过氧化氢酶传感器及中心蛋白与Eu~(3+)配位作用的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于生物传感器在临床、环境、食品等领域具有广阔的应用前景,多年来吸引了人们极大的研究兴趣。20世纪90年代纳米技术的介入为生物传感器的发展提供了新的活力,并引发了突破性的进展。纳米复合材料的最大优点是能将不同性能的材料结合起来,在同一种材料上产生更多更特殊的性能。纳米碳管(MWCNT)和纳米金(GNP)的复合组装研究已经引起人们广泛的注意,为传感器的研究带来了新的机遇。本研究工作的第一部分主要阐述了纳米金和碳纳米管修饰的过氧化氢酶(CAT)生物传感器的制备和性能研究。利用高生物亲和性的纳米金和高化学稳定性的碳纳米管与过氧化氢酶共同组装到电极表面,构建了具有高灵敏性的过氧化氢酶生物传感器(Nafion/CAT-GNP/MWCNT/PG)并实现了过氧化氢酶在热解石墨电极表面的直接电化学。固定在生物传感器表面的过氧化氢酶分子在-0.15 V~-0.75 V范围内,0.1 MpH 6.98的磷酸缓冲溶液中进行循环伏安测量,获得了一对几乎可逆的氧化还原峰。通过研究其在不同扫描速率下的电化学行为,可获得该生物传感器的一些电化学参数:在电子传递系数α近似等于0.5时,电子转移速率常数k_s=3.98 s~(-1)等。利用循环伏安法研究了过氧化氢酶生物传感器在不同pH值的缓冲溶液中对氧化还原峰电势的影响,结果表明,过氧化氢酶的电化学过程为一电子的传递伴随有一质子的耦合的过程。制备的过氧化氢酶生物传感器不仅稳定性高,而且对过氧化氢具有良好的电催化活性,响应灵敏,可有效的用于H_2O_2的检测。
     研究工作的第二部分侧重于稀土离子Eu~(3+)与中心蛋白配位作用的电化学研究。中心蛋白是EF-hand钙结合蛋白,是钙调蛋白超家族中的一员,在细胞的正常分裂及包含中心蛋白的纤维系统收缩中起重要作用。本文选用PCR技术及基因重组技术,得到了中心蛋白分子的片段(P_(23)),探讨了其与Eu~(3+)离子的配位作用。
     在0.01 M pH为7.4的Hepes缓冲溶液中,利用循环伏安法、差分脉冲法及电化学阻抗技术研究了中心蛋白与Eu~(3+)相互作用的电化学行为。在-0.20 V~-1.2 V范围内的循环伏安研究表明,中心蛋白与Eu~(3+)发生配位作用,在-0.839 V(形式电势E~0′)处产生了一对几乎可逆的氧化还原峰,这与中心蛋白与Eu~(3+)本身的氧化还原峰(E~0′=-0.610 V)明显不同,说明Eu~(3+)进入了中心蛋白的结合位点与其结合形成了配合物Eu~(3+)-P_(23)。通过研究Eu~(3+)及Eu~(3+)-P_(23)在不同扫描速率下的电化学行为,可分别获得一些有用的电化学参数。利用脉冲伏安法并通过计算可求得Eu~(3+)-P_(23)的结合常数,并对其配位形式及成键亲和性做了简单的讨论。对该中心蛋白的研究,不仅有助于阐明低等真核生物的细胞分裂、细胞运动等重要生命活动过程的本质,也有助于分析稀土离子在蛋白质中的配位性质,而且将其用作稀土离子进入生物体细胞内的主要靶蛋白的模型,对深入研究稀土生物学效应的化学基础具有重要意义。
Catalase biosensors which utilize immobilized oxidase for the conversion of the target analytes into electrochemically detectable products are one of the most widely used detection methods and have become an area of wide ranging research activity.Recent advances in biocompatible nano technology make it possible to develop new biosensors.
     In one part of this paper,a highly hydrophilic,non-toxic and conductive colloidal gold nanoparticles(GNP) and multi-walled carbon nanotubes (MWCNT) on pyrolytic graphite electrode has been demonstrated.The direct electron transfer of catalase(CAT) was achieved based on the immobilization of MWCNT/CAT-GNP on a pyrolytic graphite electrode by a Nafion film. The immobilized catalase displayed a pair of well-defined and nearly reversible redox peaks in 0.1 M phosphate buffer solution(PBS)(pH 6.98). The dependence of E~0′on solution pH indicated that the direct electron transfer reaction of catalase was a single-electron-transfer coupled with single-proton-transfer reaction process.The immobilized catalase maintained its biological activity,showing a surface controlled electrode process with the apparent heterogeneous electron transfer rate constant(k_s) of 3.98 s~(-1) when charge-transfer coefficient was 0.5,and displays electrocatalytic activity in the electrocatalytic reduction of hydrogen peroxide.So the resulting modified electrode can be used as a biosensor for detecting hydrogen peroxide.
