(H2O)3+可能是真实反应中的主要活性催化剂。能量分解分析表明,溶剂并没有改变氨基复合物产生过程的本质,而主要是通过配体与钒之间的相互作用的变化来降低反应的活化能和能变,使反应在动力学和热力学上都更容易进行。因为使用的极性溶剂可以改变活性催化剂VO2+, VO(H2O)52+和VO(Ac)(H2O)3+的化学平衡,所以苯胺的产量是与溶剂相关的。
     在B3LYP/6-311G(2d,2p)(IEF-PCM) //B3LYP/6-311G(2d,2p)水平下,研究了钒催化双氧水为氧化剂的苯直接羟基化制苯酚的反应机理。采用了三种可能的钒物种,即溶剂配位的单钒VO(O2)(CH3CN)4+,以及双钒物种(O2)2V(μ-O)2V(O2)(CH3CN),和(O2)2V(μ-O)2VO(CH3CN)作为催化剂来研究了反应的机理。以VO(O2)(CH3CN)4+为催化剂时,整个反应的决速步骤为C-H键活化,在常温常压下其活化自由能约为38 kcal/mol。这一结果表明在常温常压下VO(O2)(CH3CN)4+不是活性催化剂。溶剂分子CH3CN通过静电相互作用导致活化能比简单VO(O2)+催化的活化自由能要低得多。对于双钒物种(O2)2V(μ-O)2V(O2)(CH3CN) ,则存在两种反应途径。通过苯基中间体(HOO)(O2)V(μ-O)2V(O2)Ph (双中心机理)的反应途径要比通过苯基中间体(O2)2V(μ-O)2V(OOH)Ph (单中心机理)的反应途径容易得多,这是由于双中心机理中C-H键活化和羟基转移过程涉及到两个催化中心钒的d轨道同时与反应中心碳的p轨道和过氧的p轨道相互作用。双中心机理的决速步骤的活化自由能仅为25 kcal/mol左右,这表明它在常温常压下可以进行。但是,单中心反应机理的活化自由能高达40kcal/mol,这就表明这一反应途径在常温常压下不容易进行。对于另一个双钒物种(O2)2V(μ-O)2VO(CH3CN),它只有一条反应途径。这一反应途径中过渡态的轨道相互作用仅仅涉及(O2)2V片段里钒的d轨道与反应中心的轨道相互作用,从而导致活化自由能要比前一个双钒过氧物种的双中心机理的高。这些反应途径中,各个中间体中苯环中心的核独立化学位移值表明这些中间体中苯基的芳香性均没有被破坏。因此,(O2)2V(μ-O)2V(O2)(CH3CN)是乙氰溶液中钒催化双氧水为氧化剂的苯直接羟基反应的活性催化剂。在实验中为了获得较好苯酚收率,必须要改变条件使钒在体系中的聚集态为(O2)2V(μ-O)2V(O2)(solvent)。
     采用密度泛函B3LYP方法对(CO)4Cr(μ-PH2)2RhH(CO)(PH3)催化膦丁烯氢甲酰化反应机理作了详细研究。总共研究了四个不同反应机理。第一个机理为鳌合络合机理,在这种机理中膦丁烯采取PH2-和乙烯基端与Rh中心配位。第二种机理也为络合机理,但是膦丁烯与Rh中心通过乙烯基端单齿配位。第三种为单配位解离机理,这种机理与单金属催化剂催化烯烃氢甲酰化反应类似。最后一种反应机理为鳌合解离机理,膦丁烯与铑中心通过双齿配位形成五配位中间体。比较这四个机理发现,Rh-Cr双金属催化膦丁烯氢甲酰化与以前研究过的单金属催化的不一样。Rh-Cr双金属催化剂催化膦丁烯氢甲酰化反应涉及以下步骤:首先通过鳌合络合机理的烯烃加成,烯烃插入和羰基插入步骤形成鳌合酰基中间体,然后通过CO加成形成单配位酰基中间体,最后,通过H2分子配位,H2氧化加成和醛的还原消除,单配位酰基复合物转化为产物。羰基插入为整个反应的决速步骤。Cr(CO)4部分的引入改变了烯烃氢甲酰化反应的机理。同时,获得了以下几个新发现。1)CO分压有利于鳌合酰基中间体转化为产物醛。2)双金属Rh-Cr催化剂催化氢甲酰化在苯溶液中生成支链产物在热力学和动力学上都是有利的,其选择性差不多为100%。3)烯烃加成步骤中Rh,Cr轨道相互作用的变化表明这种络合机理可以看成络合机理和解离机理。铬在烯烃加成和插入步骤通过铑、铬轨道相互作用的变化而起到了轨道库的作用。4)活化自由能垒表明,Rh(I)-Cr双金属催化剂的活性比单金属铑催化剂的活性要高。5)Rh-μ-P-Cr-μ-P四元环在反应过程发生改变以适应反应的进行,从而实现铬对催化中心铑的协同性。这些结果与实验结果吻合得很好。
The direct amination and hydroxylation of benzene, which involves the activation of C-H bond, preserves a challenging topic in chemistry and attracts much attention recently. In the present paper, density functional theory B3LYP hybrid functional was used to investigate the mechanism of the direct amination and hydroxylation of benzene to aniline and phenol, respectively, catalyzed by vanadium-based catalysts.
     The oxidation of hydroxylamine by VO2+ to the primary product HNO in gas phase were investigated with density functional theory (DFT) at the B3LYP/6-311++G(d, p) level. Calculations including geometry optimization and vibrational analysis for the stationary points on the ground and the first excited states were performed. Two possible mechanisms were investigated. The fist one is the one-electron mechanism through firstly the formation of NH2O·and·NHOH radical complexes ([VO(OH)(NH2O)]+ and [VO(OH)(NHOH)]+) from NH2OH and VO2+, and then the oxidation of the stable intermediate NH2O·by VO2+ to produce the products HNO and VO(OH)+. The one-electron mechanism is predicted to be spin-conserved and the rate-limiting step is the cleavage of the O-H bond with 27.92 kcal/mol energy barrier. The other one is the two-electron mechanism in which the first half is also the formation of NH2O·and·NHOH radical complexes and the second half is the intra-molecular hydrogen transfer of NH2O·and·NHOH radical complexes to the product HNO together with the reduction of VIV to VIII. The crossing point between singlet and triplet potential energy surfaces (PESs) results in the stable product triplet V(OH)2+ in the two-electron mechanism. The two-electron mechanism may be kinetically competitive with the one-electron mechanism only if the spin inversion between singlet and triplet PESs occurs easily, while, the one-electron mechanism is energetically more favorable than the two-electron mechanism. Therefore, the one-electron mechanism is predominant. The topological description, based on the gradient field analysis of the electron localization functional, on all of the key minima and transition states along the feasible reaction channels suggests that all of the hydrogen transfer processes involve firstly the cleavage of O-H or N-H bond followed by the formation of a covalent O-H bond.
