纳米级多孔二氧化钛空心球的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,纳米材料以其特殊的结构和在光、电、磁、化学等方面优异的性能吸引了越来越多研究者的目光。特别的,纳米二氧化钛材料已经被广泛应用于许多领域当中,包括化学工业、电子工业、环境保护、化妆品工业以及医药科学等等。为了改进二氧化钛材料的性能,包括纳米颗粒、纳米管、纳米棒、纳米球等多种形貌已经研制成功。空心结构材料作为一种新型材料,具有很多实心材料所不具备的优势,例如:高比表面积、低密度、优异的传输渗透性、强烈的光捕捉能力等。因此,空心结构金属氧化物材料的制备已经成为了广大材料科研人员新的课题。目前为止,虽然,采用不同方法已经制备出了许多类型的二氧化钛空心球材料,但是存在工艺流程复杂、产品质量有待提高等问题。本论文利用水热法开展了纳米级多孔TiO2空心球材料的制备,并对其结构、形貌、性能进行了表征和研究。主要工作如下:
     1、利用钛酸四丁酯作为前驱体,经水解后,在乙醇为溶剂热反应介质、碳酸氢铵为结构辅助剂的条件下,成功合成了纳米TiO2多孔空心球,并利用SEM、TEM、XDR和BET等材料分析方法对产物进行了表征。结果表明,所得产物为锐钛矿型二氧化钛,球径和壁厚分别约为100mm、20nm,形貌均匀,分散性较好。
     2、系统研究了反应时间、反应温度和不同结构辅助剂等参数对产物的影响,提出了气泡模板辅助的Ostwald熟化法制备空心结构的形成机理。该合成方法实验过程简单,无需去除模板,且无环境污染,是一种相对简捷环保的途径。
     3、对产物的光学特性、光催化活性、吸附性以及气敏性等进行了基础性能研究,以期在相关领域得到充分的利用。研究表明,Ti02空心球样品对有机染料具有极强的吸附性,并可以敏锐的感应到甲醛气体,具有良好的气敏性能。
In recent decades, nanostructured materials have attracted much attention due to their special structure and excellent properties in optics, electrics, magnetics, chemistry, etc. Particularly, nanostructured titanium dioxide (TiO2) has been applied widely in many fields, such as chemical industry, electronic industry, environmental protection, cosmetics industry, medical science and so on. In order to improve the materials performance, nanostructured TiO2 with various morphologies, including particles, tubes, rods and spheres, has been investigated and fabricated successfully. Hollow structure material, as a newfashioned kind of materials, exhibits broad application prospect, because of its higher specific surface area, lower density, greater delivering ability, better permeation and stronger light-harvesting capacity compared to solid ones. Accordingly, the synthesis of hollow structure metal oxide has been the researchers'new subject. Up to now, many kinds of TiO2 hollow spheres were fabricated by different methods. However, there are still some problems in the technological process and product quality. In this paper, nano TiO2 hollow spheres material was prepared through a hydrothermal method, and the structure, morphology, properties of the products were characterized and researched. The main tasks are as follows:
     1. Nano TiO2 hollow spheres were obtained successfully in the ethanol solvothermal medium using tetrabutyl titanate and ammonium bicarbonate as reactants. XRD, SEM, TEM and BET were employed to characterize the as-synthesized TiO2 hollow spheres. The results showed that the products are anatase phase and has uniform morphology and good dispersion with average diameter of 100 nm and shell thickness of 20 nm.
     2. The effect of reaction time, temperature, and assistant agent on the phase and structure of the product were studied. A bubble-assist Ostwald ripening mechanism was proposed to explain the formation mechanism of porous TiO2 hollow spheres. This approach employs bubbles generated in situ as template combined with Ostwald ripening process, which is considered as a green and simple route to prepare hollow spheres.
     3. The optical property, photocatalysis activity, adsorbability and gas sensitivity of the products were researched, expecting to apply them in related fields. The results showed that the TiO2 hollow sphere samples exhibit very intense adsorption for organic dyestuff, and have a good behavior in gas sensitivity for methanal.
引文
[1]Pearton S J, Norton D P, Ip K, et al. Recent Progress in Processing and Properties of ZnO[J]. Superlattices Microstruct.,2003,34:3-32
    [2]Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional Nanostructures Synthesis, Characterization, and Applications [J]. Adv. Mater.,2003,15:353-389
    [3]Ni M, Leung M K H, Leung D Y C, et al. A Review and Recent Developments in Photocatalytic Water-splitting Using TiO2 for Hydrogen Production[J]. Renew. Sust. Energ. Rev.,2007,11:401-425.