     Centrin(caltractin) is a member of the calmodulin(CAM) superfamily of EF-hand calcium-binding proteins.It is required for proper cell division,and plays an important role in contraction of centrin-based fiber systems in eukaryotic cells as well.In the other hand of this paper,the Eu~(3+),is reported to study Ciliate Euplotes octocarinatus centrin for the first time.The binding process of Eu~(3+) with P_(23)(one segment of Centrin),has been investigated by cyclic voltammetry,electrochemical impedance spectroscopy and pulse voltammetry in pH 7.4 10 mM N-2-hydroxy-ethylpiperazine-N-2-ethane-sulfonic acid buffer solution(Hepes) at a pyrolytic graphite electrode.The formal potential(E~0′) of Eu~(3+) shifted obviously to the negative direction from -0.610 V to -0.839 V(versus saturated calomel electrode) when P_(23) was added into the Eu~(3+) solution.The values of the electrochemical parameters, the charge-transfer coefficient(α) and the electrochemical reaction standard rate constant(k_s),were obtained in the absence and presence of P_(23).The kinetic affinity constant,(1.86±0.51)×10~4 M~(-1) was calculated by pulse voltammetry.The present working mainly investigated the coordination between Eu~(3+) and Centrin(Cen) by electrochemistry spectra,on the one hand, can help to clarify the many properties of lower eukaryotes,such as cell division,mobile cell;on the other hand,shed more light on chemical bases of rare earhe effect using centrin as possible binding target model.
引文
[1]杨明星,缪煜清,齐名.生物传感器在医学检验中的应用[J].临床检验杂志,2002,20(3):182-184.
    [2]Thevenot D R,Toth K,Durst R A,Wilson G S.Electrochemical biosensors:recommended definitions and classification[J].Analytical Letters,2001,34(5):635-659.
    [3]武宝利,张国梅,高春光,双少敏.生物传感器的应用进展[J].中国生物工程杂志,2004,24(7):65-69.
    [4]汪尔康.21世纪的分析化学[M].北京:科学出版社,1999.
    [5]江丽萍,吴霞琴,朱柳菊等.基于金纳米的第3代平面型葡萄糖传感器的研究[J].上海师范大学学报(自然科学版),2003,32(1):48-52.
    [6]Taylor M A,Jones M N,Vadgama P M,Higson S P.The characterization of lipsomal glucose oxidase electrodes for use measurement of glucose[J].Biosensor and Bioelectronics,1995,10(3-4):251-260.
    [7]Filipiak M,Fludra K,Gosciminska E.Enzymatic membranes for determination of some disaccharides by means of an oxygen electrode[J].Biosensor and Bioelectronics,1996,11(4):355-364.
    [8]Decher G.Fuzzy nanoassemblies:Toward layered polymeric multicomposites[J].Science,1997,277(5330):1232-1237.
    [9]Hoshi T,Saiki H,Kuwazawa S,Tsuchiya C,Chen Q,Anzai J I.Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors[J].Analytical Chemistry,2001,73(21):5310-5315.
    [10]Clark L C,Lyon C.Electrode system for continuous monitoring in cardiovascular suigery[J].Annals of the New York Academy of Sciences,1962,102(1):29-45.
    [11]Updike S J,Hicks G P.The enzyme electrode[J].Nature,1967,214(5092):986-988.
    [12]Gregg B A,Heller A.Cross-linked redox gels containing glucose oxidase for amerometric biosensor applications[J].Analytical Chemistry,1990,62(3):258-263.
    [13]Cenas N K,Kulys J J.Biocatalytic oxidation of glucose on the conductive charge transfer complexes[J].Bioelectrochemistry and Bioenergetics,1981,8(1):103-113.
    [14]Chen J R,Miao Y Q,He N Y,Wu X H,Li S J.Nanotechnology and biosensors[J].Biotechnology Advances,2004,22(7):505-518.
    [15]Martin C R,Mitchell D T.Nanomaterials in analytical chemistry[J].Analytical Chemistry,1998,70(9):322A-327A.
    [16]唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼.纳米颗粒增强的葡萄糖生物传感器[J].中国科学(B),2000,30(2):199-124.
    [17]Das R R,Pasternack R F,Plane R A.Fast reaction kinetics of porphyrin dimerization in aqueous solution[J].Journal of the American Chemical Society,1970,92(11):3312-3316.
    [18]Yee C,Scotti M,Ulman A,White H,Rafailovich M,Sokolov J.One-phase synthesis of thiol-functionalized platinum nanoparticles[J].Langmuir,1999,15(13):4314-4316.
    [19]Fan C Y,Jiang L.Preparation of hydrophobic nanometer gold particles and their optical adsorption in chloroform[J].Langmuir,1997,13(11):3059-3062.
    [20]Faraday M.Experimental relations of gold(and other metals) to light[J].Philosophical Transactions of the Royal Society,1857,147:145-181.
    [21]Frens G.Controlled nucletion for the regulation of the particle size in monodiperse gold suspensions[J].Nature:Physics Science,1973,241(105):20-22.
    [22]Roth J.Technique in Immunocytochemistry[M].London,Academic,1982,p107-133.
    [23]Shipway A N,Katz E,Willner I.Nanoparticle arrays on surfaces for electronic,optical and sensoric applications[J].Chemistry Physics Chemistry,2000,1(1):18-52.
    [24]Xiao Y,Ju H X,Chen H Y.Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode[J].Analytical Biochemistry,2000,278(1):22-28.
    [25]Jia J B,Wang B Q,Wu A G,Cheng G J,Li Z,Dong S J.A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network[J].Analytical Chemistry,2002,74(9):2217-2223.
    [26]Zhao J,Henkens R W,Stonehuerner J,O'Daly J P,Crumbliss A L.Direct electron transfer at horseradish peroxidase colloidal gold modified electrodes[J].Journal of Electroanalytical Chemistry,1992,327(1-2):109-119.