     The amination of benzene with NH2OH as amination agent catalyzed by vanadium was investigated in the framework of density functional theory at UB3LYP/6-311G**(IEF-PCM)// UB3LYP/6-311G** level. Three model catalysts, VO2+, VO(H2O)52+, and VO(Ac)(H2O)3+, had been investigated separately, and the results were compared. Our calculations reveal that the addition-elimination mechanism is clearly preferred over the C-H bond activation mechanism thermodynamically and kinetically with VO2+ as the catalyst. The rate-determining step is the formation of the amino radical complex. The predicted nuclear independent chemical shift (NICS) values of benzene ring indicate that the benzene ring keeps its aromaticity throughout the addition-elimination mechanism. In contrast, the benzene ring exhibits anti-aromaticity in the stationary points of the C-H bond activation mechanism. The fragment molecular orbital (FMO) analysis illustrates that 3d orbitals of vanadium play an import role in this amination process through receipt of single electron from the cyclohexadienamine radical moiety to stabilize the cyclohexadienamine radical intermediate. For pure water solvent, the weakly bonded water molecules lower the free energy barriers of rate-determining step. The predicted free energy barriers and reaction free energies of the generation of amino complexes imply that the formation of the Ac- coordinated amino intermediate is more favorable than that of naked amino and water coordinated amino intermediates thermodynamically and kinetically. The consistency between these results and experimental facts suggests that VO(Ac)(H2O)3+ may be the main form of the operative catalyst. The energy decomposition analysis indicates that the variation of binding energy between solvent and vanadium plays an important role in the amination process of benzene to aniline with hydroxylamine. To conclude, our calculation have demonstrated that the mechanism of amination of benzene to aniline with hydroxylamine as amination agent catalyzed by vanadium in polar solvent is solvent-dependent. Since the polar solvent used noticeably affects the chemical equilibrium between VO2+, VO(H2O)52+, and VO(Ac)(H2O)3+, the productive rate of aniline is solvent-sensitive.
     The mechanism of benzene to phenol with H2O2 as oxidant catalyzed by vanadium in CH3CN sovent was invistgated at the B3LYP/6-311G(2d,2p)(IEF-PCM) //B3LYP/6-311G(2d,2p) level. Three possible species, VO(O2)(CH3CN)4+, (O2)2V(μ-O)2V(O2)(CH3CN), and (O2)2V(μ-O)2VO(CH3CN), were employed as the active catalyst to elucidate the reaction mechanism. When VO(O2)(CH3CN)4+ is serverd as the catalyst, the C-H bond activation step is the rate-liminting step with about 38 kcal/mol of free energy of activation at 298.15 K and 1atm. This results indicates that VO(O2)(CH3CN)4+ is not the active catalyst at room tempreture. The solvated solvent molecules, CH3CN, interact with the catalytic center, vanadium, through electrostatic interaction. For the binuclear vanadium species, (O2)2V(μ-O)2V(O2)(CH3CN), there are two reaction pathways. The pathway through phenyl intermediate (HOO)(O2)V(μ-O)2V(O2)Ph (the double-center pathway) is preferred than that of phenyl intermediate (O2)2V(μ-O)2V(OOH)Ph (the single-center pathway). Because the double-center pathway inlvolves d orbitals of two vanadiums interacted with p orbital of carbon and p orbitals of -OOH in transition states of the C-H bond activation and hydroxyl transfer steps. The double-center pathway is predicted to be feasible at room tempreture with a free energy barrier of about 25 kcal/mol. While the free energy barrier of the single-center pathway is about 40 kcal/mol, which indicates that this pathway is not feasible at room tempreture. For the other binuclear vanadium species, (O2)2V(μ-O)2VO(CH3CN), there is only one reaction pathway. In the transition states of this reaction pathway, the orbital interaction only involves d orbitals of vanadium of (O2)2V fragment interacted with the orbitals of reaction centers. For all of these pathways, the predicted NICSs of the phenyl rings in these intermediates indicate that the phenyl rings in these intermediates maintain aromaticity. Therefore, (O2)2V(μ-O)2V(O2)(CH3CN) is the most suitable catalyst for the benzene to phenol with H2O2 as oxidant catalysed by vanadium in CH3CN solvent. In order to obtain the best results in experiments, we must make (O2)2V(μ-O)2V(O2)(solvent) as the main species of vanadium in the reaction system.
     A theoretical study was carried out at the B3LYP level of theory for the (CO)4Cr(μ-PH2)2RhH(CO)(PH3)-catalyzed hydroformylation of phosphinobutene. Four mechanisms are possible. The first one is the chelate associative mechanism in which the main species adopts chelate coordination mode with the rhodium center. The second one is also the associative mechanism in which the key species adopts monodentate coordination mode with rhodium center. The third one is the monodentate dissociative mechanism, which is similar to the popularly accepted mechanism of hydroformylation of alkenes catalyzed by the monometallic Rh catalysts. And the last one is chelate dissociative mechanism in which the main species also equip with chelate coordination mode. The comparison of the four possible mechanisms indicates that the hydroformylation of phosphinobutene catalyzed by the Rh-Cr bimetallic catalyst is obviously different from the previously characterized mechanism of the monometallic rhodium catalyst. The hydroformylation of phosphinobutene catalyzed by the Rh-Cr bimetallic catalyst involves firstly the formation of the chelate acyl species through the chelate associative mechanism including the olefin addition, olefin insertion, carbonyl insertion steps, then the CO addition to the chelate acyl species leading to the formation of the monodentate acyl species, and finally the conversion of the monodentate acyl species to the product aldehyde through the H2 coordination, H2 oxidative addition and aldehyde elimination. The carbonyl insertion is the rate-limiting step for the catalytic cycle. Therefore, the introduction of cooperative metallic chromium remodels the mechanism. In addition, some other new points are obtained: (1) The CO concentration or partial pressure is helpful for the transform of the chelate acyl species to the product aldehyde. (2) The bimetallic Rh-Cr-catalyzed hydroformylation favors the branched product with a percentage ratio of nearly 100% both kinetically and thermodynamically in benzene solution. (3) The breakage of the orbital interaction between Rh and Cr atoms in olefin addition step indicates that this associative mechanism can be viewed as both associative and dissociative. The chromium serves as an orbital reservoir in olefin addition and insertion steps via the variation of the orbital interaction between Rh and Cr atoms. (4) The calculated free energy barriers imply that the catalytic activity of the Rh(I)-Cr bimetallic complex is higher than that of the monometallic Rh catalysts. (5) The adaptability of the Rh-μ-P-Cr-μ-P four-membered ring in the reaction process effectively demonstrates the cooperativity of chromium with the catalytic center rhodium. These results are in good agreement with the experimental studies.
