ZnO、TiO_2纳米晶的直接化学合成及其光催化性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米半导体光催化材料能够完全氧化有机和无机污染物,在水和空气的净化、细菌和病毒的破坏、利用太阳能分解水等方面得到了广泛研究。其中ZnO、TiO2是最具代表性的光催化材料,具有很高的光催化活性、化学稳定性、热稳定性等特点,在光催化降解、污染治理的领域有广泛研究和应用背景。同时利用两种半导体性质差异的互补性可以提高催化剂的活性,因此ZnO-TiO2也是极具应用前景的热点材料。
     以二水合乙酸锌和硫酸氧钛为出发原料,以氢氧化钠调节pH值,采用NAC-FAS工艺直接合成了形貌近似为球形、平均粒径分别为15nm的纤锌矿ZnO纳米晶和5nm的锐钛矿TiO2纳米晶,采用NAC-FAS分步合成工艺合成了形貌近似为球形、平均粒径为12nm-15nm的ZnO-TiO2纳米晶。并研究了醇水比、pH值、反应时间、微波处理等工艺参数对所合成的纳米晶的晶粒尺寸,晶体结构及形貌的影响,讨论了NAC-FAS工艺合成纳米晶的化学合成机制。讨论了微波处理、热处理以及不同Zn/Ti比例、pH值对所合成的纳米晶ZnO、TiO2和ZnO-TiO2的光催化性能的影响,研究发现:NAC-FAS工艺合成简单氧化物纳米晶的过程中,首先形成含—OH基团的盐或氢氧化物,然后通过脱水—缩聚反应形成固相析出物,部分较大尺寸的固相达到临界固相形核尺寸析出;随着脱水—缩聚反应的进行,固相核心逐渐长大,这种析出可以是晶体相或是无定形非晶态相,其中的非晶相随着反应时间的延续,通过“溶解—再析出”形成晶体相。NAC-FAS工艺制备的ZnO纳米晶、TiO2纳米晶及ZnO-TiO2纳米晶具有良好的光催化性能,TiO2百分含量为42%-50%的ZnO-TiO2纳米晶光催化活性较高,热处理通过提高结晶度可提高光催化性能。酸性环境可提高TiO2纳米晶及ZnO-TiO2纳米晶光催化性能,ZnO纳米晶及TiO2百分含量低于50%的ZnO-TiO2纳米晶易于光腐蚀。
The nano semiconductor photocatalyst can oxidize organic and inorganic pollutants completely, and have widespread research in purging the water and the air, destructing the bacterium and virus, decomposeing water using solar energy and so on. ZnO and TiO2 are the most representative photocatalysts, with high photo catalytic activity, chemical stability, the thermal stability and so on, and have the widespread research and the application in photocatalysis degradation and pollution treatment. Simultaneously using the difference between two semiconductors to be possible to enhance the photocatalyst property, therefore ZnO-TiO2 also has the application prospect.
     In this paper, using TiOSO4 and Zn(Ac)2-2H2O as the starting materials, adjusting the pH value by NaOH, subsphaeroidal wurtzite ZnO nanocrystalline、anatase TiO2 nanocrystalline and ZnO-TiO2 nanocrystalline were direct prepared through NAC-FAS process, and the respective average particle size are 15nm,5nm and 12nm-15nm; and technological parameters to the influence of particle size, the crystal structure and the morphology of nanocrystalline had studied, such as EtOH/H2O ratio, pH value, reaction time, microwave treatment, and the chemical synthesis mechanism of synthesis nanocrystalline through NAC-FAS process had discussed; and microwave treatment、heattreatment、Zn/Ti ratio and pH value to the influence of photocatalytic property had studied. Research shows that:through NAC-FAS process synthesis simple oxide nanocrystalline, first forms the salt or the hydroxide including with-OH groups, then forms the solid phase precipitate through the dehydrated-condensation course, and the part great size's solid phase achieving critical nucleation size precipitates; going on with the dehydrated-condensation, the solid phase precipitate grows up gradually, this kind of precipitate could be the crystal or the amorphous state, in which amorphous phase forms the crystal adopting "the dissolution-reprecipitation" along with reaction time's extension; ZnO、TiO2 and ZnO-TiO2 nanocrystalline have high photocatalytic property, and the ZnO-TiO2 nanocrystalline which TiO2 percentage are 42%-50% have the best photocatalysis performance, heat treatment can enhance photocatalytic property for enhance crystallinity, and the acidic environment can enhance photocatalytic property of TiO2 and ZnO-TiO2 nanocrystalline, and ZnO and ZnO-TiO2 nanocrystalline which TiO2 percentage is lower than 50% are prone to photoetch.