    [27]Lyon A L,Musick M D,Reiss B D,Pena D J,Natan M J.Surface plasmon resonance of colloidal Au-modified gold films[J].Sensors and Actuators B,1999,54(1):118-124.
    [28]Hu X Y,Xiao Y,Chen H Y.Adsorption characteristics of Fe(CN)_6~(3-/4-) on Au colloids as monolayer films on cysteamine-modified gold electrode[J].Journal of Electroanalytical Chemistry,1999,466(1):26-30.
    [29]欧雪梅,江龙.利用不同链长的磷脂酰胆碱制备纳米金颗粒[J].科学通报,1998,43(13):1453-1454
    [30]Chen X Y,Li J R,Li X C,Jiang L.A new step to the mechanism of the enhancement effect of gold nanoparticles on glucose oxidation[J].Biochemical and Biophysical Research Communications,1998,245(2):352-355.
    [31]Crumbliss A L,Perine S C,Stonehuerner J,Tubergen K R,Zhao J,Henkens R W,O'Daly J P.Colloidal gold as a biocompatible immobili-zation matrix suitable for the fabrication of the enzyme electrodes by electrodeposition[J].Biotechnology and Bioengineering,1992,40(4):483-490.
    [32]Chandrashekar T K,Willgen H V,Ebersole M H.Optical and electron spin resonance study of cation and cation-crown ether induced dimerization of tetrakis(4-sulfonatophenyl)porphyrin[J].Journal of Physical Chemistry,1984,88(19):4326-4332.
    [33]Wang M J,Wang L Y,Wang G,Ji X H,Bai Y B,Li T J,Gong S Y,Li J H.Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions[J].Biosensors and Bioelectronic,2004,19(6):575-582.
    [34]Gonzalez-Garcia M B,Femandez-Sanchez C,Costa-Garcia A.Colloidal gold as an electrochemical label of streptavidin-biotin interaction[J].Biosensors and Bioelectronic,2000,15(5-6):315-321.
    [35]Mena M L,Yanez-Sedeno P,Pingarron J M.A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes[J].Analytical Biochemistry,2005,336(1):20-27.
    [36]Shipway A N,Lahav M,Willner I.Nanostructured gold colloid electrodes[J].Advanced Materials,2000,12(13):993-998.
    [37]Cheng W L,Dong S J,Wang E K.Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction[J].Analytical Chemistry,2002,74(15):3599-3604.
    [38]Iijima S.Helical microtubules of graphltic carbon[J].Nature,1991,354(6348):56-58.
    [39]刘潞琪,郭志新,戴黎明,朱道本.碳纳米管的有机化学修饰[J].科学通报,2001,46(19):1590-1595.
    [40]Ugarte D,St(o|¨)ckli T,Bonard J M,Chatelain A,De Heer W A.Filling carbon nanotubes[J].Journal of Applied Physics A,1998,67(1):101-105.
    [41]Tsang S C,Davis J J,Green M L H,Hill H A O,Leung Y C,Sadler P J.Immobilization of small proteins in carbon nanotubes:high-resolution transmission electron microscopy study and catalytic activity[J].Chemical communications,1995,17:1803-1804.
    [42]Davis J J,Coles R J,Hill H A O.Protein electrochemistry at carbon nanotube electrode[J].Journal of Electroanalytical Chemistry,1997,440(1-2):279-282.
    [43]张凌燕.基于纳米材料为基质固定生物分子的免疫传感器的研究.西南大学博士研究生论文,2006.
    [44]Tsang S C,Chen Y K,Harris P J F.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372(6502):159-162.
    [45]Lago R M,Tsang S C,Lu K L,Chen Y K,Green M L H.Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups[J].Chemical communications,1995,13:1355-1356.
    [46]Hiura H,Ebbesen T W,Tanigaki K.Opening and purification of CNTs in high yield[J].Advanced Materials,1995,7(3):275-276.
    [47]Liu J,Rinzler A G,Smalley R E,et al.Fullerene pipes[J].Science,1998,280(5367):1253-1256.
    [48]Zhao Y D,Zhang W D,Chen H,Luo Q M,Li S F Y.Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode[J].Sensors and Actuators B,2002,87(1):168-172.
    [49]Elie A G,Lei C H,Baughman R H.Direct electrode transfer of glucose oxidase on carbon nanotubes[J].Nanotechnology,2002,13(5):559-564.
    [50]陈荣生,肖化,黄卫化,童化,王宗礼,程介克.单壁碳纳米管修饰的高灵敏纳米碳纤维电极[J].高等学校化学学报,2003,24(5):808-810.
    [51]Ellis A V,Vjayamohanan K,Goswaimi R,Chakrapani N,Ramanathan L S,Ajayan P M,Ramanath G.Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes[J].Nano Letters,2003,3(3):279-282.
    [52]Liu L Q,Wang T X,Li J X,Guo Z X,Dai L M,Zhang D Q,Zhu D B.Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker[J].Chemical Physics Letters,2003,367(5-6):747-752.
    [53]Xu X,Zhao J Q,Jiang D C,Kong J L,Liu B H,Deng J Q.TiO_2 sol-gel derived amperometric biosensor for H_2O_2 on the electropolymerized phenazine methosulfate modified electrode[J].Analytical and Bioanalytical Chemistry,2002,374(7-8):1261-1266.
    [54]Pankrotov I,Lev O.Sol-gel derived renewable-surface biosensors[J].Journal of Electroanalytical Chemistry,1995,393(1-2):35-41.
