新型碳材料修饰电极在电分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了新型碳材料电极的制备及其在电分析基础研究中的应用。主要包括两部分内容:新型碳纳米纤维糊修饰电极的制备及其在电分析中的应用和1,10-菲咯啉-5,6-二酮/有序介孔碳复合材料膜修饰电极对NADH的电催化研究。具体的研究工作主要集中在以下几部分:
     (1)优化了制备碳纳米纤维糊电极(CNFPE)的实验条件,将碳纳米纤维糊电极的电化学行为与传统碳糊电极(CPE)做了对比,并比较了一些具有生物活性的分子在两种电极上的电化学响应。结果表明在相同的几何面积时,CNFPE对这些生物分子有更大的电流响应,氧化还原电位也有了明显的改善,显示了碳纳米纤维糊电极在电分析应用中的优势。在相同的实验条件下分别利用CNFPE和CPE检测了H_2O_2和NADH,结果表明CNFPE相对于CPE在检出限、灵敏度、线性范围等方面都有了明显的提高,进一步证明了CNFPE比CPE具有更好的电化学活性,更适宜电分析的应用。
     (2)通过自发吸附的方式将1,10-菲咯啉-5,6-二酮稳定地组装到有序介孔碳修饰玻碳电极表面,制备了1,10-菲咯啉-5,6-二酮/有序介孔碳复合膜修饰电极。以电化学方法对修饰电极进行了详细表征,在理论上计算了1,10-菲咯啉-5,6-二酮/有序介孔碳/玻碳电极与NADH之间的催化反应速率常数(k_h),并与1,10-菲咯啉-5,6-二酮/玻碳电极与NADH之间的催化反应速率常数(k_h)进行了比较,发现前者比后者提高了482倍以上。很好的说明了1,10-菲咯啉-5,6-二酮/有序介孔碳复合膜修饰电极对NADH有较高的催化活性,在-0.1V电位下,检测NADH得到了良好的结果,灵敏度为5.763μA/mM,检出限为0.98μM(信噪比为3),线性范围可达350μM。
In this dissertation, efforts have been devoted to the fabrication and basic research in electroanalytical applications of novel carbon materials modified electrodes. The dissertation consists of two main parts: one is electroanalytical applications of carbon nanofibers paste modified electrode and the other is the electrochemical electrocatalytic oxidation of NADH with 1, 10-phenanthroline-5,6-dione functionalized ordered mesoporous carbon (PD/OMC) composite film modified electrode . The main works of the dissertation are as follows:
     1) Surface renewable carbon nanofibers paste electrodes (CNFPE) were fabricated by mechanical mixing carbon nanofibers (CNF) with mineral oil. The electrochemical behavior of such electrodes has been compared with conventional carbon paste electrode (CPE) and thoroughly evaluated with respected to the electrochemistry of some biological molecules. In all cases, CNFPE provide better reversibility with substantial decreased overpotential, better defined peak shape, and higher sensitivity compared with CPE. In addition, CNFPE and CPE were employed as H_2O_2 and NADH probes. The obtained experimental results further demonstrated remarkable electrochemical advantages of CNFPE compared with CPE for electroanalytical applications.
     2) The PD molecules were assembled on the surface of ordered mesoporous carbon through spontaneous adsorption modified glassy carbon electrode (PD/OMC/GCE). Electrochemical behaviors of the resulting electrode were investigated thoroughly with cyclic voltammetry, we studied the kinetics of the catalytic reaction and the catalytic reaction rate constant (k_h) for NADH of PD/OMC/GCE in comparison with PD/GCE. The catalytic reaction rate constant (k_h) of PD/OMC/GCE was calculated to be about 482 times larger than that of PD/GCE. Based on the results, a new NADH sensor was successfully established using the PD/OMC/GCE. Under a lower operation potential of -0.1 V, NADH could be detected linearly up to a concentration of 350μM with a lower detection limit of 0.98μM (S/N=3) as well as a high sensitivity of 5.763μA/mM.
引文
[1] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules.I.Reactants connected to electrodes through olefinic substituents[J]. J Phys Chem, 1973, 77(11): 1401-1410.
    [2] Moses P R, Wier L , Murray R W. Chemically modified tin oxide electrode[J]. Anal Chem, 1975, 47 (12): 1882-1886.
    [3] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode[J]. J Am Chem Soc, 1975, 97(12): 3549-3550.
    [4]查全性.电极过程动力学导论[M].北京:科学出版社,1987.
    [5] Rusling J F. Variations in electron-transfer rate at polished glassy carbon electrodes exposed to air[J]. Anal Chem, 1984, 56(3): 575-578.
    [6] Evans J F, Kuwana T. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrodesurfaces[J]. Anal Chem, 1977, 49(11): 1632-1635.
    [7] Lowry R B, Williams C E, Braven J. Initial studies of an immobilised, regenerable chemiluminescent sensor[J]. Talanta, 2004, 63(4): 961-966.
    [8] Roy P R, Okajima T, Ohsaka T. Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N,N-dimethylaniline)film-coated GC electrode[J]. J Electroanal Chem, 2004, 561(1): 75-82.