    [4]Chen X B, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.,2007,107:2891-2959
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [6]Lijima S. Helicalmicrotubules of Graphitic Carbon[J]. Nature,1991,354:56258-56260
    [7]张立德,牟季美.纳米结构自组装和分子自组装体系[J].物理,1999,28:22-23
    [8]Chen I H, Wang C C, Chen C Y. Synthesis of Mono-disperse Hollow Nickel Spheres with A Double Shell Structure Using Poly(methyl methacrylate) as aTemplate[J]. Scripta Mater.,2008,58:37-40
    [9]Duan S M, Wu Q S, Jia R P, et al. Synthesis of CdS Hollow/Solid Nanospheres and Their Chain-structures by Membrane Technique[J]. J. Nano. Res.,2008,10:525-529
    [10]Kartsonakis I A, Liatsi P, Daniilidis I, et al. Synthesis, Characterization, and Antibacterial Action of Hollow Ceria Nanospheres with/without a Conductive Polymer Coating[J]. J. Am. Ceram. Soc.,2008,91:372-378
    [11]Kartsonakis I A, Liatsi P, Danilidis I, et al. Synthesis, Characterization and Antibacterial Action of Hollow Titania Spheres[J]. J. Phys. Chem. Solids,2008,69:214-221
    [12]Li P, Zeng C F, Zhang L X, et al. Hydrothermal Synthesis of TiO2 Hollow Spheres Using Rapeseed Pollen Grains as Template[J]. J. Inorg. Mater.,2008,23:49-54
    [13]Liu X Y, Xi G C, Liu Y K, et al. Selected Synthesis of CuS Nanotubes and Hollow Nanospheres at Room Temperature[J]. J. Nanosci. Nanotech.,2007,7:4501-4507
    [14]Luo Y Y, Duan G T, Ye M, et al. Poly(ethylene glycol)-mediated Synthesis of Hollow ZnS Microspheres[J]. J. Phys. Chem.C,2008,112:2349-2352 Ye L, Guo W, Yang Y, et al. Directing the Architecture of Various MoS2 Hierarchical
    [15]Hollow Cages through the Controllable Synthesis of Surfactant/Molybdate Composite Precursors[J]. Chem. Mater.,2007,19:6331-6337
    [16]Zhao P T, Wang J M, Chen G E, et al. Hydrothermal Synthesis of PbS Hollow Spheres with Single Crystal-like Electron Diffraction Patterns[J]. J.Nanosci. Nanotech.,2008,8: 379-385
    [17]Zhao Q R, Gao Y, Bai X, et al. Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts[J]. Eur. J. Inorg. Chem.,2006,8: 1643-1648
    [18]Wang J X, Wen L X, Wang Z H, et al. Immobilization of Silver on Hollow Silica Nanospheres and Nanotubes and Their Antibacterial Effects[J]. Mate. Chem. Phys.,2006, 96:90-97
    [19]Song C Y, Wang C L, Zhu H Y, et al. Preparation, Characterization and Catalytic Activity
    for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts[J]. Catal. Lett., 2008,120:215-220
    [20]Xu C W,Hu Y H, Rong J H, et al. Ni Hollow Spheres as Catalysts for Methanol and Ethanol Electrooxidation[J]. Electrochem. Commun.,2007,9:2009-2012
    [21]Zhou P, Li Y G, Sun P P, et al. A Novel Heck Reaction Catalyzed by Co Hollow Nanospheres in Ligand-free Condition[J]. Chem. Commun.,2007,14:1418-1420
    [22]Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and Gamma-Fe2O3:Preparation and Potential Application in Drug Delivery[J]. J. Phys. Chem. C,2008,112:1851-1856
    [23]Zhou J, Wu W, Caruntu D, et al. Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application[J]. J. Phys. Chem. C,2007,111: 17473-17477
    [24]Wu W, DeCoster M A, Daniel B M, et al. One-step Synthesis of Magnetic Hollow Silica and Their Application for Nanomedicine[J]. J. Appl. Phys.,2006,99:104-106
    [25]Feng Z Q, Wang Z P, Gao C Y, et al. Template Polymerization to Fabricate Hydrogen-bonded Poly(acrylicacid)/Poly(vinylpyrrolidone) Hollow Microcapsules with a pH-mediated Swelling-deswelling Property[J]. Chem. Mater.,2007,19:4648-4657
    [26]Fuchigami K, Taguchi Y, Tanaka M. Preparation of Hemispherical Hollow Silica Microcapsules with Different Affinity Surface by Using Spherical Vaterite Calcium Carbonate as Template. Polym[J]. Adv. Tech.,2007,18:946-952
