纳米钴镍氧化物的制备及其催化H_2O_2电还原的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前过氧化氢基燃料电池阴极电还原的催化剂主要是贵金属,因其价格昂贵、资源稀缺而增加了燃料电池的成本。研究对过氧化氢(H2O2)电还原具有高催化活性和选择性、良好稳定性、价格低廉的催化剂具有重大意义。
     本论文利用在液相溶液中的直接生长法制备了四氧化三钴(Co3O4)、钴酸镍(NiCo2O4)纳米线电极和B型氢氧化镍(B-Ni(OH)2)电极,并用X射线衍射分析(XRD)、透射电镜(TEM)、扫描电镜(SEM)、比表面积分析(BET)等手段进行表征。XRD图谱表明所制备的纳米线分别为尖晶石构型的Co3O4和NiCO2O4,纳米片层为B-Ni(OH)2。扫描电镜和透射电镜表征表明Co3O4和NiCo2O4纳米线阵列全部由直径约为500 nm、长度约为15μm的均匀纳米线组成,Ni(OH)2电极表面为B-Ni(OH)2的纳米片层晶体。BET测定Co3O4纳米线的比表面积约为84.76 m2.g-1,NiCo2O4纳米线的比表面积约为97.90 m2·g-1。
     以循环伏安法测试了Co3O4、NiCo2O4纳米线电极以及β-Ni(OH)2电极在氢氧化钠(NaOH)溶液中对H2O2电还原的催化性能,结果表明Co3O4、NiCo2O4纳米线电极在3 mol·L-1 NaOH溶液中具有非常高的催化活性和稳定性,β-Ni(OH)2电极活性稍差,但仍具有其本身的优越性。当H2O2浓度为0.4mol·L-1、电极电势为-0.4 V时,Co3O4纳米线电极表面的电流密度达到了103.88 mA·cm-2,NiCo2O4纳米线电极表面的电流密度达到-124.86 mA·cm-2,β-Ni(OH)2纳米片层电极则较低。计时电流法测试表明Co3O4纳米线电极和NiCo2O4纳米线电极在碱性溶液中稳定性优良。直接生长法制备的纳米线电极与粉末涂覆法制备的电极相比,活性更高、稳定性更佳,且此法更加简便。
Current cathode catalysts for Fuel cells using hydrogen peroxide as oxidant are noble metals, but they are so expensive and scarce that they will raise the costs of the fuel cells largely. Therefore, research on the catalysts having high activity, high selectivity, good stability and low-cost is of great significance.
     In this paper, Co3O4、NiCo2O4 nanowire electrode and Ni(OH)2 electrode were synthesized using a solution-based synthetic route, respectively, and characterized by X-diffraction spectroscopy (XRD)、transmission electron microscopy (TEM)、scanning electron microscopy(SEM) and BET measurement. XRD pattern indicated that the structure of the nanowires are spinel Co3O4、NiCo2O4, respectively. The nanolayer isβ-Ni(OH)2. SEM and TEM characterization show that the Co3O4、NiCo2O4 nanowire arrays are made up of nanowires with diameters of 500 nm and lengths up to 15μm, Ni(OH)2 electrode is fabricated byβ-Ni(OH)2 crystallizing layers. BET measurement shows that the nanowires of Co3O4、NiCo2O4 have a surface area of 84.76 m2·g-1、97.90 m2·g-1.
     Their performance for hydrogen peroxide electro-reduction in NaOH solution were investigated by Cyclic voltammogram and chronoamperometry test. Results revealed that Co3O4、NiCo2O4 nanowire electrodes exhibit high activity and good stability for electrocatalytic reduction of H2O2 in 3 mol·L-1 NaOH solution. The activity of Ni(OH)2 electrode is not as good as the Co3O4、NiCo2O4 nanowire electrodes, but it also shows its superiority. A current density of as high as-103.88 mA·cm-2、-124.86 mA·cm-2 was achieved on the Co3O4 nanowire and the NiCo2O4 nanowire electrode when hydrogen peroxide concentration was 0.4 mol·L-1、the potential was-0.4 V. But it was much lower on theβ-Ni(OH)2 nanolayer electrode. Comparing to the nickel foam electrode filled with corresponding powder, these nanowire electrodes show better activity and greater stability, and the methods of the preparation of them are more simple and convenient.