    [9] Ureta-Zanartu M S, Berríos C, Pavez J, et al. Electrooxidation of 2-chlorophenol on poly NiTSPc-modified glassy carbon electrodes[J]. J Electroanal Chem, 2003, 553(1): 147-156.
    [10]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社, 2003, 6.
    [11]谢远武,董绍俊.光谱电化学方法-理论与应用[M].长春:吉林科学技术出版社, 1993.
    [12] Oyama N, Anson F C. Factors Affecting the Electrochemical Responses of Metal Complexes at Pyrolytic Graphite Electrodes Coated with Films of Poly (4-Vinylpyridine)[J]. J Electrochem Soc, 1980, 127(3): 640-647.
    [13] Contamin O, Levart E, Magner G, et al. Restricted diffusion impedance:Theory and application to the reaction of oxygen on a hydrogen phthalocyanine film[J]. J Electroanal Chem, 1984, 179(1-2): 41-52.
    [14] Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface[J]. Anal Chem, 1977, 49(11): 1589-1595.
    [15] Lenhard J R, Murray R W. Chemically modified electrodes.13.Monolayer/multilayer coverage, decay kinetics, and solvent and interactioneffects for ferrocenes covalently linked to platinum electrodes[J]. J Am Chem Soc, 1978, 100(25): 7870-7875.
    [16] Albery W J, Compton R G, Jones C C. A novel electrode for electrochemical ESR and its applicationto modified electrodes[J]. J Am Chem Soc, 1984, 106(3): 469-473.
    [17] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance[J].Chem Rev, 1992, 92(6): 1355-1379.
    [18] Ward M D, Buttry D A. In situ interfacial mass detection with piezoelectric transducers[J]. Science, 1990, 249(4972): 1000-1007.
    [19] Dong S J, Lian G H. Redox reactions of Fe(CN)3-/4-6 in polypyrrole films: accumulation and removal of cations[J]. J Electroanal Chem, 1990, 291(1-2): 23-39.
    [20] Brezina M, Khalil W, Koryta J, et al. Electroreduction of oxygen and hydrogen peroxide catalyzed by hemine and phthalocyanines[J]. J Electroanal Chem, 1977, 77(2):2 37-244.
    [21] Anson F C,黄慰曾编译.电化学和电分析化学[M].北京:北京大学出版社, 1983.
    [22] Itaya K, Shibayama K, Akahoshi H, et al. Prussian-blue-modified electrodes:An application for a stable electrochromic display device[J]. J Appl Phys, 1982, 53(1): 804-805.
    [23] Wrighton M S. Surface Functionalization of Electrodes with Molecular Reagents[J]. Science, 1986, 231(4733): 32-37.
    [24] White H S, Kittlesen G P, Wrighton M S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole:fabrication of a molecule-based transistor[J]. J Am Chem Soc, 1984, 106 (18): 5375-5377.
    [25] Calabrese G S, Buchanan R M, Wrighton M S. Mediated electrochemical reduction of oxygen to hydrogen peroxide via a surface-confined naphthoquinone reagent and the mediated electrochemical reduction of a naphthoquinone redox reagent anchored to high surface area oxides[J]. J Am Chen Soc, 1983, 105(17): 5594-5600.
    [26] Kerr J B, Miller L L, Van De Mark M R. A poly-p-nitrostyrene on platinum electrode. Polymer charging kinetics and electrocatalysis of organic dihalide reductions[J]. J Am Chen Soc, 1980, 102(10): 3382-3390.
    [27] VanDemark M R, Miller L L. A poly-p-nitrostyrene electrode surface. Potential dependent conductivity and electrocatalytic properties[J]. J Am Chen Soc, 1978, 100(10): 3223-3325.
    [28] Calabrese G S, Buchanan R M, Wrighton M S. Electrochemical behavior of a surface-confined naphthoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes[J]. J Am Chen Soc, 1982, 104(21): 5786-5788.
    [29] Matsue T, Evans D H, Osa T, et al. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of beta-cyclodextrin [J]. J Am Chem Soc, 1985, 107 (12): 3411-3417.
    [30] Abe S, Nonaka T, Fuchigami T. Stereochemical studies of the electrolytic reactions of organic compounds. 19. Electroorganic reactions on organic electrodes. 1. Asymmetric reduction of prochiral activated olefins on a poly-L-valine-coated graphite[J]. J Am Chem Soc, 1983, 105(11): 3630-3632.
    [31] Firth B E, Miller L L, Mitani M, et al. Anodic and cathodic reactions on a chemically modified edge surface of graphite[J]. J Am Chem Soc, 1976, 98(25): 8271-8272.
    [32] Coche L, Moutet J C. Electrocatalytic hydrogenation of organic compounds on carbon electrodes modified by precious metal microparticles in redox active polymer films[J]. J Am Chem Soc, 1987, 109(22): 6887-6889
    [33] Feldman B J, Burgmayer P, Murray R W. The potential dependence of electrical conductivity and chemical charge storage of poly(pyrrole) films on electrodes[J]. J Am Chem Soc, 1985, 107(4): 872-878.
    [34] Burgmayer P, Murray R W. An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode[J]. J Am Chem Soc, 1982, 104 (22): 6139-6140.