    [55]Tsionsky M,Gun G,Glezer V,Lev O.Sol-gel derived ceramic carbon composite electrodes:introduction and scope of applications[J].Analytical Chemistry,1994,66(10):1747-1753.
    [56]任湘菱,唐芳琼.纳米银-金复合颗粒对葡萄糖生物传感器响应灵敏度的增强效应[J].科学技术与工程,2002,2(3):15-16.
    [57]孟宪伟,唐芳琼,冉均国,苟立.纳米颗粒复合材料增强的葡萄糖生物传感器[J].化学通报,2001,64(6):365-367.
    [58]Holm R H,Solomon E I.Preface:Bioinorganic Enzymology[J].Chemical Reviews,1996,96(7):2237-2238.
    [59]Glusker J P.Structural aspects of metal liganding to functional groups in proteins[J].Advances in Protein Chemistry,1991,42:1-72.
    [60]Salisbury J,Baron A,Sanders M,et al.The centrin-based cytoskeleton of Chlamydomonas Reinhardtii:distribution in interphase and mitotic cells[J].The Journal of Cell Biology,1988,107(2):635-641.
    [61]Bhattacharya D,Steink(o|¨)tter J,Melkonian M.Molecular coning and evolutionary analysis of the calcium-modulated contractile protein,in green algas and land plants[J].Plant Molecular Biology,1993,23(6):1243-1254.
    [62]Baum P,Furlong C,Byers B.Yeast gene required for spindle pole body duplication:homology of its product with Ca~(2+)-binding proteins[J].Proceedings of the National Academy of Sciences of the United States of America,1986,83(15):5512-5516.
    [63]Vaughn K C,Sherman T D,Renzaglia K S.A centrin homologue is a component of the multilayered structure in bryophytes and pteridophytes[J].Protoplasma,1993,175(1-2):58-66.
    [64]Errabolu R,Sanders M A,Salisbury J L.Cloning of a cDNA encoding human centrin,an EF-hand protein of centrosomed and mitotic spindle poles[J].Journal of Cell Science,1994,107(Pt 1):9-16.
    [65]Lee V D,Huang B.Molecular cloning and centrosomal localization of human caltractin[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90(23):11039-11043.
    [66]Ogawa K,Shimizu T.cDNA sequence for mouse caltractin[J].Biochimica et Biophysica Acta,1993,1216(1):126-128.
    [67]Middendorp S,Paoletti A,Schiebel E,Bornens M.Identification of a new mammalian centrin gene,more closely related to saccharomyces cerevisiae CDC31 gene[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):9141-9146.
    [68]Kretsinger R H,Nockolds C E.Carp muscle calcium-binding protein Ⅱ structure determination and general description[J].Journal of Biological Chemistry,1973,248(9):3313-3326.
    [69]Nelson M R,Chazin W J.Structures of EF-hand Ca~(2+)-binding proteins:diversity in the organization,packing and response to Ca~(2+) binding[J].Biometals,1998,11(4):297-318.
    [70]Geier B M,Wiech H,Schiebel E.Binding of centrins,yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p[J].Journal of Biological Chemistry,1996,271(45):28366-28374.
    [71]Wiech H,Geier B M,Paschke T,Spang A,Grein K,Steinkotter J,Melkonian M,Schiebel E.Characterization of green alga,yeast,and human centrins.Specific subdomain features determine functional diversity[J].Journal of Biological Chemistry,1996,271(37):22453-22461.
    [72]Ruiz-Binder N E,Geimer S,Melkonian M.In vivo localization of centrin in the green alga Chlamydomonas reinhardtii[J].Cell Motility and the Cytoskeleton,2002,52(1):43-55.
    [73]Elna Pidcock,Moore G R.Structural characteristics of protein binding sites for calcium and lanthanide ions[J].Journal of Biological Inorganic Chemistry,2001,6(5-6):479-489.
    [74]Meyn S M,Seda C,Campbell M,Weiss K L,Hu H,Pastrana-Rios B,Chazin W J.The biochemical effect of Ser167 phosphorylation on Chlamydomonas reinhardtii centrin[J].Biochemical and Biophysical Research Communications,2006,342(1):342-348.
    [75]H Kawasaki,Kretsinger R H.Calcium-binding proteins 1:EF-hands[J].Protein Profile,1995,2:297-490.
    [76]Popescu A,Miron S,Blouquit Y,Duchambon P,Christova P,Craescu C T.Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin[J].Journal of Biological Chemistry,2003,278(41):40252-40261.
    [77] Tucker J B. Spatial organization of microtubule-organizing centers and micro-tubules[J]. Journal of Cell Biology, 1984, 99(1 Pt 2): 55-62.
    [78] Taillon B, Adler S, Suhan J, Jarvik J. Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas[J]. Journal of Cell Biology, 1992,119(6): 1613-1624.
    [79] Baum P, Furlong C, Byers B. Yeast gene required for spindle pole body duplication:homology of its product with Ca~(2+)-binding proteins[J]. Proceedings of the National Academy of Sciences, 1986, 83: 5512-5516.
    [80] Geier B M, Wiech H, Schiebel E. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p[J]. The Journal of Biological Chemistry, 1996,271(8): 28366-28374.
    [81] Spang A, Courtney I, Grein K, Matzner M, Schiebel E. The Cdc31p-binding protein Karlp is a component of the half bridge of the yeast spindle pole body[J]. The Journal of Cell Biology, 1995,128(5): 863-877.