引文
1. Jones W. D., Science, 2000, 287(5460),1942
    2. Jia C, Piao D, Oyamada J et al. Science, 2000, 287(5460),1992
    3. Chen H, Schlecht S, Semple T C et al. Science, 2000, 287(5460): 1995
    4. Niwa S I, Eswaramoorthy M, Nair J et al. Science, 2002, 295(5552):105
    5. Ahmed M. T. Jens W. Chem Rev, 1996, 96: 2035-2052
    6. 徐丹,张文楠,鲁郑全,等。CN 1141912A,1997-2-5
    7. Yu C Z, Liu B, Hu L Q. J Org Chem., 2001,66: 919-924
    8. Kumbhar P S, Jaime S V, et al. J. Catal., 2000, 191:467-473
    9. Benz M, Prins R. Appl Catal A: General, 1999, 183: 325-333
    10. Bilha F, Larisa S. J Org Chem, 1998, 63: 393-395
    11. Naonbu K, Shinsuke L, et al. Stud Surf. Sci Catal, 1997, 105; 1227-1234
    12. Naonbu K, Shuju K, et al. Appl Catal A: General. 1999, 180: L1-L3
    13. Burgers M H W, van Bekkum H. J Catal. 1994, 148: 68-75
    14. Yang B H, Buchwald S L. J Organometallic Chem, 1999, 576: 125-146
    15. H?lderch W. F., Becker J.. Verfahren zur herstellung von aminosubstiruierten aromatischen kohlen asserstoffen. DE patent, 19634110, 1998-02-26.
    16. Axon S. A., Jackson S. D., Claes P. R. R. Process for the production of aromatic amines. WO 99/10311.1999-03-04.
    17. Poojary D., Borade R., Hagemeyer A., Dube C., Zhou X. P., Notheis U., Armbrust R.. Amination of aromatic hydrocarbons and heterocyclic analogs thereof [P]. WO 00/69804.2000-11-23.
    18. Hagemeyer A., Borade R., Desrosiers P., Guan Sh. H., Lowe D. M., Poojary D., Turner H.,Weinberg H., Zhou X. P., Armbrust R., Fengler G, Notheis U. Applied Catalysis A: General, 2002,227(1/2): 43-611.
    19. Desrosiers P., Guan Sh. H., Hagemeyer A., Lowe D. M., Lugmair C., Poojary D., Turner H., Weinberg H., Zhou X. P., Armbrust R., Fengler G, Notheis U. Catalysis Today, 2003, 81(3): 319-328.
    20. Chen T., Hu C. W, Fu Z. J., Tian A M. Chinese Science Bulletin, 2002, 47(23): 1937-1939.
    21. 陈彤,付真金,祝良芳,胡常伟,田安民. 化学学报 2003, 61(11): 1701-1703.
    22. 祝良芳,夏云生,李桂英,胡常伟.石油化工,2004, 33(增刊):1448-1450.
    23. Zhu L. F., Chen T., Tao B., Xia Y S., Hu C. W, Tian A M.. Sixth international symposium on green chemistry in China (6th ISGCC2003), 2003, 216-219.
    24. Kuznetsova, N.I.; Kuznetsova, L.I.; Detusheva, L.G.; Likholobov, V.A.; Pez, G.P.; Cheng, H.J. Mol. Catal. A 2000,161, 1.
    25. Zhu, L.; Guo, B.; Tang, D.; Hu, X.; Li, G.; Hu, C. J. Catal. 2007,245,446
    26. Niwa, S.; Eswaramoorthy, M.; Nair, J. Science, 2002, 295, 105.
    27. Tomvuk, K. Bull. Chem. Soc. Jpn. 1994, 67, 2850.
    28. Hamado, M. Aromailzkuic, 1994, 46, 373.
    29. Panov, G I. Cattech, 2000, 4, 18.
    30. Kunai, A.; Ishihata, K.; Ito, S.; Sasaki, K. Chem Lett. 1988, 1967.
    31. Kitano, T.; Kuroda,Y.;Itoh, A.; Jian, L.-F. J Chem Soc Perkin Trans, 1990, 2, 1991.
    32. Miyake, T.; Hamada, M.; Sasaki, Y Appl Catal: A: General. 1995, 131, 33.
    33. Thangaraj, A.; Kumar, R.; Ratnasmy, P. J Catal. 1991, 131, 294.
    34. Tatsumi, T.; Yuasa, Y.;Tominaga, H. Chem Commun, 1992, 1446.
    35. Jintoku, T.; Taniguchi, H.; Fujiwara, Y Chem Lett, 1987, 1865.
    36. Miyake, T.; Michiyuki, H.; Niwa, H.; Nishizuka, Motohiro, M. J. Mol. Catal. A: Chem. 1995, 178, 199.
    37. Miyake, T.; Hamada, M.; Sasaki, Y Appl Catal: A: General. 1995, 131, 33
    38. Ehrich, H.; Berndt, H.; Pohl, M.-M.; Jahnisch, K.; Baems, M. Appl Catal A: General, 2002, 230, 271.
    39. Masumotoa, Y-K.; Hamadab, R.; Yokota, K.; Nishiyama, S.; Tsuruya, S. J. Mol. Catal. A: Chem., 2002, 184, 215.
    40. Yamanaka, L; Nabeta, T.; Morimoto, K; Ootsuka, K. Reprint of First Symposium of Selective Oxidation Research Meeting (in Japanese), 1997, 13.