    [27]Yu H G, Yu J G, Liu S W, et al. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres[J]. Chem. Mater.,2007,19:4327-4334
    [28]Titirici M M, Antonietti M, Thomas A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach[J]. Chem. Mater.,2006,18:3808-3812
    [29]Geng J, Zhu J J, Lu D J, et al. Hollow PbWO4 Nanospindles via a Facile Sonochemical Route[J]. Inorg. Chem.,2006,45:8403-8407
    [30]Wang S F, Gu F, Lu M K. Sonochemical Synthesis of Hollow PbS Nanospheres[J]. Langmuir,2006,22:398-401
    [31]Dhas N A, Suslick K. S. Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals[J]. J. Am. Chem. Soc.,2005,127:2368-2369
    [32]Zhu J J, Xu S, Wang H, et al. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies via an In-situ Template Route[J]. Adv. Mater.,2003,15:156-159
    [33]Jossen R, Pratsinis S E, Stark W J, et al. Criteria for Flame-spray Synthesis of Hollow, Shell-like, or Inhomogeneous Oxides[J]. J. Am. Ceram. Soc.,2005,88:1388-1393
    [34]Chung Y S, Lim J S, Park S B, et al. Templated Synthesis of Silica Hollow Particles by Using Spray Pyrolysis[J]. J. Chem. Engin. Japan.,2004,37:1099-1104
    [35]Slawinski G W, Zamborini F P. Synthesis and Alignment of Silver Nanorods and Nanowires and the Formation of Pt, Pd, and Core/Shell Structures by Galvanic Exchange Directly on Surfaces[J]. Langmuir,2007,23:10357-10365
    [36]Chen J Y, Wiley B, McLellan J, et al. Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions[J]. Nano Letters,2005,5:2058-2062
    [37]Kou H M, Wang J, Pan Y B, et al. Fabrication of Hollow ZnO Microsphere with Zinc Powder Precursor [J]. Mater. Chem. Phys.,2006,99:325-328
    [38]Shen G Z, Bando Y, Lee C J. Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process[J]. J. Phys. Chem. B,2005,109:10578-10583
    [39]Li G Q, Liu C Y, Liu Y. Facile Fabrication of Hollow Mono-dispersed TiO2 Spheres in an Aqueous Solution[J]. J. Am. Ceram. Soc.,2007,90:2667-2669
    [40]Li X X, Xiong Y J, Li Z Q, et al. Large-scale Fabrication of TiO2 Hierarchical Hollow Spheres[J]. Inorg. Chem.,2006,45:3493-3495
    [41]Li Y T, Song C H, Hu Y Z, et al. Facile Template-free Alcohothermal Route to Synthesize Hollow TiO2 Microspheres with Nanocrystal Grain Structure[J]. Chem. Lett.,2006,35: 1344-1345
    [42]Dai Z H, Zhang J, Bao J C, et al. Facile Synthesis of High-quality Nano-sized CdS Hollow Spheres and Their Application in Electrogenerated Chemiluminescence Sensing[J]. J.Mater. Chem.,2007,17:1087-1093
    [43]Ma Y R, Qi L M, Ma J M, et al. Synthesis of Submicrometer-sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer[J]. Langmuir,2003,19:9079-9085
    [44]Zhu L P, Wu X Y, Lin Y S, et al. The Preparation of ZrO2 Hollow Spheres with Poly-(styrene-acrylic acid) Latex Particle Loaded Carboxylic Acid as Template[J]. Rare Metal Mater. Engin.,2005,34:344-347
    [45]Cheng X J, Chen M, Wu L M, et al. A Novel and Facile Preparation Method of Hollow Silica Spheres Containing Small SiO2 Cores[J]. J. Polym. Sci. Part A:Polym. Chem., 2007,45:3431-3439
    [46]Xu L M, Wang J X, Wen L X, et al. Fabrication and Characterization of Ag-SiO2 Composite Hollow Nanospheres[J]. J. Mater. Sci.,2006,41:517-523
    [47]Wang W H, Zhao B, Li P, et al. Fabrication and Characterization of Pd/Ag Alloy Hollow Spheres by the Solvothermal Method[J]. J. Nanoparticle Res.,2008,10:543-548
    [48]Zhang J H, Zhan P, Liu H Y, et al. A Facile Colloidal Templating Method to Monodisperse Hollow Ag and Ag/Au Submicrometer Spheres[J]. Mater. Lett.,2006,60: 280-283