    [82] Sullivan D S, Biggins S, Rose M D. The yeast centrin, Cdc31p, and the interacting protein kinase, are required for cell integrity[J]. The Journal of Cell Biology, 1998,143(3): 751-765.
    [83] Jaspersen S L, Giddings T H Jr, Winey M. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p[J]. The Journal of Cell Biology, 2002,159(6): 945-956.
    [84] Kilmartin J V. Sfilp has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication[J]. The Journal of Cell Biology, 2003,162(7): 1211-1221.
    [85] Sanders M A, Salisbury J L. Centrin plays an essential role in microtubule severing duringflagellar excision in Chlamydomonas reinhardtii[J]. The Journal of Cell Biology, 1994,124(5): 795-805.
    [86] Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery[J]. Nature Cell Biology,2004, 6(9): 840-848.
    [87] Rout M P, Aitchison J D, Suprato A, Hjertaas K, Zhao Y, Chait B T. The yeast nuclear pore complex:composition,architecture,and transport mechanism[J].The Journal of Cell Biology,2000,148(4):635-651.
    [88]倪嘉赞.稀土生物无机化学[M].北京,科学出版社,1995,1-5.
    [89]Yuan J,Matsumoto K,Kimura H.A new tetradentate β-Diketonate-Europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay[J].Analytical Chemistry,1998,70(3):596-601.
    [90]Hemmil(a|¨) I,Laitala V.Progress in lanthanides as luminescent probes[J].Journal of Fluorescence,2005,15(4):529-542.
    [91]Lee L,Sykes B D.Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution:EF calcium binding site of carp parvalbumin[J].Biochemistry,1983,22(19):4366-4373.
    [92]Bentrop D,Bertini I,Cremonini M A,Forsn S,Luchinat C,Malmendal A.Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce~(3+) ions by ~1H NMR[J].Biochemistry,1997,36(39):11605-11618.
    [93]Biekofsky R R,Muskett F W,Schmidt J M,Martin S R,Browne J P,Bayley P M,Feeney J.NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca~(2+) by Tb~(3+)[J].FEBS Letters,1999,460(3):519-526.
    [94]Grobler J A,Essen L O,Williams R L,Hurley J H.C2 domain conformational changes in phospholipase C-delta 1[J].Nature Structural Biology,1996,3(9):788-795.
    [95]Brodersen D E,Etzerodt M,Madsen P,Celis J E,Thogersen H C,Nyborg J,Kjeldgaard M.EF-hands at atomic resolution:the structure of human psoriasin (S100A7) solved by MAD phasing[J].Structure,1998,6(4):477-489.
    [96]冯志祥,苗键.稀土离子与牛血Cu(Zn)-SOD的作用[J].高等学校化学学报,1995,16(7):993-996
    [97]杨斌盛,Harris W S.稀土离子与伴清蛋白结合的光谱研究[J].高等学校化学学报,1998,19(7):1057-1061.
    [98]李晓晶,张善荣,张树功,斐奉奎.稀土离子(Ⅲ)与牛血清白蛋白结合作用的研究[J].高等学校化学学报,1999,20(1):127-131.
    [99]朱兵,杜秀莲,李荣昌,王夔,金坚,王博诚.稀土离子与乳铁蛋白结合的光谱 研究[J].高等学校化学学报,2001,22(1):26-30.
    [100]李蕾,李勋,戚琦,罗国添.稀土探针Sm~(3+)与牛血清白蛋白结合作用的分子光谱及电化学表征[J].光谱学与光谱分析,2004,24(1):74-77.
    [101]吴惠霞,李秀琴,何其庄,王则民,吴霞琴.铕(Ⅲ)-脯氨酸-邻菲罗啉三元配合物的电化学行为研究[J].稀土,2001,22(2):1-3.
    [102]曹玉华,黄晓华,王玉红,张欣,叶建农.铕-维生素B6及铕-维生素B6-甘氨酸配合物的伏安法研究[J].中国稀土学报,2002,20(6):692-696.
    [103]Ferro Se,De Battisti A D.Electrochemistry of the aqueous europium(Ⅲ)/europium(Ⅱ) redox couple at conductive diamond electrodes[J].Journal of Electroanalytical Chemistry,2002,533(1-2):177-180.
    [104]Hu C G,Yuan S,Hu S S.Studies on electrochemical properties of MWNTs-Nafion composite films based on the redox behavior of incorporated Eu~(3+) by voltammetry and electrochemical impedance spectroscopy[J].Electrochimica Acta,2006,51(15):3013-3021.
    [105]Bruno J,Horrocks W D Jr,Zauhar R J.Europium(Ⅲ) luminescence and tyrosine to terbium(Ⅲ) energy-transfer studies of invertebrate(octopus) calmodulint[J].Biochemistry,1992,31(31):7016-7026.
    [106]Zhang Y F,Xu Z,Lv Y G,Zhang F J,Wang Y,Zhang J C.Study on luminescence properties of a novel rare earth complex Eu(TTA)_2(N-HPA)Phen[J].Journal of Rare Eeaths,2007,25(2):143-147.
    [107]Yuan J,Matsumoto K,Kimura H.A new tetradentate beta-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay[J].Analytical Chemistry,1998,70(3):596-601.
    [108]Bruno J,Horrocks W D Jr,Beckingham K.Characterization of Eu(Ⅲ) binding to a series of calmodulin binding site mutants using laser-induced Eu(Ⅲ) luminescence spectroscopy[J].Biophysical Chemistry,1996,63(1):1-16.
