单壁碳纳米管在基材表面的生长和转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学气相沉积法(CVD)表面生长单壁碳纳米管(SWNTs)是其器件制备和应用的基础。SWNTs可以是导体也可以是半导体,在纳米器件方面有着广泛的应用,如场效应晶体管等。但是其性能不仅取决于螺旋性也和它的直径有关。因此,如何控制它的螺旋性和直径是该领域面临的需要解决的两个重要的难题。
     本文通过CVD方法,对催化剂在基底表面的分散、不同催化剂、碳源等对SWNTs在基材表面的生长和直径的影响进行了研究,并对SWNTs的定向生长的机理和表面碳纳米管的转移进行了探索。
     (1)通过对硅基底的化学修饰来改变其表面的性质,研究了Fe/Mo纳米催化剂粒子在不同性质表面的分散规律及对SWNTs生长的影响。结果表明基底表面的疏水性的增加有助于催化剂的均匀分散,从而减少催化剂在高温下的聚集,生长的SWNTs直径较小和较均匀。同时发现定向超长SWNTs的直径要比短的无序的SWNTs小,并且催化剂在表面良好的分散可以提高定向超长SWNTs的生长效率。
     (2)研究了不同催化剂包括Fe/Mo、FeP、Te、Au、Ag等催化生长SWNTs的活性和所生长的碳纳米管的结构特征。结果发现Fe/Mo纳米粒子具有高的活性,Ag和Au同样具有高的催化活性,但Ag催化生长的SWNTs的直径明显比Fe/Mo催化的要小,并且更均匀,其原因是Ag在高温下相对易挥发,因此Ag是生长直径小分布窄的SWNTs的好催化剂。通过合成FeP纳米棒,在高温下分解原位形成Fe纳米粒子可以生长出小直径较均匀的SWNTs,并且可以对基底表面的修饰使FeP纳米棒在表面进行自组装获得SWNTs的网络结构或高密度膜。同时通过高温裂解有机Te的化合物首次发现Te金属具有催化生长SWNTs的能力。
     (3)通过选用Fe/Mo或Ag作为催化剂,采用高温裂解乙醇的方法,在硅片表面生长出了超长定向的SWNTs,并对其生长机理进行了研究,实验证明这些超长定向的SWNTs在生长过程中是以顶部生长机理在气流中悬浮生长的。同时为解决碳纳米管只能生长在硅片、石英片等耐高温的基底上的问题,本文对表面上生长SWNTs进行了转移研究,结果发现聚氨酯是很好的转移材料,可以容易的将SWNTs从硅片上转移下来,从而扩大了碳纳米管的使用范围。
Growth of single-walled carbon nanotubes (SWNTs) on substrate surface by chemical vapor deposition (CVD) is the base of the fabrication and applications of the SWNTs-based devices. They can be electrical conductor or semiconductor and have potenial applications in nanoelectronics such as field effect transistor. The electrical properties of SWNTs depend on not only their helicity but also diameter. To control the diameter and helicity is still the challenge for this research area.
     In this thesis, the influences of many factors on the growth and the diameters of the SWNTs on substrates surface have been investigated. Those factors include the dispersion of the catalyst nanoparticles on Si/SiO_2 surface, different catalysts and different carbon sources. The growth mechanism of superlong well-oriented SWNTs is also discussed. The growth and transfer of oriented SWNTs film with high density have been also studied.
     (1) The surface property of Si/SiO_2 wafer can be changed by modifying the wafer with 1,1,1,3,3,3-Hexamethyldisilazane. The dispersion of Fe/Mo nanoparticles which are used as catalyst for SWNTs growth and the growth of SWNTs on bare and modified substrates have been studied. It is found that the dispersion of the catalyst nanoparticles on Si/SiO_2 wafer surface can be improved greatly from hydrophilic to hydrophobic. The diameter distribution of SWNTs depends strongly on the dispersion of the catalyst. Well dispersion of the catalyst results in uniform diameter of the SWNTs due to the decrease of the aggregation of the catalyst nanoparticles before growth. It is also interesting to find that the diameter of the superlong wel-oriented SWNTs is smaller than that of random short SWNTs. The growth yield of the long oriented SWNTs from the catalyst on fully modified wafer is much higher that from bare wafer.The results show the increase of hydrophobic property of the surface is helpful for the decentralization of catalyst and decrease the aggregation of the catalyst, so the diameter of SWNTs was small and uniform.