    [49]Vainshtein B K, Fridkin W M, Indenbom V L. Structure of Crystals[M]. Berlin: Macmillan India Ltd,1994
    [50]Buchanan R C, Park, Taeun. Materials Crystal Chemistry[M]. New York:Marcel Dekker, Inc.,1997
    [51]姜月顺.光化学[M].北京:化学工业出版社,2005
    [52]熊家林,贡长生,张克立.无机精细化学品的制备和应用[M].北京:化学工业出版社,1999
    [53]O'Regan B, Gratzel M. Low-cost High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature.1991,353,737-740
    [54]Gregory B R, Alexiadis A, Hossain M M, et al. First principle modeling. Scaling laws and design of structured photocatalytic oxidation reactors for air purification[J]. Catalysis Today,2001,69:41-49
    [55]Gao L, Li Q, Song Z, et al. Preparation of Nano-scale Titania Thick Film and Its Oxygen Sensitivity[J]. Sensors and Actuators B,2000,71:179-183
    [56]Zhao Y B, Chen T T, Zou J H, et al. Fabrication and Characterization of Monodisperse Zinc Sulfide Hollow Spheres by Gamma-ray Irradiation Using PSMA Spheres as Templates[J]. J. Cryst. Growth,2005,275:521-527
    [57]Caruso R A, Susha A, Caruso F. Multilayered Titania, Silica, and Laponite Nanoparticle
    Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres[J]. Chem. Mater.,2001,13:400-409
    [58]Kawahashi N, Shiho H. Copper and Copper Compounds as Coatings on Polystyrene Particles and as Hollow Spheres[J]. J. Mater. Chem.,2000,10:2294-2297
    [59]Mandal T K, Fleming M S, Walt D R. Production of Hollow Polymeric Microspheres by Surface-confined Living Radical Polymerization on Silica Templates[J]. Chem. Mater., 2000,12:3481-3487
    [60]Deng Z W, Chen M, Zhou S X, et al. A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres[J]. Langmuir,2006,22:6403-6407
    [61]Cheng X J, Chen M, Wu L M, et al. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres[J]. Langmuir,2006,22:3858-3863
    [62]Deng Z W, Chen M, Gu G X, et al. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property[J]. J. Phys. Chem. B,2008,112:16-22
    [63]Peng Q, Dong Y J, Li Y D. ZnSe Semiconductor Hollow Microspheres[J]. Angew. Chem. Int. Ed.,2003,42:3027-3030
    [64]Shao W P, Wang Z H, Zhang Y G, et al. Controlled Synthesis of SnO2 Hollow Microspheres via a Facile Template-free Hydrothermal Route[J]. Chem. Lett.,2005,34: 556-557
    [65]Chen X Y, Wang Z H, Wang X, et al. Synthesis of Novel Copper Sulfide Hollow Spheres Generated from Copper(II)-thiourea Complex[J]. J. Cryst. Growth,2004,263:570-574
    [66]Hou H W, Peng Q, Zhang S Y, et al. A "user-friendly" Chemical Approach towards Paramagnetic Cobalt Phosphide Hollow Structures:Preparation, Characterization, and Formation Mechanism of Co2P Hollow Spheres and Tubes[J]. Eur. J. Inorg. Chem.,2005, 13:2625-2630
    [67]Chen H M, He J H. Self-assembly of Birnessite Manganese Dioxide into Monodisperse Honeycomb and Hollow Nanospheres[J]. Chem. Lett.,2007,36:174-175
    [68]Huang J X, Xie Y, Li B, et al. In-situ Source-template-interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres[J]. Adv. Mater.,2000,12:808-811
    [69]Wan S M, Guo F, Shi L, et al. Single-step Synthesis of Copper Sulfide Hollow Spheres by a Template Interface Reaction Route[J]. J. Mater. Chem.,2004,14:2489-2491
    [70]Scarano D, Bertarione S, Cesano F, et al. Plate-Like Zinc Oxide Microcrystals:Synthesis and Characterization of a Material Active toward Hydrogen Adsorption[J]. Catalys. Today,2006,116:433-438
    [71]Ghosh S, Dey S, Mandal U, et al. Ultrafast Proton Transfer of Pyranine in a Supramolecular Assembly:PEO-PPO-PEO Triblock Copolymer and CTAC[J]. J. Phys. Chem. B,2007,111:13504-13510