    [109]杨斌盛,Wesley R.Harris.铕(Ⅲ)离子与人血清脱铁转铁蛋白结合的紫外差光谱研究[J].化学学报,1999,57(5):503-509.
    [110]Kang J W,Chen J,Lu X Q,Song Y M,Zeng H G,Liu H D,Wang Y S.Voltammetry and fluorescence studies on the interaction between Eu(phen)_3~(3+)and DNA[J].Rare Metals,2003,22(2):131-136.
    [111]Kang J W,Zhuo L,Lu X Q,Liu X Q,Zhang M,Wu H X.Electrochemical investigation on interaction between DNA with quercetin and Eu-Qu3 complex[J].Journal of Inorganic Biochemistry,2004,98(1):79-86
    [112]Xie W H,Bioeletrochemistry of Monooxygenases[M].p 43.
    [113]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002.
    [1]Crumbliss A L,Perine S C,Stonehuemer J,Tubergen K R,Zhao J,Henkens R W,O'Daly J P.Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition[J].Biotechnology and Bioengineering,1992,40(4):483-490.
    [2]唐芳琼,沈继峰,张金芳,张改莲.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应[J].高等化学学报,1999,20(4):634-636.
    [3]Zen J M,Lo C W.A glucose sensor Made of an enzymatic clay-modified electrode and methyl viologen mediator[J].Journal of Analytical Chemistry,1996,68(15):2635-2640.
    [4]Lyon L A,Musick M D,Smith P C,Reiss B D,Pena D J,Natan M J.Surface plasmon resonance of colloidal Au-modified gold film[J].Sensors and Actuators B,1999,54(1-2):118-124.
    [5]Elghanian R,Storhoff J J,Mucic R C,Letsinger R L,Mirkin C A.Selective colorimetric detection of polynucleotides based on the distance dependent optical properties of gold nanoparticles[J].Science,1997,277(5329):1078-1081.
    [6]刘志国,胡舜钦,沈国励.基于褐藻酸钠-纳米金复合物作非酶标记的新型电化学免疫传感器的研制[J].理化检验-化学分册,2004,40(8):445-449.
    [7]唐点平,袁若,柴雅琴,刘颜,钟霞,戴建远.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究[J].化学学报,2004,62(20):2062-2066.
    [8]江丽萍,吴霞琴,朱柳菊,贾能勤,章宗穰.基于金纳米的第3代平面型葡萄糖传感器的研究[J].上海师范大学学报(自然科学版),2003,32(1):48-52.
    [9]李春香,阳明辉,沈国励,俞汝勤.基于2,6-吡啶二甲酸聚合膜固定纳米金胶的过氧化氢传感器的研究[J].化学学报,2004,62(17):1663-1667.
    [10]Hu X Y,Xiao Y,Chen H Y.Adsorption characteristics of Fe(CN)_6~(3-/4-) on Au colloids as monolayer films cysteamine-modified gold electrode[J].Journal of Electroanalytical Chemistry,1999,446(1):26-30.
    [11]George T K,Prashant V K.Making gold nanoparticles glow:enhanced emission from a surface-bound fluoroprobe[J],Jamer Chem Soc,2000,122(1):2655-2656.
    [12]Luo H X,Shi Z J,Li N Q,Gu Z N,Zhuang Q K.Investigation on the electrochemical and electrocatalytic behavior of chemically modified electrode of single wall carbon nanotube functionalized with carboxylic acid group[J].Chemical Journal of Chinese University,2000,21(9):1372-1374.
    [13]Luo H X,Shi Z J,Li N Q,Gu Z N,Zhuang Q K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Analytical Chemistry,2001,73(5):915-920.
    [14]Wang J X,Li M X,Shi Z J,Li N Q,Gu Z N.Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes[J].Electroanalysis,2002,14(3):225-230.
    [15]Zhao G C,Wu F H,Wei X W.Catalytic activity of multiwalled carbon nanotubes for the oxidation of nitric oxide[J].Chemistry Letters,2002,5:520-521
    [16]Burghard M,Duesberg G,Philipp G,Muster J,Roth S.Controlled adsorption of carbon nanotubes on chemically modified electrode arrays[J].Advanced Materials,1998,10(8):584-589.
    [17]Wang J,Musameh M,Carbon nanotubes/Teflon composite electrochemical sensors and biosensors[J].Analytcal Chemistry,2003,75(9):2075-2079.
    [18]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J].高等学校化学学报,2002,23(11):2067-2069.
    [19]Tsai Y C,Chen J M,Li S,Marken F.Electroanalytical thin film electrodes based on a Nafion~(TM)-multi-walled carbon nanotube composite[J].Electrochemistry Communcation,2004,6(9):917-922.
    [20]Somasundrum M,Kirtikara K,Tantichareon M.Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode[J].Analytica Chimica Acta,1996,319(1-2):59-70.
    [21]Kulys J J,Pesliakine M V,Samalius A S.The development of bienzyme glucose electrodes[J].Bioelectrochemistry and Bioenergetics,1981,8(1):81-88.
    [22]Wang J,Lin Y,Chen L.Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products[J].The Analyst,1993,118(3):277-280.
    [23]Tatsuma T,Watanabe T.Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate,pyruvate,cholesterol and uric acid[J].Analytica Chimica Acta,1991,242:85-89.
    [24]Navas M J,Jimenez A M,Galan G.Air analysis:determination of hydrogen peroxide by chemiluminescence[J].Atmospheric Environment,1999,33(14):2279-2283.