     (2) The catalytic activity for SWNTs growth by different kind of catalysts including Fe/Mo、FeP、Te、Ag and Au, and the characteristics of those nanotubes from different catalysts have been studied. The results show that Fe/Mo particles and Ag have high activity, but the diameter of SWNTs grown from Ag nanoparticles is much smaller and more uniform than that from Fe/Mo. The reson is that Ag particle is easy to vaporize at high temperature and only Ag with smaller size has catalytic activity. So Ag nanoparticle will be good catalyst for the SWNTs growth with small and uniform diameter. The FeP nanorods can be used as catalyst precursor for SWNTs growth. They can be decomposed at high temperature to form Fe nanopartices in situ, resulting uniform Fe nanoparticlrs so that uniform diameter of the nanotubes. Domain structure of SWNTs network or extremely high density of SWNTs film with uniform diameter can be generated for different application purpose by modifying the wafer surface. It is also for the first time to find that Te has catalytic activity for SWNTs growth.
     (3) Super-long oriented SWNTs arrays can be fabricated by using Fe/Mo and Ag as catalysts and ethanol as carbon source. The growth and orientation mechanism of the long oriented nanotubes are also discussed. The results indicate that the long nanotubes grow by top-growth mechanism and the orientation is guided by gas flow. A new method to transfer SWNTs off from Si/SiO_2 wafer by using polyurethane film has been developed. This provides a new approach to transfer nanotubes onto other substrates which are not suitable for in situ growth at high temperature.
引文
[1]Ijiima S., Helieal mieotubules of graphitic carbon. Nature,1991,354,56-58.
    [2]Ball P. Roll up for the revolution. Nature,2001,414,142-144.
    [3]Bacon R. Growth structure and properties of graphite whiskers. J. Appl. Phys., 1960,31,283~290.
    [4]Wiles P. G, Abrahamson, J. Carbon fibre layers on arc electrodes-Their properties and cool-down behaviour. Carbon,1978,16,341-348.
    [5]Tibbetts, Gary G, "Why are Carbon Filaments Tubular", Journal of Crystal Growth,1984,66,632~638.
    [6]Ijiima S., Ichihashi T., Single- shell cabron nanotubes of 1-nm diameter. Nature, 1993,363,603~605.
    [7]Bethune D. S., Kiang C. H., DeVries M. S., et al. Cobalt-catalysed growth of carbon nanotubes with single-atomie-layer walls. Nature,1993,363,605~607.
    [8]Lu C. Q., Xin L. Z., Kaori H., et al. The smallest carbon nanotubes, Nature, 2000,408,50~51.
    [9]Zheng L. X., Connell S. K., Doom S. K., et al. Ultralong single-wall carbon nanotubes. Nature Materials.,2004,3,673~676.
    [10]Zhou O., Fleming R. M., Murphy D. W., et al. Defects in carbon nanostructres, Seience,1994,263,1744~1747.
    [11]Ebbesen, T. W., Takada, T., Topological and SP3 defect structures in nanotubes, Carbon,1995,33,973~978.
    [12]Journet C., Master W. K., Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388, 756-758.
    [13]Guo T., Nikolaev P., Thess A., et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett.,1995,243,49~54.
    [14]Dai H. J., Rinzler A.G., Nikolaev P., et al. Single-walled produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett.,1996, 260,471~475.
    [15]Journet C, Bernier P. Production of carbon nanotubes. Appl. Phys. A,1998,67, 1-9.
    [16]Waals R. L., Ticich T. M., Curtis V. E. Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett.,2000,323,217~223.
    [17]Li Y. M., Mann D, Rolandi M., et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett., 2004,317~321.
    [18]Journet C., Maser W. K., Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature,1997,388, 756~758.
    [19]Ando Y., Zhao X., Hirahara K., et al. Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem. Phys. Lett.,2000,323,580-585.
    [20]Liu C., Cong H. T., Li F., et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon,1999,37, 1865-1868.
    [21]Ebbesen T. W., Ajayan P. M. Largr-scale synthesis of carbon nanotubes. Nature, 1992,358,220~222.