引文
[1]Jiang S P, Lin Z G, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes Ⅱ. homogeneous role of Co(Ⅱ) ions during oxygen reduction on Co3O4/graphite electrodes[J]. Journal of The Electrochemical Society,1991,137(3):764-769 P
    [2]Shen P K, Tseung A C C. Development of an aluminium/sea water battery for subsea applications [J]. Journal of Power Sourses,1994,47:119-127 P
    [3]Palmas S, Ferrara F, Vacca A, et al. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium [J]. Electrochimica Acta, 2007,53:400-406 P
    [4]Davidson C, Kissel G, Srinivasan S. Electrode kinetics of the oxygen evolution reaction at NiCo2O4 from 30%KOH. Dependence on temperature [J]. Journal of Electroanalytical Chemistry,1982,132:139-135 P
    [5]胡雷,刘志宏.四氧化三钻粉末的制备与应用现状[J].粉末冶金材料科学与工程,2008,13(4):195-200 P
    [6]Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability [J]. Nano Letters, 2008,8:265-270 P
    [7]Shen X P, Miao H J, Zhao H, et al. Synthesis, characterization and magnetic properties of Co3O4 nanotubes [J]. Applied Physics A,2008,91:47-51 P
    [8]Dong ZH, Fu Y Y, Han Q, et al. Synthesis and Physical Properties of Co3O4 Nanowires [J]. The Journal of Physical Chemistry,2007,111(50): 18475-18478 P
    [9]Du J, Chai L L, Wang G M, Controlled Synthesis of One-Dimensional Single-Crystal Co3O4 [J]. NanowiresAustralian Journal of Chemistry,2008, 61(2):153-158 P
    [10]He L, Li Z C, Zhang Z J. Rapid, low-temperature synthesis of single-crystalline Co3O4 nanorods on silicon substrates on a large scale [J]. Nanotechnology,2008,19(15):155606 P
    [11]Sietsma J R A, Meeldijk J D, den Breejen J P, et al. The Preparation of Supported NiO and Co3O4 Nanoparticles by the Nitric Oxide Controlled Thermal Decomposition of Nitrates [J]. Angewandte Chemie International Edition,2007,46:4547-4549 P
    [12]Yue W B, Zhou W Z. Synthesis of Porous Single Crystals of Metal Oxides via a Solid-Liquid Route [J]. Chemistry of Materials,2007,19:2359-2363 P
    [13]Feng J, Adrian H H, Andrew H, et al. Synthesis of Ordered Mesoporous NiO with Crystalline Walls and a Bimodal Pore Size Distribution [J]. Journal of American Chemical Society,2008,130:5262-5266 P
    [14]Feng J, Harrison A, Adrian H H, et al. Mesoporous Mn2O3 and Mn3O4 with Crystalline Walls [J]. Advanced Materials,2007,19:4063-4066 P
    [15]Hill A H, Jiao F, Bruce P G, et al. Neutron Diffraction Study of Mesoporous and Bulk Hematite, a-Fe2O3 [J]. Chemistry of Materials 2008,20: 4891-4899 P
    [16]Ji G B, Gong Z H, Zhu W X. Simply synthesis of Co3O4 nanowire arrays using a solvent-free method [J]. Journal of Alloys and Compounds,2009, 476(1-2):579-583 P
    [17]刘兴泉,李淑华,何泽珍等.锂离子蓄电池正极材料LiCoO2的制备与电化学性能研究[J].化工科技,2001,9(5):8-11 P
    [18]蔡振平.锂离子蓄电池负极材料C0304的制备及性能[J].电源技术,2003,27(4):370-372 P
    [19]袁安保,章庆林.超级电容器材料纳米C0304的固相法制备及电化学性能[J].功能材料与器件学报,2007,13(1):1-6 P
    [20]盛军.纳米氢氧化镍的掺杂改性研究.哈尔滨工业大学硕士学位论文[D],2007:1-30 P
    [21]张世品.电沉积制备Ni(OH)2正极材料及其在超级电容器中的应用.燕山大学硕士学位论文[D],2008:10-30 P
    [22]毕亚东,韩恩山.镍氢电池正极活性物质制备及电化学行为研究.河北工业大学硕士学位论文[D],2003:1-15 P
    [23]毛宗强.燃料电池[M].化学工业出版社,2005:107-113 P
    [24]Miley G H, Luo N, Mather J, et al. Direct NaBH4/H2O2 fuel cells [J]. Journal of Power Source,2007,165:509-516 P
    [25]Raman R K, Prashant S K, Shukla A K. A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack [J]. Journal of Power Sources, 2006,162:1073-1076 P
    [26]Choudhury N A, Raman R K, Sampath S, et al. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant [J]. Journal of Power Sources,2005,143:1-8 P
    [27]Gu L, Luo N, Miley G H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell [J]. Journal of Power Sources,2007,173:77-85 P
    [28]De Le'on C P, Walsh F C, Rose A, et al. A direct borohydride-acid peroxide fuel cell [J]. Journal of Power Sources,2007,164:441-448 P
    [29]Raman R K, Shukla A K. A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover [J]. Fuel Cells,2007,7:225-231 P
    [30]Raman R K, Choudhury N A, Shukla A K. A high output voltage direct borohydride fuel cell [J]. Electrochemical and Solid-State Letters,2004, 7(12):488-491 P