    [35] Komori T, Nonaka T. Stereochemical studies of the electrolytic reactions of organic compounds. Part 22. Electroorganic reactions on organic electrodes. 3. Electrochemical asymmetric oxidation of phenyl cyclohexyl sulfide on poly(L-valine)-coated platinum electrodes[J]. J Am Chem Soc, 1983, 105(17): 5690-5691.
    [36] Deronzier A, Lìmosin D, Moutet J C. Electrochemical oxidation of carbinols mediated by nitroxyl radicals in solution or bonded to polypyrrolic coatings on platinum and carbon electrodes[J]. Electrochim Acta, 1987, 32(11): 1643-1647.
    [37] Miller L L, Zhou X Q. Poly(N-methylpyrrolylium)poly(styrenesulfonate)-a conductive,electrically switchable cation exchanger that cathodically binds and anodically releases dopamine[J]. Macromolecules, 1987, 20(7): 1594-1597.
    [38]崔兴品,汪夏燕,张雷,等.六氰合铁酸铜钴在蜡浸石墨电极表面的电化学沉积[J].分析化学, 2002, 30(1): 93-96.
    [39]吴清国,刘快之,张仲仪.新型全固态电位传感器的研究ⅠNafion修饰电极用于电位分析法测定雷尼替丁[J].第四届全国电分析化学学术会议论文集, 1990, 287.
    [40]卢小泉,吕宝强,薛中华,等. 4-巯基吡啶自组装修饰金电极的电化学性质及对抗坏血酸的测定[J].分析化学, 2003, 31(6): 686-688.
    [41] Wu F, Zhao G, Wei X. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode[J]. Electrochem Commun, 2002, 4(9): 690-694.
    [42] Wu K, Fei J, Hu S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes[J]. Anal Biochem, 2003, 318(1): 100-106.
    [43]赵阁,刘快之,张澎湃,等.碳纳米管修饰电极差示脉冲阳极溶出伏安法测定腺嘌呤[J].化学研究, 2003, 14(2): 55-58.
    [44] Lane R F, Hubbard A T. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catechol amines[J]. Anal Chem, 1976, 48 1976(9): 1287-1293.
    [45]白燕,郭书好,李继革,等.卟啉修饰电极的制备及金属离子的电位溶出行为[J].暨南大学学报(自然科学版), 2001, 22(3): 71-76.
    [46]李桂敏,赵阁,叶文玉,等. 2-羟基-3-(三乙胺基)丙基十烷基硫醚修饰电极测定痕量金[J].理化检验-化学分册, 2003, 39(7): 386-388.
    [47]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究化学学报[J]. 2002, 60(3):393-397.
    [48]张国林,潘献华,阚锦晴,等.导电复合材料葡萄糖氧化酶传感器的研究物理化学学报[J]. 2003, 19(6): 533-537.
    [49]章竹君,杨柳.近场光学和纳米粒子生物传感器[J].分析试验室, 2003, 22(3): 97-101.
    [50]冶保献,李风菊,张俊,等.玻碳电极上多巴胺的氧化还原机理[J].化学研究, 2003, 14(1): 44-50.
    [51]焦奎,吕刚,杨涛,等.间苯二胺的电化学及紫外-可见薄层光谱电化学研究高等化学学校化学学报, 2003, 24(6): 1005-1008.
    [52]叶建农,金平,金利通,等.聚苯胺修饰电极催化氧化测定维生素C的色谱电化学研究[J].华东师范大学学报(自然科学版), 1991, 4: 57-61.
    [53]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [54] Hughes T V, Chambers C R.US 405480. 1889.
    [55] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [56] Yang R T, Chen J P. Mechanism of carbon filament growth on metal catalysts[J]. J Catal, 1989, 115: 52-64.
    [57] Thaib A, Martin G A, Pinheiro P, Schouler M C, et al. Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al2O3 and Co/SiO2 catalysts[J]. Catal Lett, 1999, 63(3-4): 135-141.
    [58] Hu Y H, Ruckenstein E. High-resolution transmission electron microscopic study of carbon deposited on the NiO/MgO solid solution catalysts[J]. J Catal 1999, 184(1): 298-302.
    [59] Baker R T K, Kim M S, Chambers A, Park C, Rodriguez N M.The relationship between metal particle morphology and the structural characteristics of carbon deposits[J]. Studies Surf Sci Catal, 1997, 111: 99-109.
    [60] Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth[J]. J Catal, 1997, 169(1): 240-249.
    [61]张勇,唐元洪,裴立宅,等.纳米碳纤维的批量制备和应用[J].高科技纤谁与应用, 2005, 30(2): 20-23.
    [62] Rodriguez N M, Chamers A, Baker R T K. Catalytic Engineering of Carbon Nanostructures[J] Langmuir, 1995, 11(10): 3862-386.
    [63] Chambei A, Rodiguez N M, Baker R T K. Influenee of Copper on the Structural Charaeteristies of Carbon Nanofibers Produeed from the Cobalteatalyzed Decomposition of Ethylene[J]. J Mater Res, 1996, 11(2): 430-438.
    [64] Tibbetts G G, Doll G L, Grorkiewiez D W, et al. Physieal Properties of VaPor-grown Carbon Fibers[J]. Carbon, 1993, 31(7): 1039-1047.