    [72]Phoka S, Laokul P, Swatsitang E, et al. Synthesis, Structural and Optical Properties of CeO2 Nanoparticles Synthesized by a Simple Polyvinyl Pyrrolidone (PVP) Solution Route[J]. Mater. Chem. Phys.,2009,115:423-428
    [73]Wang S G, Li Y X, Wang Y Z, et al. Introducing CTAB into CdTe/PVP Nanofibers Enhances the Photoluminesence Intensity of CdTe Nanoparticles[J]. Mater. Lett.,2007, 61:4674-4678
    [74]Zhou X F, Chen S Y, Zhang D Y, et al. Microsphere Organization of Nanorods Directed by PEG Linear Polymer[J]. Langmuir,2006,22:1383-1387
    [75]Ning M, Zhu H F, Jia Y S, et al. Synthesis of Hollow Microspheres of Nickel Using Spheres of Metallic Zinc as Templates under Mild Conditions[J]. J. Mater. Sci.,2005,40: 4411-4413
    [76]Sun Y G, Mayers B T, Xia Y N. Template-engaged Replacement Reaction:a one-step Approach to the Large-scale Synthesis of Metal Nanostructures with Hollow Interiors[J]. Nano Letters,2002,2:481-485
    [77]Li J, Zeng H C. Hollowing Sn-doped TiO2 Nanospheres via Ostwald Ripening[J]. J. Am. Chem. Soc.,2007,129:15839-15847
    [78]Yang H G, Zeng H C. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening[J]. J. Phys. Chem. B,2004,108:3492-3495
    [79]Liu B, Zeng H C. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-shell Semiconductors [J]. Small,2005,1:566-571
    [80]Teo J J, Chang Y, Zeng H C. Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-assembly of CuO Nanocrystals[J]. Langmuir,2006,22:7369-7377
    [81]Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres [J]. Langmuir,2005,21:1074-1079
    [82]Wang W S, Zhen L, Xu C Y, et al. Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a Surfactant-free Aqueous Solution Route[J]. J. Phys. Chem. B,2006, 110:23154-23158
    [83]Chen X Y, Zhang Z J, Qiu Z G, et al. Hydrothermal Fabrication and Characterization of Polycrystalline Linneite (Co3S4) Nanotubes based on the Kirkendall Effect[J]. J. Colloid. Interf. Sci.,2007,308:271-275
    [84]Chiang R K, Chiang R T. Formation of Hollow Ni2P Nanoparticles Based on the Nanoscale Kirkendall Effect[J]. Inorg. Chem.,2007,46:369-371
    [85]Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect[J]. Science,2004,304:711-714
    [86]Liu B, Zeng H C. Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process[J]. J. Am. Chem. Soc.,2004,126:16744-16746
    [87]Xiong Y J, Wiley B, Chen J Y, et al. Corrosion-based Synthesis of Single-crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties[J]. Angew. Chem. Int. Ed.,2005,44:7913-7917
    [88]Tartaj P, Gonzalez C T, Serna C J. Single-step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties[J]. Adv. Mater.,2001,13: 1620-1624
    [89]Bruinsma P J, Kim A Y, Liu J, et al. Mesoporous Silica Synthesized by Solvent Evaporation:Spun Fibers and Spray-dried Hollow Spheres[J]. Chem. Mater.,1997,9: 2507-2512
    [90]Iida M, Sasaki T, Watanabe M. Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell[J]. Chem. Mater.1998,10:3780-3782
    [91]Yoo K S, Lee T G, Kim J. Preparation and Characterization of Mesoporous TiO2 Particles by Modified Sol-Gel Method using Ionic Liquids[J]. Microporous Mesoporous Mater., 2005,84:211-217
    [92]Song Y Y, Stein F S, Bauer S, et al. Amphiphilic TiO2 Nanotube Arrays:An Actively
    Controllable Drug Delivery System[J]. J. Amer. Chem. Soc.,2009,131:4230-4232
    [93]Wei Q S, Hirota K, Tajima K, et al. Design and Synthesis of TiO2 Nanorod Assemblies and Their Application for Photovoltaic Devices[J]. Chem. Mater.,2006,18:5080-5087
    [94]Yang L, Lin Y, Jia J G, et al. Cauliflower-like TiO2 Rough Spheres:Synthesis and Applications in Dye Sensitized Solar Cells [J]. Microporous Mesoporous Mater.,2008, 112:45-52.