    41. Yamanaka, I.;Katagiri, S.;Otsuka, K. Stud.. Surf. Sci. Catal. 2000, 13, 809.
    42. Battistel, E.; Tassinari, R.; Fornaroli, M.; Bonoldi, L. J. Mol Catal A: Chem, 2003, 202,107.
    43. Chen, Y-W;. Lu, Y-H. Ind. Eng. Chem. Res. 1999, 38, 1893.
    44. Lemke, K.; Ehrich, H.; Lohse, U.; Berndt, H.; Jahnisch, K.Appl. Catal.A: General, 2003, 243, 41.
    45. Reis, P. M.; Silva, J.A. L.; Joao J.R.; Silva, F. A.; Pombeiro, J.L. J. Mol. Catal. A: Chem., 2004, 224, 189
    46. Jian, M.; Zhu, L.; Wang, J.; Li G.; Hu, C. J. Mol. Catal. A: Chem. 2006, 253,1
    47. Passoni, L.C.; Cruz, A.T.; Buffon, R.; Sehuehardt, U. J. Mol. Catal A: Chemical, 1997,120, 117.
    48. Nomiya, K.;Yagishita, K.;Nemoto, Y; Kamataki, T. A. J. Mol. Catal., 1997, 126,
    49. Nomiya, K.; Yangibayashi, H.;Nozaki, C.; Kondoh, K.; Hiramatni, E.; Shimizu,Y. J. Mol Catal. 1996. 114, 181.
    50. Nomiya, K.;Matsuoka, S.; Hasegawa, T.;Nemoto. Y J. Mol. Catal. A: Chem. 2000. 156, 143.
    51. Nomiya, K.;Nemoto, Y; Hasegawa, T.; Matsuoka, S. J. Mol. Catal. A: Chem. 2000. 152, 55
    52. Zhang, J.; Tang, Y.; Li, G-Y.; Hu, C.-H.Appl. Catal. A. 2005, 278. 251.
    53. 张进,唐英,罗茜,简敏,胡常伟,无机化学学报 2004, 20 (8), 935.
    54. 张进,唐英,谢家庆,胡常伟. 化学研究与应用
    55. Alekar, N. A.; Lidira, V ; Halligudi, S. B.; Srinivas, D.; Gohinathan, S.; Gopinathan, C. J. Mol. Catal. A: Chem. 2000, 164, 181.
    56. Koch, W.; Hoithausen, M. C. A Chemist’s Guide to Density Functional Theory, Second Edition, WILET-VCH. 2001.
    1. Thomas, L. H. Proc. Camb. Phil. Soc. 1927, 23, 542. ,
    2. Fermi, E. Rend. Accad. Lincei 1927, 6, 602.
    3. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
    4. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
    5. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988,37 , 785.
    6. Becke, A.D. J. Chem. Phys. 1993,98 , 5648
    7. Koch, W.; Hoithausen, M. C. A Chemist’s Guide to Density Functional Theory, Second Edition, WILET-VCH. 2002
    8. Spear, K.G. J. Phys. Chem. A 1997,101 ,6273.
    9. Ziegler, T. Can. J. Chem. 1995,73,743.
    10. Delley, B. J. Chem. Phys. 1990,92 ,508.
    11. Hamprecht, F.A.; Cohen, A. J.; Tozer, D.J.; Handy, N.C. J. Chem. Phys. 1998,109 , 6264.
    12. Jonas, V.; Thiel, W. J. Chem. Phys. 1995,102 ,8474.
    13. Jang, J.H.; Lee, J.G.; Lee, H.; Xie, Y.; Schaefer III, H.F. J. Chem. Phys. A 1998,102,5298.
    14. Jonas, V.; Thiel, W. J. Chem. Phys. 1996,105, 3636.
    15. Jonas, V.; Thiel, W. Organometallics 1998,17, 353.
    16. Szilagyi, R.K.; Frenking, G. Organometallics 1997;16 ; 4807.
    17. Field, M. J.; Bash, P. A. et.al. J. Comput. Chem. 1990, 11, 700
    18. Zhan, C. G.; Landry, D. W.; Omstein R. L. J. Am. Chem. Soc. 2000, 122 ,2621
    19. Chementi, E. Computational aspects of large Chemical Systems, Springer: Berlin, 1980
    20. Heard, G. L.; Yates, B. F. J. Comput. Chem. 1996, 17, 1444
    21. Vreven, T.; Morokuma, K. J. Chem. Phys. 2000, 113, 2969
    22. Cui, Q.; Karplus, M. J. Chem. Phys. 2000, 112, 1133
    23. Florian, J.; Warshel, A. J Phys. Chem. B 1997, 101, 5583
    24. Broo, A.; Pearl, G.; Zemer, M.C. J. Phys Chem. A 1997, 101, 2478
    25. Jung, Y.; Ho Choi, C. H.; Gordon, M. S. J. Phys. Chem. B 2001, 105, 4039
    26. Tomasi, J. Persico, M. Chem. Rev. 1994, 94, 2027
    27. Cramer, C. J.; Truhiar D. G. Chem. Rev. 1999, 99, 2161
    28. Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 1993, 2, 799
    29. Kim, H. J. J. Chem. Phys. 1996, 105, 6818
    30. Miertus S.; Tomasi J. Chem. Phys. 1982, 65, 239
    31. Cammi, R.; Tomasi, J. J. Comput. Chem. 1995, 16, 1449
    32. Cossi, M. Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327
    33. Yong, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, A John Wiley &Sons, Inc., Publication, 2001, 212
    34. Lówdin, P.O. Phys. Rev. 1955,97,1474
    35. Reed, A. E.; Curtiss, L.A.; Weinhold, F. Chem. Rev. 1988,88,899
    36. Alml?f, J.; Taylor, P.R. Adv. Quan. Chem. 1991,22,301
    37. Reed, A.E.; Weinstock, F.; Weinhold, F. J. Chem. Phys. 1985,83,735
    38. Foster, J.P.; Weinhold, F. J. Am. Chem. Soc. 1980,102,7211
    39. Reed, A.E.; Weinhold, F. J. Chem. Phys. 1983,78,4066
    40. Bader, R. F. W. Atoms in molecules: a Quantum Theory Clarendon Press, Oxford, New York, 1990.
    41. Collard, K.; Hall, G. G. Int. J. quantum Chem. 1977, 12, 623.
    42. Popelier, P. L. A. J. Phys. Chem. A 1999, 103, 2883
    43. Hansch, C.; Leo, A. Hoekman, D. Exploring QSAR; ACS professional reference book; American Chemical Society: Washington DC, 1995.