    [65] Endo M, Takeueh K, Hiraoka T, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres[J]. J Phys Chem Solids, 1997, 58(11): 1707-1712.
    [66] Stonier R A. Stealth aircraft & technology from World War II to the Gulf. Part II. Applications anddesign[J]. SAMPE Toumal. 1991, 27(5): 9-18.
    [67]候鹏翔,白朔,范月英,等.气体流动状态对纳米碳纤维制备的影响[J].新型炭材料, 2000, 15(4): 17-20.
    [68] Ci L, Wei J, Wei Bi, et al. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method[J]. Carbon, 2001, 39(3): 329-335.
    [69]信思树,项金钟,吴兴惠.纳米碳纤维的制备方法及其吸波特性[J].材料导报, 2003, 17(9): 24-26.
    [70] Randall L, Vander Wal, Lee J Hall. Flame Synthesis of Fe Catalyzed Single Walled Carbon Nanotubes and Ni Catalyzed Nanofibers:Growth Meehanisms and Consequences[J]. Chem phys Lett, 2001, (3-4): 178-184.
    [71] Lee C J, Lee T J, Park J. Carbon nanofibers grown on sodalime glass at 500°C using thermal chemical vapor deposition[J]. Chem Phys Lett, 2001, (5-6): 413-418.
    [72] Chun I, Reneker D H, Fong H, etal. Carbon nanofibers from polyacrylonitrile and mesophase pitch[J]. J Ady Mater, 1999, 31(1): 36-41.
    [73] Wang Y U, Santiago-aviles J J. Large Negative Magnetoresistance and Two-dimensional Weak Lcalizationin Carbon Nanofibers Fabrieated Us in ElectroSPinning [J]. J Appl Phys, 2003, 94(3): 1721-1727.
    [74] Zenis Y, Wen Y著.谢欣宇译.国外纺织技术,2003, 6: 9.
    [75]王琪琨,刘卫华,朱长纯,等.电弧法获得的几种奇异碳纳米管的研究[J].西安交通大学学报, 2001, 35(4): 382-384.
    [76] Vander Wal R L, Berger G M, Ticich T M. Carbon nanotube synthesis in a flame with independently prepared laser-ablated catalyst particles[J]. J Nanosci Nanotech, 2003, 3(3): 241-245.
    [77] Honda S, Lee K Y, Fujimoto K, et a1. Formation of carbon nanofiber films by RF magnetron sputtering method[J]. Physica B: Condensed Matter, 2002, 323(1-4): 347-349.
    [78] Merkulov V I, Hensley D H, Melechko A V, et al. Control mechanisms for the growth of isolated vertically aligned carbon nanofibers[J]. J Phys Chem B, 2002, 106(41): 10570-10577.
    [79] Vamvakaki V, Tsagaraki K, Chaniotakis N. Carbon nanofiber-based glucose biosensor[J]. Anal Chem, 2006, 78(15): 5538-5542.
    [80] Arvinte A, Valentini F, Radoi A, et al. The NADH electrochemical detection performed at carbon nanofibers modified glassy carbon electrode[J]. Electroanalysis, 2007, 19(14): 1455-1459.
    [81] Perez B, Valle M, Alegret S, et al. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH[J]. Talanta, 2007, 74(3): 398-404.
    [82] Li Z, Cui X, Zheng J, et al. Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide[J]. Analytica Chimica Acta, 2007, 597(2): 238-244.
    [83] Wu L, Zhang X, Ju H. Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode[J]. Analyst, 2007, 132(5): 406-408.
    [84] Huang J, Liu Y, Houb H, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode[J]. Biosens Bioelectron, 2008, 24(4): 632-637.
    [85] Zheng J S, Zhang X S, Li P, et al. Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst[J]. Electrochem Commun, 2007, 9(5): 895-900.
    [86] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J Phys Chem B, 1999, 103(37): 7743-7746.
    [87] Zhou H, Zhu S, Hibino M, et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. J Power Sources, 2003, 122(2): 219-223.
    [88] Vinu A, Miyahara M, Ariga K. Biomaterial Immobilization in Nanoporous Carbon Molecular Sieves: Influence of Solution pH, Pore Volume, and Pore Diameter[J]. J Phys Chem B, 2005, 109(13): 6436-6441.
    [89] Hartmann M, Vinu A, Chandrasekar G, et al. Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves[J]. Chem Mater, 2005, 17(4): 829-833.
    [90] Marsh H, Rand B. The process of activation of carbons by gasification with CO2-Ⅱ:The role of catalytic impurities[J]. Carbon, 1971, 9(1): 63-72.
    [91] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications[J]. J Non-Cryst Solids, 1998, 225(1): 74-80.
    [92] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412(6843): 169-172.
    [93] Lu A H, Wolfgang S, Bernd S. Sythesis of ordered mesoporous carbon with bimodal pore system and high pore volume[J]. Adv Mater, 2003, 15(19): 1602-1606.
    [94] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite[J]. Chem Commun, 2005, 16: 2125-2127.
    [95] Liang C, Hong K, Guiochon G, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angew Chem Int Ed, 2004, 43(43): 5785-5789.
    [96] Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J Am Chem Soc, 2005, 128(16): 5316-5317.
    [97] Zhang F, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. J Am Chem Soc, 2005, 127(39): 13508-13509.