    [25]Xiao Y,Ju H X,Chen H Y.Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode[J].Analytical Biochemistry,2000,278(1):22-28.
    [26]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].Nat.Phys.Sci.,1973,241:20-22.
    [27]Xiao Y,Ju H X,Chen H Y.Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J].Analytica Chimica Acta,1999,391(1):73-82.
    [28]Bifulco L,Cammaroto C,Newman J D,Turner A P F.TTF modified biosensors for hydrogen peroxide[J].Analytical Letters,1994,27(8):1443-1452.
    [29]Wang J,TuZhi P.Selectivity and sensitivity improvements at perfluorinated ionomer/cellulose acetate bilayer electrodes[J].Anaytical Chemisy,1986,58(14):3257-3261.
    [30]Athey D,Ball M,McNeil C J,Armstrong R D.A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement[J].Electroanalysis,1995,7:270-273.
    [31]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [32]Kharitonov A B,Alfonta L,Katz E,Willner I.Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry[J].Journal of Electroanalytical Chemistry,2000,487(2):133-141
    [33]Laureyn W,Nelis D,Van Gerwen P,Baert K,Hermans L,Magnee R,Pireaux J-J,Maes G.Nanoscaled interdigitated titanium electrodes for impedimetric biosensing[J].Sensors and Actuators,2000,68(1-3):360-370.
    [34]Peng H,Soeller C,Cannell M B,Bowmaker G A,Cooney R P,Travas-Sejdic J.Electrochemical detection of DNA hybridization amplified by nanopartieles[J].Biosensors Bioelectronics,2006,21(91):1727-1736.
    [35]Sun Y,Yan F,Yang W,Sun C.Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment[J].Biomaterials,2006,27(21):4042-4049.
    [36]Lu H,Li Z,Hu N.Direct voltammetry and electrocatalytic properties of catalase incorporated in polyacrylamide hydrogel films[J].Biophysical Chemistry,2003,104(6):623-632.
    [37]Shen L,Hu N.Heme protein films with polyamidoamine dendrimer:direct electrochemistry and electrocatalysis[J].Biochimica et Biophysica Acta,2004,1608(1):23-33.
    [38]Huang H,Hu N,Zeng Y,Zhou G.Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films[J].Analytical Biochemistry,2002,308(1):141-151.
    [39]Li M,He P,Zhang Y,Hu N.An electrochemical investigation of hemoglobin and catalase incorporated in collagen films[J].Biochimica et Biophysica Acta,2005,1749(1):43-51.
    [40]Di J,Zhang M,Yao K,Bi S.Direct voltammetry of catalase immobilized on silica sol-gel and cysteine modified gold electrode and its application[J].Biosensors Bioelectronics,2006,22(2):247-252.
    [41]孟宪伟,唐芳琼,冉均国,苟立.纳米颗粒复合材料增强的葡萄糖生物传感器[J].化学通报,2001,64(6):365-367.
    [42]Laviron E.General expression of the linear potential sweep voltammograms in the case of diffusion less electrochemical systems[J].Journal of Electroanalytical Chemistry,1979,101(1):19-28.
    [43]Laviron E.The use of linear potential sweep voltammetry and of AC voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes[J].Journal of Electroanalytical Chemistry,1979,100:263-270.
    [44]Salimi A,Sharifi E,Noorbakhsh A,Soltanian S.Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide[J].Biophysical Chemistry,2007,125(2-3):540-548.
    [45]Zhao J,Henkens R W,Stonehuemer J,O'Daly J P,Crambliss A L.Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes[J].Journal of Electroanalytical Chemistry,1992,327(1-2):109-119.
    [46]Wang J.Analytical Electrochemistry[M].New York:VCH,1999.
    [47]Bond A M.Modern Polarographic Methods in Analytical Chemistry[M].New York:Marcel Dekker,1980.
    [48]Li J,Tan S N,Ge H.Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide[J].Analytica Chemica Acta,1996,335(1-2):137-145.
    [1]Wiech H,Geier B M,Paschke T,Spang A,Grein K,Steinkotter J,Melkonian M,Schiebel E.Centrin characterization of green alga,yeast,and human centrins[J].Journal of Biological Chemistry,1996,271(3):22453-22461.
    [2]Ruiz-Binder N E,Geimer S,Melkonian M.In vivo localization of centrin in the green alga Chlamydomonas reinhardtii[J].Cell Motility and the Cytoskeleton,2002,52(1):43-55.
    [3]Bentrop D,Bertini I,Cremonini M A,Forsen S,Luchinat C,Malmendal A.Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce~(3+) ions by ~1H NMR[J].Biochemistry,1997,36(39):11605-11618.
    [4]杨频,杨斌盛,离子探针方法导论[M].北京:科学出版社,1994.
    [5]倪嘉赞等.稀土生物无机化学[M].北京:科学出版社,1995,1-5.
    [6]Yuan J,Matsumoto K,Kimura H.A new tetradentate beta-diketonate—europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay[J].Analytical Chemistry,1998,70(3):596-601.
    [7]Hemmil(a|¨) I,Laitala V,Fluoresc J.Progress inlanthanides as luminescent probes[J].Journal of Fluorescence,2005,15(4):529-542.
    [8]Lee L,Sykes B D.Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution:EF calcium binding site of carp parvalbumin[J].Biochemistry,1983,22(19):4366-4373.