    44. Popelier, P. L. A. In molecular Similarity in Drug Design; Dean, P. M., Eds.; Chapman & Hall: London, 1995.
    45. Moos, W. H.; Green, G. D.; Pavia, M. R. Annu. Rep. Med. Chem. 1993, 28, 315
    46. Martin, E. J.; Spellmeyer, D. C.; Critchlow, R. E. Jr.; Blaney, J. M. Rev. Compl. Chem. 1997, 10
    47. Miguel A. B.; Evelio F. Phys. Rev. B 2001,63, 125103
    48. Silvi, B.; Savin, A. Nature 1994, 371, 683.
    49. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
    50. Savin, A.; Nesper, R.; Wengert, S.; Fa¨ssler, T. F. Angew. Chem.,Int. Ed. Engl. 1997, 36, 1809.
    51. Noury, S.; Silvi, B.; Gillespie, R. G.; Inorg. Chem. 2002, 41, 2164.
    52. Krokidis, X.; Noury, S.; Silvi, B. J. Phys. Chem. A 1997, 101, 7277.
    53. Krokidis, X.; Vuilleumier, R.; Borgis, D.; Silvi, B. Mol. Phys. 1999,96, 265.
    54. Krokidis, X.; Moriarty, N. W.; Lester, W. A., Jr.; Frenklach, M. Chem. Phys. Lett. 1999, 314, 534.
    55. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. TopMod Package; Paris, 1997.
    56. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Comput. Chem. 1999, 23, 597.
    57. Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352.
    58. Gorelsky, S. I.; Solomon, E. I., unpublished results.; Gorelsky, S. I., AOMix: Program for Molecular Orbital Analysis; York University: Toronto, Canada (http://www.sg-chem.net).
    59. Haddon, R. C. Tetrahedron 1972,28,3613.
    60. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc., 1996,118,6317.
    61. Neese, F. ORCA Version 2.4-45, Max Planck Institute for Bioinorganic Chemistry, D-45470 Muelheim/Ruhr,Germany,2005,neese@mpi-muelheim.mpg.de.
    62. Neese, F. Application of EPR Parameter Calculations in Bioinorganic Chemistry. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, 2004, pp 581-591.
    63. Neese, F.; Munzarova, M.L. Historical Aspects of EPR Parameter Calculations. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, 2004, pp21-32.
    64. Wüllen, V. J. Chem. Phys. 1998,109, 392
    1. Manivannan, V.; Goodenough, J. B. Inorg. Chem. 1998, 37, 3448.
    2. Manivannan, V.; Goodenough, J. B. Mater. Res. Bull. 1998, 33,1353.
    3. Fattah, A.; Mazer, J.; Wells, C. F. J. Chem. Soc., Dalton Trans. 1980,1532.
    4. Johnson, M.; Hornstein, B. Inorg. Chem. 2003, 42, 6923.
    5. Kumasaki, M. J. Hazar. Mater. 2004,115,57.
    6. Alluisetti, G. E.; Almaraz, A. E.; Amorebieta, V. T.; Doctorovich, F.; Olabe, J. A. J. Am. Chem. Soc. 2004,126, 13432. And cited in here
    7. Jian, M.; Zhu L.; Wang, J.; Zhang, J.; Li G.; Hu, C. J. Mol. Catal. A: Chem. 2006, 253, 1
    8. O′Donnell, S.E.; Michael, T.P. J. Chem. Soc. Dalton Trans. 1976, 2290.
    9. Pope, M.T.; Dale, B.W. Quart Rev. 1968, 22, 527.
    10. Ruud, K.; Helgaker, T.; Uggerud, E. J. Mol. Struc. (THEOCHEM.) 1997, 393, 59.
    11. Schr?der, D.; Shaik, S.; Schwarz, H. Acc. Chem. Res. 2000, 33, 139.
    12. Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315.
    13. Armentrout, P. B. Science 1991, 251, 175.
    14. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    15. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
    16. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
    17. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. J. Chem. Phys. 1980, 72, 650.
    18. McLean, A.D.; Chandler, G.S. J. Chem. Phys. 1980, 72, 5639.
    19. Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.
    20. Hay, P. J. J. Chem. Phys. 1977,66, 4377.
    21. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91,1062.
    22. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
    23. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
    24. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    25. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Ver. 3.1, 1997
    26. Seeger, R.; Pople, J. A. J. Chem. Phys. 1977, 66, 3045 .
    27. Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047.
    28. Schlegel, H. B.; McDouall, J. J. in Computational Advances in Organic Chemistry, Ed. Ogretir, C.; Csizmadia, I. G., Kluwer Academic, The Netherlands, 1991, pp167-185.
    29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. ; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar,S. S.; Tomasi, J. ; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,T.; Honda,Y.; Kitao,O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003
    30. Silvi, B.; Savin, A. Nature 1994, 371, 683.
    31. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
    32. Savin, A.; Nesper, R.; Wengert, S.; Fa?ssler, T. F. Angew. Chem.,Int. Ed. Engl. 1997, 36, 1809.
    33. Noury, S.; Silvi, B.; Gillespie, R. G.; Inorg. Chem. 2002, 41, 2164.
    34. Krokidis, X.; Noury, S.; Silvi, B. J. Phys. Chem. A 1997, 101, 7277.
    35. Krokidis, X.; Vuilleumier, R.; Borgis, D.; Silvi, B. Mol. Phys. 1999,96, 265.
    36. Krokidis, X.; Moriarty, N. W.; Lester, W. A., Jr.; Frenklach, M. Chem. Phys. Lett. 1999, 314, 534.
    37. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. TopMod Package; Paris, 1997.
    38. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Comput. Chem. 1999, 23, 597.