    [98] Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks:amphiphilic surfactant templating and direct transformation[J]. Angew Chem Int Ed, 2005, 44(43): 7053-7059.
    [99] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly[J]. Biosens Bioelectron, 2007, 22(8): 1618-1624.
    [100] Jia N, Wang Z, Yang G, et al. Electrochemical properties of ordered mesoporous carbon and itselectroanalytical application for selective determination of dopamine, Electrochem Commun, 2007, 9(2): 233-238.
    [101] Zhu L, Yang R, Jiang X, et al. Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode[J]. Electrochem Commun, 2009, 11(3): 530-533.
    [102] Jiang X, Zhu L, Yang D, et al. Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola,s Blue/Ordered Mesoporous Carbon Electrode[J]. Electroanalysis, 2009, 21(14): 1617-1623.
    [103] Zhou M, Guo L P, Lin F Y, et al. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode[J]. Anal Chim Acta, 2007, 587(1): 124-131
    [104] Zhu L, Tian C, Zhu D, et al. Ordered Mesoporous Carbon Paste Electrodes for Electrochemical Sensing and Biosensing[J]. Electroanalysis, 2008, 20(10): 1128-1134.
    [105] Zhu L, Tian C, Yang R, et sl. Anodic Stripping Voltammetric Determination of Lead in Tap Water at an Ordered Mesoporous Carbon/Nafion Composite film Electrode[J]. Electroanalysis, 2008, 20(5): 527-533.
    [106] Zhu L, Tian C, Yang D, et al. Bioanalytical Application of the Ordered Mesoporous Carbon Modified Electrodes[J]. Electroanalysis, 2008, 20(23): 2518-2525.
    [107] Yang D, Zhu L, Jiang X, et al. Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode[J]. Sens Actuators B, 2009, 141(1): 124-129.
    [108]姜晓妍.新型复合生物传感器平台的构建及应用[D]:[硕士学位论文].长春:东北师范大学学院,2009.
    [1] Kalcher K, Svancara I, Buzuk M, et al. Electrochemical sensors and biosensors based on heterogeneous carbon materials[J]. Monatsh Chem, 2009, 140(8): 861-889.
    [3] Sun D, Zhu L, Zhu G. Glassy carbon ceramic composite electrodes[J]. Anal Chim Acta, 2006, 564(2): 243-247.
    [4] Zhang M, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes[J]. Anal Chem, 2005, 77(13): 3960-3965.
    [5] Zhu L, Tian C, Yang D, et al. Bioanalytical Application of the Ordered Mesoporous Carbon Modified Electrodes[J]. Electroanalysis, 2008, 20(23): 2518-2525.
    [6] Spataru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine at conductive diamond electrodes[J]. Anal Chem, 2001, 73(3): 514-519.
    [7] Park C, Baker R T K. Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofiber structure[J]. J Phys Chem B, 1998, 102(26): 5168-5177.
    [8] Shim B S, Starkovich J, Kotov N. Multilayer composites from vapor-grown carbon nano-fibers[J]. Compos Sci Tech 2006, 66(9): 1174-1178.
    [9] Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor[J]. Sens Actuat B, 2007 122(1): 7-13.
    [10] Kim J H, Sharma A K, Lee Y S. Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors[J]. Mater Lett, 2006, 60(13-14): 1697-1701.
    [11] Niedziolka J, Murphy M A, Marken F, et al. Characterisation of hydrophobic carbon nanofiber-silica composite film electrodes for redox liquid immobilization[J]. Electrochim Acta, 2006, 51(26): 5897-5903.
    [12] Yoon S, Lim S, Hong S, et al. Carbon nano-rod as a structural unit of carbon nanofibers, Carbon, 2004, 42(15): 3087-3095.
    [13] Chambers A, Rodriguez N M, Baker R T K. Catalytic engineering of carbon nanosturctures[J]. Langmuir, 1995, 11(10): 3862-386.
    [14] Merkulov V I, Hensley D H, Melechko A V, et al. Control mechanisms for the growth of isolated vertically aligned carbon nanofibers[J]. J Phys Chem B, 2002, 106(41): 10570-10577.
    [15] Vamvakaki V, Tsagaraki K, Chaniotakis N, Carbon nanofiber-based glucose biosensor[J]. Anal Chem, 2006, 78(15): 5538-5542.
    [16] Arvinte A, Valentini F, Radoi A, et al. The NADH electrochemical detection performed at carbonnanofibers modified glassy carbon electrode[J]. Electroanalysis, 2007, 19(14): 1455-1459.
    [17] Wu L, Zhang X, Ju H. Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode[J]. Analyst, 2007, 132(5): 406-408.
    [18]. Huang J, Liu Y, Houb H, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode[J]. Biosens Bioelectron, 2008, 24(4): 632-637.
    [19] Svancara I, Vytras K, Kalcher K, et al. Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis[J]., Electroanalysis, 2009, 21(1): 7-28.
    [20] Svancara I, Walcarius A, Kalcher K, et al. Carbon paste electrodes in the new millenium[J]. Centr Eur J Chem, 2009, 7(4): 598-656.
    [21] Rice M E, Galus Z, Adams R N, Graphite paste electrodes. Effects of paste composition and surface states on electron-transfer rates[J]. J Electroanal Chem, 1983, 143(1-2): 89-102.