    [22]Colbert D. T., Zhang J., McClure S. M., et al.Growth and sintering of fullerene nanotubes. Science,1994,266,1218~1222.
    [23]Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes. Science,1996,273,483~487.
    [24]Yudasska M., Komatsu T., Ichihashi T., et al. Single-wall carbon nanotubes formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett,1997,278,102-106.
    [25]Guo T., Nikolaev P., Thess A., et al. Catalytic growth of single-walled nanotbues by laser vaporization. Chem. Phys. Lett.,1995,243,49~54.
    [26]李文治,解思深,钱露茜等,碳纳米管催化热解法的制备及其微观结构的研究,电子显微学报,1998,17,243~247.
    [27]Dai H. J., Rinzler A. G, Nikolaev P., et al. Single-wall nanotubes produced by metal-catalyzed disproportion-ation of carbon monoxide. Chem. Phys. Lett., 1996,260,471-475.
    [28]Kong J., Cassell A. M., Dai H. J., Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett.,1998,292,567-574.
    [29]Cassell A. M., Raymakers J. A., Kong J., et al. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B,1999,103,6484~6492.
    [30]Su M., Zheng B., Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett.,2000,322,321~326.
    [31]Li Q.W., Yan H., Cheng Y, et al. A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. J. Mater. Chem.,2002,12,1179~1183.
    [32]Liu B. C., Lyu S. C., Jung S. I., et al. Single-walled carbon nanotubes ptoduced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst. Chem. Phys. Lett.,2004,383,104-108.
    [33]Fonseca A., Hernadi K., Pioedigrosso P., Colomer J. F., Mukhopadhyay K., Doome R., et al. Synthesis of single-and multi-wall carbon nanotubes over supported catalysts. Appl. Phys. A,1998,67,11-22.
    [34]Rya H., Baughman, Anvar A. Carbon nanotube-the route toward applications. Seience,2002,297,787~793.
    [35]Zhang H. W., Xu C. L., Wu D. H., Wei B.Q. et al. Direct synthesis of long single-walled carbon nanotube strands. Seience,2002,296,884-886.
    [36]Qian D., Diekey E. C., Andrews R., Rantell T., Load transfer and deofmration meehanisms in carbon nanotube-polystyrene composites. Appl. Phys.Lett.,2000, 76,2868~2870.
    [37]Wong S. S., Joselevieh E., Wolley A.T., et al. Covalently funetionalized nanotubes as nanometrel Sized probes in chemistry and biology. Nature,1998, 394,52~57.
    [38]Dai H. J., Wong E. W., Lieber C. M. Probing electrica transport in nanomaterials:Conduetivity of Individual carbon nanotubes. Science,1996,272, 523-526.
    [39]Chen J., Hamaon M. A., Hu H., Chen Y S., et al. Solution properties of single-walled carbon nanotubes. Science,1998,282,95~98.
    [40]Saito R., Fujita M., Dresselhus G.., Dressehaus M.S., et al. Eleetronic strueture of chiral graphenetubules. Appl.Phys.Lett.,1993,60,2204-2206.
    [41]李耽,李泉注,张先锋等.定向生长的多壁碳纳米管2-18GHz复介电常数与复磁导率.无机材料学报,2004,19,165~169.
    [42]Collins P. G.., Zettl A., A sample and robust electron beam source from carbon nanotubes. Appl. Phys. Lett.,1996,69,1969-1971.
    [43]Li J., Papadopoulos C., Xu J. M. Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett.,1999,75,367-369
    [44]Fan S., Chapline M. G., Franklin N. R., Tomble T. W., Cassell A M., Dai H., Self-oriented regular arrays of carbon nanotubes and their field emission
    properties. Science,1999,283,512~514.
    [45]Tang Z. K., Li Z. M., Xiao X. D., et al. Optical properties of 0.4nm single-walled carbon nanotubes. [J].Chinese Journal of Lumineseence,2002,23, 335~340.
    [46]Zhang L., Li Z., Tan Y., Giulio L. et al. Influence of a top crust of entangled nanotubes on the structure of vertically aligned forests of single-walled carbon nanotubes. Chem. Mater.,2006,18,5624-5629.