引文
[1]Keiji Hashimoto, Kazuhiko Wasada, Naoji Toukai, et al. Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas[J]. Journal of Photochemistry and Photobiology,2000,136(1-2):103-109.
    [2]Hisashi Tamai, Nobuyoshi Katsu, Kazuhisa Ono, et al. Simple preparation of TiO2 particles dispersed activated carbons and their photo-sterilization activity[J]. Journal of Materials Science, 2002,37(15):3175-3180.
    [3]Kazuhiko Maeda, Kentaro Teramura, Dadling Lu, et al. Photocatalyst releasing hydrogen from water[J]. Nature,2006,440(7082):295.
    [4]许志.解决能源环境问题的新途径.高科技与产业化[J].2007,(6):30-31.
    [5]郭光美,王振川,李景印等.可见光响应纳米TiO2-ZnO光催化性能的研究[J].工业水处理.2007,27(2):43-45
    [6]徐悦华,古国榜,李新军.光催化剂改性及固定的研究进展[J].材料导报.2001,15(6):33-35
    [7]C. Karunakaran, P. Anilkumar. Semiconductor-catalyzed solar photooxidation of iodide ion[J]. Journal of Molecular Catalysis A:Chemical,2007,265(1-2):153-158.
    [8]杨尧.光催化氧化反应的研究进展[J].浙江化工,2007,38(5):17-21.
    [9]申玉芳,龙飞,邹正光.半导体光催化技术研究进展[J].材料导报,2006,20(6):28-30.
    [10]Chunli Bai. Ascent of nanoscience of China[J]. Science,2005,309(5731):61-63.
    [11]Xun Wang, Jing Zhuang, Qing Peng, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437(7055):121-124.
    [12]Nathan S. Lewis. Light with water[J]. Nature,2001,414(6864):589-590.
    [13]M. A. Hasnat, M. M. Uddin, A. J. F. Samed, et al. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces[J]. Journal of Hazardous Materials,2007, 147(1-2):471-477.
    [14]F. Pinzari, P. Patrono, U. Costantino. Methanol reforming reactions over Zn/TiO2 catalysts[J]. Catalysis Communications,2006,7(9):696-700.
    [15]施尔畏,陈之战,元如林等.水热结晶学[M].北京:科学出版社,2004.
    [16]姜秀平,高艳阳,贾素云.纳米ZnO的制备方法简述[J].科技信息(学术版).2006,(7):257-258
    [17]许小亮,施朝淑.纳米微晶结构ZnO及其紫外激光[J].物理学进展.2000,20(4):356-368
    [18]Xiang Yang Kong, Zhong Lin Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts[J]. American Chemical Society,2003,3(12):1625-1631.
    [19]A.C. Dodd, A. J. McKinley, M. Saunders, et al. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide[J]. Journal of Nanoparticle Research,2006,8(1):43-51.
    [20]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:161.
    [21]Sung Park, Kang Yoo, Hye-Jung Park, et al. Rapid gold ion recovery from wastewater by photocatalytic ZnO nanopowders[J]. Journal of Electroceramics,2006,17(2-4):831-834
    [22]Amina Amine Khodja, Tahar Sehili, Jean-Francois Pilichowski, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions[M]. Journal of Photochemistry and Photobiology:2001,141(2-3):231-239.
    [23]S. Sakthivel, B. Neppolian, M. V. Shankarb, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Materials & Solar Cells, 2003,77(1):65-82.