    [22] Mikysek T, Svancara I, Kalcher K, et al. New Approaches to the Characterization of Carbon Paste Electrodes Using the Ohmic Resistance Effect and Qualitative Carbon Paste Indexes[J]. Anal Chem, 2009, 81(15): 6327-6333.
    [23] Valentini F, Amine A, Orlanducci S, et al. Carbon Nanotube Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes[J]. Anal Chem, 2003, 75(20): 5413-5421.
    [24] Zhu L, Tian C, Zhu D, et al. Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing[J]. Electroanalysis, 2008, 20(10): 1128-1134.
    [25] Olson C, Adams R N. Carbon paste electrodes application to anodic voltammetry[J]. Anal Chim Acta 1960, 22: 582-589.
    [26] Olson C, Adams R N. Carbon paste electrodes application to cathodic reductions and anodic stripping voltammetry[J]. Anal Chim Acta, 1963, 29: 358-363.
    [27] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode[J]. Electrochem Commun, 2003, 5(8): 689-694.
    [28] Guiseppi-Elie A, Lei C H, Baughman R H. Direct electron transfer of glucose oxidase on carbon nanotubes[J]. Nanotechnology, 2002, 13(5): 559-564.
    [29] Moore R R, Banks C E, Compton R G. Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts[J]. Anal Chem, 2004, 76(10): 2677-2682.
    [30] Banks C E, Moore R R, Davies T J, et al. Investigation of modified basal plane pyrolytic graphite electrodes: Definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes[J]. Chem Commun, 2004, 10(16): 1804-1805.
    [31] Musameh M, Lawrence N S, Wang J. Electrochemical activation of carbon nanotubes[J]. Electrochem Commun, 2005, 7(1): 14-18.
    [32] Wang J, Musameh M, Lin Y, Solubilization of carbon nanotubes by Nafion toward the preparation ofamperometric biosensors[J]. J Am Chem Soc, 2003, 125(9): 2408-2409.
    [33] Lin Y, Lu F, Tu Y, et al. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles[J]. Nano Lett, 2004, 4(2): 191-195.
    [34] Liu S, Ju H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J]. Biosens Bioelectron, 2003, 19(3): 177-183.
    [35] Cui X, Liu G, Lin Y. Biosensors Based on Carbon Nanotubes/Nickel Hexacyanoferrate/Glucose Oxidase Nanocomposites[J]. J Biomed Nanotechol, 2005, 1(1): 320-327.
    [36] Hurdis E C, Romeyn H, Jr., Accuracy of determination of hydrogen peroxide by cerate oxidimetry[J]. Anal Chem, 1954, 26(2): 320-325.
    [37] Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide[J]. The Analyst, 1992, 117(11): 1781-1784.
    [38] Yamashiro N, Uchida S, Satoh Y, et al. Determination of hydrogen peroxide in water by chemiluminescence detection, (I) flow injection type hydrogen peroxide detection system[J]. J Nucl Sci Technol, 2004, 41(9): 890-897.
    [39] Liu S, Ju H. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode[J]. Anal Biochem, 2002, 307(1): 110-116.
    [40] Ricci F, Amine A, Moscone D, et al. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications[J]. Biosens Bioelectron, 2007, 22(6): 854-862.
    [41] Jaegfeldt H. Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode[J]. J Electroanal Chem, 1980, 110(1-3): 295-302.
    [42] Moiroux J. Elving P J. Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes[J]. Anal Chem, 1978, 50(8): 1056-1062.
    [43] Wang J, Anges L, Martinez T. Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes[J]. Bioelectrochem Bioenerg, 1992, 29(1): 215-221.
    [44] Valentini F, Salis A, Curulli A, et al. Chemical Reversibility and Stable Low-Potential NADH Detection with Nonconventional Conducting Polymer Nanotubule Modified Glassy Carbon Electrodes[J]. Anal Chem, 2004, 76(11): 3244-3248.
    [45] Wang J, Musameh M, Lin Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors [J]. J Am Chem Soc, 2003, 125(9): 2408-2409.
    [46] Musamech M, Wang J, Merkoci A, et al, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J]. Electrochem Commun, 2002, 4(10): 743-746.
    [47] Wang J, Deo R P, Poulin P, et al. Carbon Nanotube Fiber Microelectrodes[J]. J Am Chem Soc, 2003,125(48): 14706-14707.
    [48] Zhang M, Smith A, Gorski W. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes[J]. Anal Chem, 2004, 76(17): 5045-5050.
    [49] Chen J, Cai C X. Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode[J]. Anal Chim Acta, 2004, 516(1-2): 29-34.
    [50] Wang J, Kaede A, Mustafa M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization[J]. Analyst, 2003, 128(7): 912-916.
    [51] Moore R R, Banks C E. Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts[J]. Anal Chem, 2004, 76(10): 2677-2682.
    [52] Wang J, Musameh M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors[J]. Anal Chem, 2003, 75(9): 2075-2079.
    [53] Zhang M, Gorski W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System[J]. J Am Chem Soc, 2005, 127(7): 2058-2059.