    [47]Fu Q. Huang S. M., Liu J. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe_2O_3 nanoclusters synthesized using diblock copolymer micelles. J. Phys. Chem. B,2004,108,6124~6129.
    [48]He M. S.,Duan X. J., Xuan W., et al. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. J. Phys. Chem. B, 2004,108,12665~12672.
    [49]Kanzow H., Ding A. Phys. Rev. B Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. J. Phys. Chem. B,1999,60,11180-1185.
    [50]Ya Q. X., Robert H. H. Growth of single-walled carbon nanotubes on a nanorough surface. J. Phys. Chem. C,2007,111,9142-9145.
    [51]Zhang X. T., Zhang J., Liu Z. F. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon,2005,43,2186~2191.
    [52]Han S., Yu T., Park J., et al. Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts J. Phys. Chem. B,2004,108,8091~8095.
    [53]Lu J., Yi S. S.,Thomas K., et al. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. J. Phys. Chem. B,2006,110, 6655-6660.
    [54]Chin L., Andrea K., Hongkun P., et al. Diameter-controlled synthesis of carbon nanotubes. J.Phys.Chem.B,2002,106,2429-2433.
    [55]Li Y, Liu J., Wang Y, et al. Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater.,2001,13, 1008~1014.
    [56]Zhou W., Han Z., Wang J., et al. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano. Lett.,2006,6,2987~2990.
    [57]Daisuke T., Yoshikazu H., Hiroki H., et al. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett.,2006,6, 2642~2645.
    [58]Bhaviripudi S., Mile, E., Kong J., et al. CVD synthesis of Single-Walled Carbon Nanotubes from gold nanopartic Catalysts. J. Am. Chem. Soc.,2007,129, 1516~1517.
    [59]Daisuke T., Hiroki H., Satoru S., et al. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett.,2007,7,2272~2275.
    [60]Manfred R., Albrecht L., Dieter E., et al. Rhenium-catalyzed growth carbon nanotubes Phys. Chem. C,2007,111,8414~8417.
    [61]Huang L., Shalom J., Wind S., Brien P., Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett.,2003, 3,299-303.
    [62]Zheng B., Lu C., Gu G., Alexander M., et al. Efficient CVD growth of gingle-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett.,2002,2,895~898.
    [63]Gyula E., Anika A., H. C., et al. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J. Phys. Chem. B 2005,109,16684~16694.
    [64]Zhang Y., Chang A., Cao J., et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett.,2001,79,3155-3157.
    [65]Joselevich E., Lieber C. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett.,2002,2,1137~1141.
    [66]Chen Z., Yang Y., Chen F., et al. Controllable interconnection of single-walled carbon nanotubes under AC electric field. J. Phys. Chem. B,2005,109, 11420~11423.
    [67]Lee K. H., Sigmund, Zhang M. et al. Control of growth orientation for carbon nanotubes. Appl. Phys. Lett.,2003,82,448-450.
    [68]Huang S., Cai X., Liu J., Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J.Am.Chem.Soc.,2003,125, 5636-5637.
    [69]Huang S., Maynor B., Cai X., Liu J. Ultralong well-aligned single-walled carbon nanotube architectures on surfaces.Adv. Mater.,2003,15,1651~1655.
    [70]Yu. Q. K., Qin G. T., Li H., et al., Mechanism of Horizontally Aligned Growth of Single-Wall Carbon Nanotubes on R-Plane Sapphire J. Phys. Chem. B, 2006,110,22676-22680.
    [71]Kang S. J., Kocabas C., Ozel T., et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol,. 2007,2,230~236.
    [72]Wang Y., Kim M. J., Shan H., et al. Continued growth of single-walled carbon nanotube. Nano Lett.,2005,5,997~1002.
    [73]Yu Q. K., Qin G. T., Li H., et al. Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J. Phys. Chem. B,2006,110, 22676~22680.
    [74]Iwasaki T., Zhong G. F., Aikawa T., et al. Single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J. Phys.Chem.B,2005,109, 19556~19559.
    [75]Lin M., Boothroyd C, Loh K. P., et al. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett.,2006,6,449-452.
    [76]Huang S.M., Woodson M., Smalley R., et al. Growth mechanism of superlong oriented SWNTs by "fast heating" CVD process. Nano Lett., 2004, 4, 1025~1028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700