    [24]J.P.Percherancier, R.Chapelon, B.Pouyet. Semiconductor-sensitized photodegradation of pesticides in water:the case of carbetamide. Journal of Photochemistry and Photobiology A:Chemistry,1995, 87(3):261-266.
    [25]徐自力,杜尧国,尚静等.TiO2,ZnO光催化降解庚烷的活性研究[J].环境化学,2002,21(5):465-470.
    [26]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社,2002.
    [27]G R. Dey, K. K. Pushpa. Formation of different products during photo-catalytic reaction on TiO2 suspension in water with and without 2-propanol under diverse ambient conditions[J]. Res. Chem. Intermed,2007,33(7):631-644.
    [28]Wonyong Choi. Pure and modified TiO2 photocatalysts and their environmental applications[J]. Catalysis Surveys from Asia,2006,10(1):16-28.
    [29]朱良俊,崔玉民.功能材料二氧化钛光催化反应活性的研究[J].材料科学与工艺,2007,15(6):876-880.
    [30]Zhigang Zou, Jinhua Ye, Kazuhiro Sayama, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature,2001,414(6864):625-627.
    [31]Jichuan Xu, Yanli Shi, Jier Huang, et al. Doping metal ions only onto the catalyst surface[J]. Journal of Molecular Catalysis A:Chemical,2004,219(2):351-355.
    [32]F. YE, A, Changjiu Li. Ohmori. Formation of p-n junction by plasma spraying technique to enhance the photocatalytic activity of TiO2[J]. Journal of Materials Science,2004,39(1):353-355.
    [33]D.L.Liao, C.A.Badour, B.Q.Liao. Preparation of nanocrystalline TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,194(1):11-19.
    [34]F. Pinzari, P. Patrono, U. Costantino. Methanol reforming reactions over Zn/TiO2 catalysts[J]. Catalysis Communications,2006,7(9):696-700.
    [35]Qinghong Zhang, Wugang Fan, Liao Gao. Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst[J]. Applied Catalysis B:Environmental, 2007,76(1-2):168-173.
    [36]周晓谦,周文淮.纳米二氧化钛的光催化特性及应用进展[J].辽宁化工,2002,31(10):448-451.
    [37]信欣,李兆波.纳米TiO2光催化性能及在水处理中的应用[J].安徽化工,2003,126(6):32-35.
    [38]Toshiaki Ozawa, Mitsunobu Iwasaki, Hiroaki Tada, et al. Low-temperature synthesis of anatase-brookite composite nanocrystals:the junction effect on photocatalytic activity [J]. Journal of Colloid and Interface Science,2005,281(2):510-513.
    [39]Tetsuro Kawahara, Toshiaki Ozawa, Mitsunobo Iwasaki, et al. Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method[J]. Journal of Colloid and Interface Science,2003,267(2):377-381.
    [40]Zhonghai Zhang, Yuan Yuan, Yanju Fang, et al. Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand[J]. Talanta,2007,523-528.
    [41]S. K. Kansal, M. Singh, D. Sud. Studies on TiO2/ZnO photocatalysed degradation of lignin[J]. Journal of Hazardous Materials,2007,153(1-2):412-417.
    [42]Fotini Kiriakidou, Dimitris I. Kondarides, Xenophon E. Verykios. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes[J]. Catalysis Today,1999, 54:119-130.
    [43]张立德.超微粉体制备与应用技术[M].北京,中国石化出版社,2001:23-70.
    [44]倪永红,葛学武,徐相凌等.纳米材料制备研究的若干新进展[J].无机材料学报.2000,15(1):9-11.
    [45]高端平.纳米材料合成技术的研究及展望[J].材料导报.2001,15(5):6-9.
    [46]张效岩,王英,张亚非.液相法制备纳米粒子的粒径控制研究[J].功能材料.2004,(35):2699-2703.
    [47]郝彦忠,卢俊爱.纳米TiO2与纳米ZnO复合粉体的制备、表征及光电性能研究[J].功能材料,2005,36(5):723-726.
    [48]Woo Seok Nam, Gui Young Han. A photocatalytic performance of TiO2 photocatalyst prepared by the hydrothermal method[J]. Korean J.Chem.Eng,2003,20(1):180-184.