    [54] Pessoa C A, Gushikem Y, Kubota L T, et al. Preliminary electrochemical study of phenothiazines and phenoxazines immobilized on zirconium phosphate[J] J Electroanal Chem 1997, 431(1): 23-27.
    [1] Gorton L. Chemieally modified eleetrodes for the electrocatalytic oxidation of nicotinamide coenzymes[J]. J Chem Soc Faraday Trans, 1986, 82(9): 1245-1258.
    [2] Coughlin R W, Aizawa M, Alexander B F, et al. SimPlified flow reactor for electrochemically driven enzymatic reactions involving cofactors[J]. Biotechnol Bioeng, 1975, 17(2): 515-521.
    [3] Jaegfeldt H, Torstensson A, Johanasson G. Electrochemical oxidation of reduced nicotinamide adenine dinucleotide directly and after reduction in an enzyme reactor[J]. Anal Chim Aeta, 1978, 97(l): 221-226.
    [4] Silber A, Brauchle C, Hampp, N. Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at thick- film gold electrodes[J]. J Eleetroanal Chem, 1995, 390(1): 83-59.
    [5] Moiroux J, Elving P J. Effects of adsorption,electrode material, operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon eleetrodes[J]. AnalChem, 1978, 50(8): 1056-1062.
    [6] Jaegfeldr H. Adsorption and electrochemical oxidation behaviour of NADH at clean platinum electrode[J]. J Electroanal Chem, 1980, 110(1-3): 1295-1302.
    [7] Wang J, Anges L, Martinez T. Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes[J]. Bioelectrochem Bioenerg, 1992, 29(1): 215-221.
    [8] Alvarez-Gonzalez M I, Saidman S B, Jesus L-C. Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes[J]. Anal Chem, 2000, 72(3): 520-527.
    [9] Grundig B, Wittstock G, Rudel U, et al. Mediator-modified electrodes for electrocatalytic oxidation of NADH[J]. J Electroanal Chem, 1995, 395(1-2): 143-157.
    [10] Jena B K, Raj C R. Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network[J]. Chem Commun, 2005, 15: 2005-2007.
    [11] Mano N, Kuhn A. Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation[J]. J Electroanal Chem, 1999, 477(1): 79-88.
    [12] Wu Q, Maskus M, Pariente F, et al. Electrocatalytic Oxidation of NADH at Glassy Carbon Electrodes Modified with Transition Metal Complexes Containing 1,10-Phenanthroline-5,6-dione Ligands[J]. Anal Chem, 1996, 68(20): 3688-3696.
    [13] Eckert T S, Bruice T C. Chemical Properties of Phenanthrolinequinones and the Mechanism of Amine Oxidation by o-Quinones of Medium Redox Potentials[J]. J Am Chem Soc 1983, 105(13): 4431-4441.
    [14] Eckert T S, Bruice T C, Gainor J A, et al. Some electrochemical and chemical properties ofmethoxatin and analogous quinoquinones[J]. Proc Natl Acad Sci USA, 1982, 79(8): 2533-2536.
    [15] Hilt G, Steckhan E. Transition Metal Complexes of 1, 10-Phenanthroline-5, 6-dione as Efficient Mediators for the Regeneration of NAD+ in Enzymatic Systems[J]. J Chem Soc, Chem Commun 1993: 22: 1706-1707.
    [16] Itoh S, Fukushima H, Komatsu M, et al. Heterocyclic o-quinones. Mediator for electrochemical oxidation of NADH[J]. Chem Lett, 1992, 21(8): 1583-1586.
    [17] Gillard R D, Hill R E. Optically active co-ordination compounds. Part XXXIV. Modification of reaction pathways in 1,10-phenanthroline and its derivatives by metal ions[J]. J Chem Soc, Dalton Trans, 1974, (11): 1217-1236.
    [18] Evans D H, Griffith D A. Effect of pH on the electrochemical reduction of some heterocyclic quinones [J]. J Electroana Chem, 1982, 134(2): 301-310.
    [19] Evans D H, Griffith D A. Effect of metal ions on the electrochemical reduction of some heterocyclic quinones[J]. J Electroana Chem, 1982, 136(1): 149-157..
    [20] Goss C A, Abruna H D. Spectral, electrochemical and electrocatalytic properties of 1,10-phenanthroline-5,6-dione complexes of transition metals[J]. Inorg Chem, 1985, 24(25): 4263-4267.
    [21] Lei Y, Anson F C. Hydration of the Carbonyl Groups in 1, l0 -Phenanthroline-5, 6-dione Induced by Binding Protons or Metal Cations to the Pyridine Nitrogen Sites[J]. J Am Chem Soc, 1995, 117(39): 9849-9854.
    [22] Lei Y, Shi C, Anson F C. Effects of Coordination to Transition Metals on the Hydration and Electroactivity of the Chelating Ligand 1,10-Phenanthroline-5,6-dione[J]. Inorg Chem, 1996, 35(10): 3044-3049.
    [23] Wu Q, Maskus M, Abruna H D, et al. Electrocatalytic Oxidation of NADH at Glassy Carbon Electrodes Modified with Transition Metal Complexes Containing 1, 10-Phenanthroline-5, 6-dione Ligands[J]. Anal Chem, 1996, 68(19): 3688-3696.