    [9]Biekofsky R R,Muskett F W,Schmidt J M,Martin S R,Browne J P,Bayley P M,Feeney J.NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca~(2+) by Tb~(3+)[J].FEBS Letters,1999,460(3):519-526.
    [10]Grobler J A,Essen L O,Williams R L,Hurley J H.C2 domain conformational changes in phospholipase C-delta 1[J].Nature Structural & Molecular Biology,1996,3(9):788-795.
    [11]Brodersen D E,Etzerodt M,Madsen P,Celis J E,Thogersen H C,Nyborg J,Kjeldgaard M.EF-hands at atomic resolution:the structure of human psoriasin (S100A7) solved by MAD phasing[J].Structure,1998,6(4):477-489.
    [12]贺晓静,丰九英,王伟,柴宝峰,杨斌盛,梁爱华.游仆虫中心蛋白在大肠杆菌中的高效表达和多克隆抗体制备.动物学报,2004,50(3):445-447.
    [13]任列香,赵亚琴,丰九英,贺晓静,梁爱华,杨斌盛.八肋游仆虫中心蛋白N-端半分子与Tb~(3+),Ca~(2+)的结合[J].无机化学学报,2006,22(1):87-90.
    [14]Wang Z J,Ren L X,Zhao Y Q,Li G T,Liang A H,Yang B S.Metal ions-induced conformational change Of P-23 by using TNS as fluorescence probe[J].Spectrochim Acta A Mol Biomol Spectrosc,2007,66(4-5):1323-1326.
    [15]Bruno J,Horrocks W D Jr,Zauhar R J.Europium(Ⅲ) luminescence and tyrosine to terbium(Ⅲ) energy-transfer studies of invertebrate(octopus) calmodulin[J].Biochemistry,1992,31(31):7016-7026.
    [16]Bruno J,Horrocks W D Jr,Bechingham K.Characterization of Eu(Ⅲ) binding to a series of calmodulin binding site mutants using laser-induced Eu(Ⅲ) luminescence spectroscopy[J].Biophysical Chemistry,1996,63(1):1-16.
    [17]Allegrozi M,Bertini I,Janik M B L,Lee Y M,Liu G,Luchinat C.Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 A from the metal ion[J].Journal of the American Chemical Society,2000,122(17):4154-4161.
    [18]Pidcock E,Moore G R.Structural characteristics of protein binding sites for calcium and lanthanide ions[J].Journal of Biological Inorganic Chemistry,2001,6(5-6):479-489.
    [19]Rodrigues C G,Wedd A G,Bond A M.Electrochemistry of xanthine oxidase at glassy carbon and mercury electrodes[J].Journal of Electroanalytical Chemistry,1991,312(1-2):131-140.
    [20]Li Q,Luo G,Feng J.Direct electron transfer for heme proteins assembled on noncrystalline TiO_2 film[J].Electroanalysis,2001,13(5):359-363.
    [21]Pace C N,Vajdos F,Fee L,Grimsley G,Gray T.How to measure and predict the molar absorption coefficient of a protein[J].Protein Science,1995,4(11):2411-2423.
    [22]董绍俊,车广礼,谢远武.化学修饰电极[M].科学出版社.北京:1995,p 54.
    [23]Nicholson R S,Irving S.Theory of stationary electrode polarography.Single scan and cyclic methods applied to reversible,irreversible,and kinetic systems[J].Analytical Chemistry,1964,36(4):706-723.
    [24]Zhu Z W,Li N Q.Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of hemoglobin[J].Microchimca Acta,1999,130(4):301-308.
    [25]Jiao K,Li Q J,Sun W,Wang Z J.Voltammetric detection of the DNA interaction with toluidine blue[J].Electroanalysis,2005,17(11):997-1002.
    [26]Kretsinger R H,Kockolds C E.Carp muscle calcium-binding protein.Ⅱ.Structure determination and general description[J].Journal of Biological Chemistry,1973,248(9):3313-3326.
    [27] da Silva A C, Reinach F C. Calcium binding induces conformational changes in muscle regulatory proteins [J]. Trends in biochemical Sciences, 1991,16(2): 53-57.
    [28] Falke J J, Drake S K, Hazard A L, Peersen O B. Molecular tuning of ion binding to calcium signaling proteins[J]. Quarterly Reviews of Biophysics, 1994, 27(3):219-290.
    [29] Cates M S, Berry M B, Ho E L, Li Q, Potter J D, Phillips G N Jr. Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin[J]. Structure, 1999, 7(10): 1269-1278.
    [30] Bruno J, Horrocks W D Jr, Zauhar R J. Europium(III) luminescence and tyrosine to terbium(III) energy-transfer studies of invertebrate (octopus) calmodulin[J].Biochemistry, 1992,31(31): 7016-7026.
    [31] Horrocks W D Jr. Luminescence spectroscopy[J]. Method in Enzymology, 1993, 226:495-538.
    [32] Minunni M, Mascini M, Guilbault G G, Hock B. The quartz crystal microbalance as biosensona status reports on its future [J]. Analytical Letters, 1995,28(5): 749-764.
    [33] He Y B, Luo H Q, Li N B. Thermodynamic and kinetic analysis of the interaction between hepatitis B surface antibody and antigen on a gold electrode modified with cysteamine and colloidal gold via electrochemistry[J]. Biosensors and Bioelectronics.2007, 22(12): 2952-2957.
    [34] Liu Y, Yu X, Zhao R, Shangguan D H, Bo Z, Liu G. Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution[J]. Biosensors and Bioelectronics, 2003, 18(11):1419-1427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700