    [95]Wang J P, Bai Y, Wu M Y, et al. Preparation and Electrochemical Properties of TiO2 Hollow Spheres as an Anode Material for Lithium-Ion Batteries[J]. J. Power Sources, 2009,191:614-618
    [96]Ren T Z, Yuan Z Y, Su B L. Surfactant-assisted Preparation of Hollow Microspheres of Mesoporous TiO2[J]. Chem. Phys. Lett.,2003,374:170-175
    [97]孙丽萍,高山,赵辉,等.纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料,2004,35(5):632-634
    [98]文明芬,王秋萍,陈靖,等.纳米二氧化钛晶型互变研究[J].功能材料,35(5):651-653
    [99]Wu B C, Yuan R H, Fu X Z. Structural Characterization and Photocatalytic Activity of Hollow Binary ZrO2/TiO2 Oxide Fibers[J]. J. Solid State Chem.,2009,182:560-565
    [100]杨依隆,辛秀兰,胡代强,等.溶胶-凝胶法制备TiO2凝胶的影响因素及方法改进[J].北京工商大学学报(自然科学版),2007,25(3):9-13
    [101]Deng H, Li X L, Peng Q, et al. Monodisperse Magnetic Single-crystal Ferrite Microsphere[J]. Angew. Chem. Int. Ed.,2005,44:2782-2785
    [102]Hu P, Yu L J, Zuo A H, et al. Fabrication of Monodisperse Magnetite Hollow Spheres[J]. J. Phys. Chem. C,2009,113:900-906
    [103]He J, Behera R K, Finnis M W, et al. Prediction of High-temperature Point Defect Formation in TiO2 from Combined ab initio and Thermodynamic Calculations[J]. Acta Mater.,2007,55:4325-4337
    [104]马新国,江建军,梁培.锐钛矿型TiO2(101)面本征点缺陷的理论研究[J].物理学报,2008,57(5):3120-3125
    [105]Han N, Hu P, Zuo A H, et al. Photoluminescence Investigation on the Gas Gensing Property of ZnO Nanorods Prepared by Plasma-enhanced CVD Method[J]. Sens. Actuators B,2010,145:114-119
    [106]雒和明,曹国璞,冯辉霞,等.改性改性焦粉吸附处理亚甲基蓝印染废水研究[J].中国非金属矿工业导刊,2009,77(4):52-54
    [107]刘德启,汪守建,江飞.均相亚甲基蓝光敏氧化法处理造纸废水研究[J].水处理技术,2004,30(5):273-275
    [108]Melita L, Popescu M. Removal of Cr (VI) from Industrial Water Effluents and Surface Waters Using Activated Composite Membranes[J]. J. Membr. Sci.,2008,312:157-162
    [109]Sharma Y C, Uma, Srivastava V, et al. Reclamation of Cr(VI) Rich Water and Wastewater by Wollastonite[J]. Chem. Eng. J.,2007,127:151-156
    [110]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.12
    [111]Zakrzewska K. Gas Sensing Mechanism of TiO2-based Thin Films[J]. Vacuum,2004, 74:335-338
    [112]Zeng W, Liu T M. Hydrogen Sensing Characteristics and Mechanism of Nanosize TiO2 Dope with Metallic Ions[J]. Physica B,2010,405:564-568
    [113]Seo M H, Yuasa M, Kida T, et al. Gas Sensing Characteristics and Porosity Control of Nanostructured Films Composed of TiO2 Nanotubes[J]. Sens. Actuators B,2009,137: 513-520
    [114]More A M, Gunjakar J L, Lokhande C D. Liquefied Petroleum Gas (LPG) Sensor Properties of Interconnected Web-like Structured Sprayed TiO2 Films[J]. Sens. Actuators B,2008,129:671-677
    [115]Pokhrel S, Huo L H, Zhao H, et al. Triangular Network of Crystalline Submicron Rutile TiO2 Block Assembly:An Alcohol Sensor[J]. Sens. Actuators B,2008,129:18-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700