    [24] Hilt G, Jarbawi T, Heinema W R, et al. An Analytical Study of the Redox Behavior of l, l0-Phenanthroline-5, 6-dione, Its Transition-Metal Complexes, and Its N-Monomethylated Derivative with Regard to Their Efficiency as Mediators of NAD(P)+ Regeneration[J]. Chem Eur J 1997, 3(1): 79-88.
    [25] Hilt G, Lewall B, Montero G, et al. Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts[J]. Liebigs Annales, 1997, (11): 2289-2296.
    [26] Shi M, Anson F C. Adsorption/Deposition of the Ligands 9, 10-Phenanthroline-5,6-dione and 9,10-Phenanthroline-5,6-diol and Their Metal Complexes on Pyrolytic Graphite Electrodes[J]. Anal Chem, 1998, 70(8): 1489-1495.
    [27] L Geng, Boguslavsky L I, Kovalev I P, et al. Amperometric biosensors based on dehydrogenase/NAD and heterocyclic quinones [J]. Biosens Bioelectron, 1996, 11(12): 1267-1275.
    [28] Nigel J. Forrow, Gurdial S Sanghera, Stephen J Walters et al. Development of a commercial amperometric biosensor electrode for the ketone d-3-hydroxybutyrate[J]. Biosens Bioelectron, 2005, 20(8): 1617-1625.
    [29] Motoyama Y, Nakamura N, Ohno H. Preparation of an Electrode That Immobilizes NAD-Dependent Alcohol Dehydrogenase by Using a Redox Polymer Containing 1,10-Phenanthroline-5,6-dione [J]. Electroanalysis 2008, 20(8): 923-926.
    [30] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves viaTemplate-Mediated Structural Transformation[J]. J Phys Chem B, 1999, 103(37): 7743-7746.
    [31] Vartufi J C, Kresge C T, Leonowicz M E. Synthesis of Mesoporous Materials:Liquid-Crystal Templating versus Intercalation of Layered Silicates[J]. Chemical Material, 1994, 6(11): 2070-2077.
    [32] Walcarius A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie, 2005, 8(3-4): 693-712.
    [33] Lei C, Lisdat F, Wollenberger U. Cytochrome c/Clay-Modified Electrode[J]. Electroanalysis, 1999, 11(4): 274-276.
    [34] Yu J H, Ju H X. Preparation of Porous Titania Sol-Gel Matrix for Immobilization of Horseradish Peroxidase by a Vapor Deposition Method[J]. Anal Chem, 2002, 74(14): 3579-3583.
    [35] Fan C, Zhuang Y, Li G, et al. Direct Electrochemistry and Enhanced Catalytic Activity for Hemoglobin in a Sodium Montmorillonite Film[J]. Electroanalysis, 2000, 12(14):1156-1158.
    [36] Sallez Y, Bianco P, Lojou E. Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes:a model for the interaction between proteins and soils[J]. J Electroanal Chem, 2000, 493(1-2): 37-49.
    [37] Walcarius A, Mandler D l, Cox J A, et al. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry[J]. Journal of Mater Chem, 2005, 15(35-36): 3663-3689.
    [38] Lee G, Pyun S. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors[J]. Electrochim Acta, 2006, 51(15): 3029-3038.
    [39] Furukawa H, Hibino M, Zhou H, et al. Synthesis of Mesoporous Carbon-Containing Ferrocene Derivative and Its Electrochemical Property[J]. Chemistry Letters, 2003, 32(2): 132-133.
    [40] Zare H R, Golabi S M. Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) [J]. J Solid State Electrochem, 2000, 4(2): 87-94.
    [41] Vasilescu Alina, Noguer Thierry, Andreescu Silvana, et al. Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study[J]. Talanta, 2003, 59(4): 751-765.
    [42] Moore R R, Banks C E, Compton R G. Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts[J] Anal Chem, 2004, 76(10): 2677-2682.
    [43] Bank C E, Moore R R, Davies T J, et al. Investigation of modified basal plane pyrolytic graphiteelectrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes[J]. Chem Commun, 2004, 10(16): 1804-1805.
    [44] Musameh M, Lawrence N S, Wang J. Electrochemical activation of carbon nanotubes, Electrochem Commun, 2005, 7(1): 14-16.
    [45] Kudera M, Nakagawa Y, Fletcher S, et al. A voltammetric study of direct electron transfer to cytochrome c using a very large assembly of carbon microelectrodes[J]. Lab on a Chip, 2001, 1(2): 127-131.
    [46] Nengqin Jia, Zhiyong Wang, Guofeng Yang, Hebai Shen, Longzhang Zhu, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochem Commun, 2007, 9(2): 233-238..
    [47] Geng L, Boguslavskytt L I, Kovalevt I P, et al. Amperometric biosensors based on dehydrogenase / NAD and heterocyclic quinones [J]. Biosens Bioelectron. 1996, 11(12): 1267-1275.
    [48] Zhu L, Tian C, Yang D, et al. Bioanalytical Application of the Ordered Mesoporous Carbon Modified Electrodes[J]. Electroanalysis, 2008, 20(23): 2518-2525.
    [49] Andrieux C P, Saveant J M. Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions [J]. J Electroanal Chem, 1978, 93(2): 163-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700