    [49]A.S. Shaporev, V. K. Ivanov, A. E. Baranchikov, et al. Hydrothermal synthesis and photocatalytic activity of highly dispersed ZnO powders[J]. Synthesis and Properties of Inorganic Compounds, 2006,51(10):1523-1527.
    [50]徐甲强,潘庆谊,孙雨安.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,1998,14(3):355-359.
    [51]Yoichi Inubushi, Ryoji Takami, Mitsunobu Iwasaki. Mechanism of Formation of Nanocrystalline ZnO Particals through the Reaction of [Zn(acac)2] with NaOH in EtOH[J]. Journal ofcolloid and interface science,1998,200(2):220-227.
    [52]Seishiro Ito, Shigeto Inoue, Hiromi Kawada, et al. Low-temperature synthesis of nanometer-sized crystalling TiO2 particals and their photoinduced decomposition of formic acid[J]. Journal of Colloid and Interface Science,1999,216(1):59-64.
    [53]Eiji Hosono, Shinobu Fujihara, Toshio Kimura. Non-basic solution routes prepare ZnO nanoparticals[J]. Journal of Sol-Gel Science and Technology,2004,29(2):71-79.
    [54]M. Iwasaki, M. Hara, S. Ito. Synthesis of nanometer-sized hematite single crystals through NAC-FAS method[J]. Journal of Materials Science,2000,35:943-949.
    [55]王振兴,丁士文,张美红等.自组装合成纳米复合TiO2-ZnO介孔材料及其光催化性能[J].化学学报.2005,63(3):243-248.
    [56]温敏,齐公台,孙菊梅.TiO2溶胶的制备及其胶凝过程影响因素分析[J].表面技术,2004,33(1):30-31.
    [57]甄开吉,王国甲,毕颖丽等.催化作用基础[M].北京:科学出版社,2005:273.
    [58]尹荔松,周歧发,唐新桂等.溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究[J].功能材料,1999,30(4):407-409.
    [59]Satoshi Horikosh, Hisao Hidake, Nick Serpone. Environmental remediation by an integrated microwave/UV-illumination technique Ⅳ.Non-Thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,159:289-300.
    [60]石晓波,李春根,汪德先.纳米氧化锌的制备与表征[J].江西师范大学学报(自然科学版),2002,26(1):53-55.
    [61]张艳辉,田彦文,赵迎宪等.半导体氧化锌的制备及其光催化性能研究[J].兵器材料科学与工程,2008,31(1):60-62.
    [62]张鹏,李吉广,佟健等.纳米ZnO的研究现状[J].辽宁大学学报(自然科学版),2006,33(4):339-342.
    [63]张春勇,郑纯智,张国华.微波辐射法研制复合半导体光催化材料TiO2/ZnO[J].化学工程师,2007,127(2):20-23.
    [64]王泽云,范文秀,娄天军.无机及分析化学[M].北京:化学工业出版社,2005:177-179,
    [65]周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO[J].应用化学,2005,34(11):690-694.
    [66]Wei Liu, Aiping Chen, Jiaping Lin, et al. Controllable crystalline nano-TiO2 by homogeneous hydrolysis with toluene-p-sulfonic acid[J]. Journal of the American Ceramic Society,2005,88(1): 168-171.
    [67]柳清菊,吴兴惠,刘强.热处理温度对TiO2薄膜光催化及亲水性的影响[J].功能材料,2003,34(2):189-191.
    [68]孟令芝,龚淑玲,何永炳等.有机波普分析[M].湖北:武汉大学出版社,2003,213-239.
    [69]辛显双,周百斌,邵纯红等.纳米ZnO制备过程中的热处理条件分析[J].化学与粘合,2002,3(6):261-262.
    [70]柳清菊,吴兴惠,刘强.热处理温度对TiO2薄膜光催化及亲水性的影响[J].功能材料,2003,34(2):189-191.
    [71]井立强,徐自力,孙晓君等.ZnO和TiO2粒子的光催化活性及其失活与再生[J].催化学报,2003,24(3):175-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700