    39. Dixon, D. A.; Francisco, J. S.; Alexeev, Y. J. Phys. Chem. A 2006, 110, 185.
    40. Soto, M. R.; Page, M.; McKee, M. L. Chem. Phys. Lett. 1991, 187,335.
    41. Sumathi, R.; Sengupta, D.; Nguyen, M. T. J. Phys. Chem. A 1998, 102, 3175.
    42. Dixon, D. A.; Francisco, J. S.; Alexeev, Y. J. Phys. Chem. A 2006, 110,185.
    43. The energetic pattern of those pathways originating from species s-3, s-4 and t-3 are similar to that of s-2 and t-2. However, CP2 and CP3 locating on PES open the possibility for an intersystem crossing to take place. CP2 and CP3 locate in the entrance channel so it is kinetically relevant. Please refer to the supporting information of “Tang D.; Zhu L.; Qin, S.; Su, Z.; Hu C. J. Mol. Struct. (Theochem) 2007,805,143”(http://www.sciencedirect.com)
    44. The energy gap between t-2 and s-5 is smaller than the error of B3LYP functional. Therefore, the crossing point may locate in the domain (Figure 3.7) that is following hydrogen transfer step.
    45. Gracia L.; Andres, J.; Safont, V.S.; Beltran, A. Organometallics 2004,23,730.
    46. Koyanagi, G. K.; Bohme, D. K.; Kretzschmar, I.; Schr?der, D.; Schwarz, H. J. Phys. Chem. A 2001,105,4259.
    47. Ricca, A.; Bauschlicher, C. W. J. Phys. Chem. A 1997, 101, 8949.
    48. Bengtsson, Gosta Acta Chem. Scan. (1947-1973) 1973,27, 3053.
    49. Pilipenko, A. T.; Karpova, O. I.; Lukachina, V. V.; Trachevskii, V. V. Zhurnal Analiticheskoi Khimii 1972, 27, 78.
    50. Benes, R.; Novak, J. Collect. of Czechoslovak Chem. Comm. 1970, 5, 3788.
    51. Ramababu, G.; Rao, P. V. Subba; Ramakrishna, K.; Syamala, P.; Satyanarayana, A. J. Ind. Chem. Soc. 2001, 78, 237.
    52. Bader, R. F. W. Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry 22; Oxford University Press: Oxford, England, 1990.
    53. Biegler-K?nig, F.; Sch?nbohm, J.; Derdau, R.; Bayles, D.; Bader, R. F. W. AIM 2000, Ver. 1.0; McMaster University: Hamilton, Canada, 2000.
    54. Krokidis, X.; Goncalves, V.; Savin, A.; Silvi, B. J. Phys. Chem. A 1998, 102, 5065.
    55. Chiodo, S.; Kondakova, O.; Michelini, M. C.; Russo, N.; Sicilia, E. Inorg. Chem. 2003, 42, 8773.
    1. Thomas, B.R.; William, T. Science 1999,284, 1477.
    2. Schmerling, L. US Patent 2948 755(1960).
    3. Squire, E.N.; Mills, G. U.S. Patent 3919 155 (1975) and 3929 889 (1975).
    4. Delpesco, T.W.; Wilmington, U.S. Patent 4031 106 (1977).
    5. Hara, K. J.P. Patent 6 293 715 (1994).
    6. Axon, S.A.; Jackson, S.D. Claes, P.R.R. PCT WO 9 910 311 (1999).
    7. Durante, V.A. ; Wijeskera, T.P. US patent 5 861 536 (1999).
    8. Stitt, H.E.; Jackson, S.D. PCT WO 0 009 473 (2000).
    9. Becker, J.; H?lderich, W.F. Catal. Lett. 1998,54 , 125.
    10. Hǒlderich, W.; Becker, J. DE patent 19 634 110 (1998).
    11. Poojary, D.; Borade, R.; Hagemeyer, A.; Dube, C.; Zhou, Z.P.; Nothels, U.; Armbrust, R.; Rasp, C. PCT World patent application WO 00 069 804 (2000).
    12. Hagemeyer, A.; Borade, R. ; Desrosiers, P.; Guan, S.; Lowe, D.M.; Poojary, D.M.; Turner, H.; Weinberg, H.; Zhou, X.P.; Armbrust, R.; Fengler, G.; Notheis, U. Appl. Catal. A 2002 ,227, 43.
    13. Desrosiers, P.; Guan, S. H.; Hagemeyer, A.; Lowe, D.M.; Lugmair, C.; Poojary, D.M.; Turner, H.; Weinberg, H.; Zhou, X.P.; Armbrust, R.; Fengler, G.; Notheis, U. Catal. Today 2003 ,81, 319.
    14. Kuznetsova, N.I.; Kuznetsova, L.I.; Detusheva, L.G. ; Likholobov, V.A.; Pez, G.P.; Cheng, H. J. Mol. Catal. A: Chem 2000,161,1.
    15. Zhu, L.; Guo, B.; Tang, D.; Hu, X.; Li, G.; Hu, C. J. Catal. 2007,245,446
    16. Tang, D.; Zhu, L.; Qin, S.; Hu, C. J. Mol. Struct. (Theochem) 2007,805,143
    17. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
    19. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
    20. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. J. Chem. Phys. 1980, 72, 650.
    21. McLean, A.D.; Chandler, G.S. J. Chem. Phys. 1980, 72, 5639.
    22. Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.
    23. Hay, P. J. J. Chem. Phys. 1977,66, 4377.
    24. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91,1062.
    25. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
    26. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
    27. Seeger, R.; Pople, J. A. J. Chem. Phys. 1977, 66, 3045 .
    28. Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047.
    29. Schlegel, H. B.; McDouall, J. J. in Computational Advances in Organic Chemistry, Ed. Ogretir, C.; Csizmadia, I. G., Kluwer Academic, The Netherlands, 1991, pp167-185.
    30. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002,117,43.
    31. Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210
    32. Baik, M. H.; Friesner, R. A. J. Phys. Chem. 2002,106,7407.
    33. Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. J. Am. Chem. Soc. 2006,128,278-290
    34. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    35. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Ver. 3.1, 1997
    36. McWeeny, R. Phys. Rev. 1962,126,1028.
    37. Ditchfield, R. Mol. Phys. 1974,27,789.
    38. Dodds, J. L.; McWeeny, R.; Sadlej, A. J. Mol. Phys. 1980, 41, 1419.
    39. Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990,112,8251.
    40. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. v. E. J. Am. Chem. Soc. 1996,118,6317.
    41. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; et al. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    42. Wachters, A. J. H. J. Chem. Phys. 1970,52, 1033.