    [31]Urbach H B, Bowen R J. Efficiency of hydrazine-peroxide fuel cells [J]. Journal of The Electrochemical Society,1970,117:1594-1600 P
    [32]Yang W Q, Yang S H, Sun W, et al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells [J]. Electrochimica Acta,2006,52:9-14 P
    [33]Yang W Q, Yang S H, Sun W, et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell [J]. Journal of Power Sources,2006,160:1420-1424 P
    [34]David J B, John J R. Aluminum-hydrogen peroxide fuel-cell studies [J]. Applied Energy,2003,74:113-124 P
    [35]Hasvold 0, Johansen K H, Mollestad O, et al. The alkaline aluminium/hydrogen peroxide power source in the Hugin Ⅱ autonomous underwater vehicle [J]. Journal of Power Sources,1999,80:254-260 P
    [36]Hasvold 0, Forseth S, Forseth S, et al. Power sources for autonomous underwater vehicles [J]. Journal of Power Sources,2006,162:935-942 P
    [37]Medeiros M G, Bessette R R, Deshenes C M, et al. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles [J]. Journal of Power Sources,2004,136:226-231 P
    [38]Bessette R R, Medeiros M G, Patrissi C J, et al. Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications [J]. Journal of Power Sources,2001,96:240-244 P
    [39]Dow E G, Bessette R R, Seeback G L, et al. Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell [J]. Journal of Power Sources,1997,65:207-212 P
    [40]Medeiros M G, Dow E G. Magnesium-solution phase catholyte seawater electrochemical system [J]. Journal of Power Sources,1999,80:78-82 P
    [41]Yang W, Yang S, Sun W, et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell [J]. Journal of Power Sources,2006,160:1420-1424 P
    [42]Yang W, Yang S, Sun W, et al. Nanostructured palladium-silver caoated nickle foam cathode for magnesium-hydrogen peroxide fuel cells [J]. Electrochimica Acta,2006,52:9-14 P
    [43]Medeiros M G, Bessette R R, Deschenes C M, et al. Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing [J]. Journal of Power Sources,2001,96:236-239 P
    [44]Bessette R R, Cichon J M, Dischert D W, et al. A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell [J]. Journal of Power Sources,1999,80:248-253 P
    [45]Brodrecht D J, Rusek J J. Aluminum-hydrogen peroxide fuel-cell studies [J]. Applied Energy,2003,74:113-124 P
    [46]Sung W, Choi J. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution [J]. Journal of Power Sources,2007,172: 198-208 P
    [47]Bewer T, Beckmann T, Dohle H, et al. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J]. Journal of Power Sources,2004,125:1-9 P
    [48]Prater D N, Rusek J J. Energy density of a methanol/hydrogen peroxide fuel cell [J]. Applied Energy,2003,74:135-140 P
    [49]Tartakovsky B, Guiot S R. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors [J]. Biotechnology Progress,2006, 22:241-246 P
    [50]Pizzariello A, Stred'ansky M, Miertus S. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix [J]. Bioelectrochemistry,2002,56:99-105 P
    [51]Ramanavicius A, Kausaite A, Ramanaviciene A. Biofuel cell based on direct bioelectrocatalysis [J]. Biosensors and bioelectronics,2005,20:1962-1967 P
    [52]Cao D X, Sun L M, Wang G L, et al. Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium [J]. Journal of Electroanalytical Chemistry,2008,621:31-37 P
    [53]Raman R K, Shukla A K. Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyin and lead sulfate electrodes with application in direct borohydride fuel cells[J]. Journal of Applied Electrochemistry,2005, 35:1157-1161 P
    [54]Bockris J O, Oldfield L F. The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes [J]. Transactions of the Faraday Society,1954,51:249-259 P
    [55]Savinova E R, Wasle S, Doblhofer K. Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes [J]. Electrochimica Acta,1998,44:1341-1348 P
    [56]Iwakura C, Matsuda Y, Tamura H. Cathodic reduction of H2O2 on silver in alkaline solution [J]. Electrochimica Acta,1971,4:471-477 P
    [57]Flatgen G, Wasle S, Lubke M, et al. Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte:experiments and simulations[J]. Electrochimica Acta,1999:4499-4506 P