    43. Wachters, A. J. H. IBM Tech. Rept. 1969, RJ584.
    44. Bauschlicher, C. W.; Langhoff, Jr. S. R.; Barnes, L. A. J. Chem. Phys. 1989,91, 2399.
    45. Schaefer, A.; Horn H.; Ahlrichs, R. J. Chem. Phys. 1992,97, 2571.
    46. Ahlrichs, R. and coworkers, unpublished
    47. Kutzelnigg, W.; Fleischer, U.; Schindler, M. The IGLO-Method: Ab Initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities, Springer-Verlag, Heidelberg, 1990, vol. 23.
    48. Neese, F. ORCA Version 2.4-45, Max Planck Institute for Bioinorganic Chemistry,D-45470 Muelheim/Ruhr,Germany,2005,neese@mpi-muelheim.mpg.de.
    49. Neese, F. J. Chem. Phys., 2005,122,034107/1.
    50. Neese, F. J. Chem. Phys. 2003,117,3939.
    51. Neese, F. J. Chem. Phys., 2001,115,11080.
    52. Neese, F. Application of EPR Parameter Calculations in Bioinorganic Chemistry. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, 2004, pp 581-591.
    53. Neese, F.; Munzarova, M.L. Historical Aspects of EPR Parameter Calculations. In: Kaupp, M.; Bühl, M.; Malkin, V. (Eds) Calculation of NMR and EPR Parameters. Theory and Applications. Wiley-VCH, 2004, pp21-32.
    54. Wüllen, V. J. Chem. Phys. 1998,109, 392
    55. Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001,635,187.
    56. Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis; YorkUniversity: Toronto, Canada, 1997; http://www.sg-chem.net/
    57. Mulliken, R. S. J. Chem. Phys. 1955,23,1833
    58. Mulliken, R. S. J. Chem. Phys. 1955,23, 1841.
    59. Mulliken, R. S. J. Chem. Phys. 1955,23, 2338.
    60. Mulliken, R. S. J. Chem. Phys. 1955,23, 2343.
    61. Dapprich, S.; Frenking, G. J. Phys. Chem. 1995,99, 9352.
    62. Frenking, G.; Fr?hlich, N. Chem. Rev. 2000, 100 ,717.
    63. Although the sign was not determined experimentally, the comparison of value of A-tensor is meaningful.
    64. The π2 and π3 orbitals of benzene are degenerate with the same molecular orbital energy. In the external field, they spit into different energy. Therefore, the π2 orbital in Figures 7a~c is not in same energy order.
    65. Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.
    66. Bickelhaupt, F. M. J. Comput. Chem. 1999, 20, 114.
    1. Nomiya, K.; Yangibayashi, H.; Nozaki, C.; Kondoh, K.; Hiramatru, E.; Shimizu,Y. J. Mol Catal. 1996, 114, 181.
    2. Miyake, T.; Hamada, M.; Sasaki, Y. Appl. Catal. A: General. 1995, 131, 33
    3. Yamanaka. I.;Nabeta. T.; Morimoto, K.;Ootsuka, K. Reprint of First Symposium of Selective Oxidation Research Meeting (in Japanese), 1997, 13.
    4. Yamanaka. I.; Katagiri, S.; Otsuka, K. Stud. Surf. Sci. Catal. 2000,13, 809
    5. Lemke, K.; Ehrich, H.; Lohse, U.; Berndt, H.; J?hnisch, K. Appl. Catal.A: General, 2003,243, 41.
    6. Reis, P. M.; Silva, J.A. L.; Joao J.R.; Silva, F. A.; Pombeiro, J.L. J. Mol. Catal. A: Chem. 2004, 224, 189.
    7. Alekar, N. A.; Indira, V.; Halligudi, S. B.;Srinivas, D.; Gohinathan, S.; Gopinathan. C. J. Mol. Catal. A: Chem. 2000, 164, 181.
    8. Lee, C. W.; Lee, W. J.; Park, Y. K.: Park, S.E. Catalysis Today 2000, 61, 137
    9. Nomiya, K.; Nemolo, Y.; Hasegawa, T.; Matsuoka, S. J. Mol. Catal. A: Chem. 2000, 152,55
    10. Passoni, L. C.; Cruz. A.T.; Buffon, R.; Schuchardt, U. J. Mol. Catal. A: Chem. 1997, 120,117.
    11. Arvulescul, V. P.; Anastasescul, C.; Su, B. L. J. Mol. Catal. A: Chem. 2003, 198, 249
    12. Zhang, J.; Tang, Y. Li, G.;Hu. C. Appl. Catal. A: Gen. 2005, 278, 251.
    13. Jian, M.; Zhu, L.; Wang, J.; Li G.; Hu, C. J. Mol. Catal. A: Chem. 2006, 253,1
    14. Bortolini, O.; Conte, V. J. Inorg. Biochem. 2005, 99, 1549
    15. Conte, V.; Di Furia, F.; Licini, G. Appl. Catal. A. 1997, 157, 335;
    16. Bortolini, O.; Di Furia, F.; Scrimin, P.; Modena, G. J. Mol. Catal. 1980, 7, 59
    17. 王金月 四川大学博士学位论文,(双帽及钒取代α-Keggin 型[XM12O40(YO)2]m-和[PVnMo12-nO40](3+n)-杂多阴离子的理论研究),2006.
    18. Becke, A. D. J. Chem. Phys. 1993 ,98,5648.
    19. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998,37,785.
    20. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989,157, 200.
    21. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. J. Chem. Phys. 1980, 72, 650.
    22. McLean, A.D.; Chandler, G.S. J. Chem. Phys. 1980,72,5639.
    23. Wachters, A. J. H. J. Chem. Phys. 1970,52,1033.
    24. Hay, P. J. J. Chem. Phys. 1977,66,4377
    25. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989,91,1062
    26. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989,90,2154.
    27. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
    28. Seeger, R.; Pople, J. A. J. Chem. Phys. 1977,66,3045.
    29. Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996,104,9047.
    30. Schlegel, H. B.; McDouall, J. J. in Computational Advances in Organic Chemistry, Ed. Ogretir, C.; Csizmadia, I. G. (Kluwer Academic, The Netherlands, 1991) 167-185.
    31. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002,117,43.
    32. Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210
    33. Baik, M. H.; Friesner, R. A. J. Phys. Chem. 2002,106,7407.
    34. Gorelsky, S. I.; Ghosh, S. ; Solomon, E. I. J. Am. Chem. Soc. 2006,128,278-290
    35. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys., 1985, 83, 735-746.
    36. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Ver. 3.1
    37. Schleyer, P. v. R.; Maerker; C.; Dransfeld, A.; Jiao, H.; Hommes, N. v. E. J. Am. Chem. Soc. 1996,118,6317.
    38. Frisch, M. J.; Trucks,G. W.; Schlegel,H. B.; Scuseria,G. E.; Robb,M. A.; Cheeseman, J. R. ;et al. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003
    39. After correlation of the errors of B3LYP and IEF-PCM methods, the free energy barrier may be smaller than 25 kcal/mol。
    1. Frohning, C.D.; Kohlpaintner, C.W. Hydroformylation (oxo synthesis, Roelen reaction), in: Cornils, B.; Herrmann (Eds.), W.A. Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, New York, 1996.
    2. Agbossou, F.; Carpentier, J. F.; Mortreux, A. Chem. Rev. 1995, 95, 2485-2506.
    3. Breit,B.; Seiche, W. Synthesis 2001,1-36.
    4. Dickson, R. S.; Simone, T. D.; Campi, E. M.; Jackson, W. R. Inorg. Chim. Acta 1994, 220,187-192.
    5. Coutinho, K. J.; Dickson, R. S.; Fallon, G. D.; Jackson, W. R. Simone, T. D.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton Trans. 1997, 3193-3199.
    6. Dickson, R. S.; Bowen, J.; Campi, E. M.; Jackson, W. R.; Jonasson, C. A. M.; McGrath, F. J.; Paslow, D. J.; Polas, A.; Renton, P.;Gladiali, S. J. Mol. Catal. A: Chem. 1999, 150,133-146.
    7. Rida, M. A.; Smith, A. K.; J. Mol. Catal. A: Chem. 2003, 202, 87-95.
    8. Baricelli, P.J.; López-Linares, F.; Bruss, A.; Santos, R.; Lujano, E.; Sánchez-Delgado, R.A. J. Mol. Catal. A: Chem. 2005, 239, 130-137.
    9. Ungváry, F. Coord. Chem. Rev. 2005, 249, 2946-2961.
    10. Gladiali, S.; Pinna, L.; Arena, C. G.; Rotondo, F. Faraone J. Mol. Catal. 1991,66,183-190.
    11. Broussard, M. E.; Juma, B.; Train, S. G.; Peng, W.-J.; Laneman, S. A.; Stanely, G. G.; Science, 1993,260,1784-1788.
    12. Evans, D.; Yagupsky, G.; Wilkinson, G. J. Chem. Soc. A 1968, 2660-2665.
    13. Evans, D.; Yagupsky, G.; Wilkinson, G. J. Chem. Soc. A 1968, 2665-2671.
    14. Evans, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. A 1968, 3133-3142.
    15. Torrent, M.; Sola, M.; Frenking, G. Chem. Rev. 2000, 100, 439-493.
    16. Gleich, D.; Schmid, R.; Herrmann, W. A. Organometallics 1998, 17, 4828- 4834.
    17. Rocha, W. R.; de Almeida, W. B. Int. J. Quantum Chem. 2000, 78, 42-51.
    18. Carbó, J. J.; Maseras, F.; Bo, C.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2001, 123, 7630-7637.
    19. Decker, S. A.; Cundari, T. A. J. Organomet. Chem. 2001, 635, 132-141.
    20. Alagona, G.; Ghio, C.; Lazzaroni, R.; Settambolo, R. Organometallics 2001, 20, 5394-5404.
    21. Gleich, D.; Schmid, R.; Herrmann, W. A. Organometallics 1998, 17, 2141-2143.
    22. Gleich, D.; Herrmann, W. A. Organometallics 1999, 18, 4354-4361.
    23. Paciello, R.; Siggel, L.; R?per, M. Angew. Chem. 1999, 111, 2045-2048; Angew. Chem. Int. Ed. 1999, 38, 1920-1921.
    24. Paciello, R.; Siggel, L.; Kneuper, H.-J.; Walker, N.; R?per, M. J. Mol. Catal. A: Chem. 1999,143, 85-97.
    25. Schmid, R.; Herrmann, W. A.; Frenking, G. Organometallics 1997, 16,701-708.
    26. Matsubara, T.; Koga, N.; Ding, Y.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1065- 1078.
    27. Gleich, D. in Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 2 (Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH,Weinheim, 2002, pp.727-737.
    28. Decker, S. A.; Cundari, T. R. Organometallics 2001, 20, 2827-2841.
    29. Decker, S. A.; Cundari, T. R. New J. Chem. 2002, 26, 129-135.
    30. Landis, C. R.; Uddin,J. J. Chem. Soc. Dalton Trans. 2002, 729-742.
    31. Svensson, M.; Humbel, S.; Fr?se, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357-19363.
    32. Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580-10594.
    33. Gleich, D.; Hutter, J. Chem. Eur. J. 2004, 10, 2435-2444.
    34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; et al. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    35. Becke, A. D. J. Chem. Phys.1993, 98, 5648-5652.
    36. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785-789.
    37. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-205.
    38. Hay P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
    39. Wadt W. R.; Hay, P. J. J. Chem. Phys.1985, 82, 284-299.
    40. Hay P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.
    41. Ehlers, A. W.; Dapprich, B. S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phy. Lett. 1993, 208, 111-114.
    42. Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111-8116.
    43. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728.
    44. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
    45. Hariharan P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209-214.
    46. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163-168.
    47. Hariharan P. C.; Pople, J. A. Theo. Chim. Acta 1973, 28, 213-222.
    48. Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016-5021.
    49. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.;Gordon, M. S. J. Chem. Phys. 1982, 77, 3654 –3655.
    50. Binning Jr. R. C.; Curtiss, L. A. J. Comp. Chem. 1990, 11, 1206-1209.
    51. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223-1229.
    52. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comp. Chem. 2001, 22, 976–984.
    53. Schaftenaar, G.; Noordik, J. H. J. Comput.-Aided Mol. Design, 2000, 14, 123-134.
    54. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
    55. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43-54.
    56. Sakaki, S.; Ikei, M. J. Am. Chem. Soc. 1991, 113, 5063-5065.
    57. Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1993, 115, 6883-6892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700