    [58]Fetner N, Hudson J L. Oscillations during the electrocatalytic reduction of hydrogen peroxide on a platinum electrode [J]. Journal of Physical Chemistry,1990:6506-6509 P
    [59]Lingane J J, Lingane P J. Chronopotentiometry of hydrogen peroxide with a platinum wire electrode [J]. Journal of Electroanalytical Chemistry,1963 (6): 411-419 P
    [60]Mukouyama Y, Nakanishi S, Konishi H, et al. Electrochemical oscillations of a new type in an H2O2+H2SO4 Pt-electrode system, appearing by addition of small amounts of halide ions[J]. Journal of Electroanalytical Chemistry, 1999:156-165 P
    [61]Li X, Heryadi D, Gewirth A A. Electroreduction activity of hydrogen peroxide on Pt and Au electrodes [J]. Langmuir,2005:9251-9259 P
    [62]Eickes C, Weil K G., Doblhofer K. Faradaic impedance studies of the autocatalytic reduction of H2O2 on Ag electrodes in HClO4 [J]. Physical Chemistry Chemical Physics,2000:5691-5697 P
    [63]Strbac S, Adzic R R. Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions [J]. Journal of Electroanalytical Chemistry,1992 (1-2):355-364 P
    [64]Merkulova N D, Zhutaeva G V, Shumilova N A, et al. Reactions of hydrogen peroxide on a silver electrode in alkaline solution [J]. Electrochimica Acta,1973 (2):169-174 P
    [65]Cere S, Vazquez M, deSanchez S R, et al. Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys [J]. Journal of Electroanalytical Chemistry,1999:31-38 P
    [66]Velzen C J V, Oostveen J M, Sluyters-rehbach M, et al. Hydrogen isotape and temperature effect upon oxygen and hydrogen peroxide reduction at the mercury electrode [J]. Journal of Electroanalysis Chemistry,1985:175-183 P
    [67]Zecevic S, Drazic D M, Gojkovic S. Oxygen reduction on iron-IV the reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions[J]. Electrochimica Acta,1991 (1):5-14 P
    [68]Matsumoto F, Uesugi S, Koura N, et al. Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode [J]. Journal of Electroanalytical Chemistry,2003:71-80 P
    [69]Vazquez M V, deSanchez S R, Calvob E J, et al. The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer [J]. Journal of Electroanalytical Chemistry,1994 (1-2):179-187 P
    [70]Calvo E J, Schiffrin D J. The reduction of hydrogen peroxide on passive iron in alkaline solutions [J]. Journal of Electroanalytical Chemistry,1984 (1-2): 257-275 P
    [71]Miao X M, Yuan R, Chai Y Q, et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode [J]. Journal of Electroanalytical Chemistry,2008: 157-163 P
    [72]Diasa V L N, Fernandes E N, Silva L M S d, et al. Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(Ⅱ)-2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode[J]. Journal of Power Sources,2005:10-17 P
    [73]Liu H, Zhang L, Zhang J, et al. Electrocatalytic reduction of O2 and H2O2by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes[J]. Journal of Power Sources,2006:743-752 P
    [74]Zhang J, Anson F C. Electrochemistry of the Cu(Ⅱ) complex of 4,7-diphenyl-1,10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2[J]. Journal of Electroanalytical Chemistry,1992, (1-2):323-341 P
    [75]Martel D, Kuhn A. Electrocatalytic reduction of H2O2 at P2MO18O626-modified glassy carbon [J]. Electrochimica Acta,2000:1829-1836 P
    [76]Goldik J S, Noe'l J J, Shoesmith D W. The electrochemical reduction of hydrogen peroxide on uranium dioxide electrodes in alkaline solution [J]. Journal of Electroanalytical Chemistry,2005:241-248 P
    [77]Lotzbeyer T, Schuhmann W, Schmidt H L. Direct electrocatalytical H2O2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode [J]. Journal of Electroanalytical Chemistry,1995:341-344 P
    [78]Cao D X, Chao J D. Catalytic behavior of Co3O4 in electroreduction of H2O2 [J]. Journal of Power Sources,2008,179:87-91 P
    [79]Li Y G, Tan B, Wu Y Y. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays [J]. Journal of the American Chemical Society, 2006,128:14258-14259 P
    [80]Yin C L, Chao J D, Gao Y Y, et al Catalytic behavior of NiCo2O4 for H2O2 electro-reduction in Alkaline Medium [A]. The International Workshop On Modern Science And Technology[C],2008,79-87 P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700