用点击化学制备聚合物刷修饰的碳纳米管
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)因其本身优异的电学、力学性能以及在纳米填充物、纳米器件、纳米生物技术等领域的潜在应用吸引了人们越来越多的关注。然而由于其本身溶解性比较差,而且缺少官能团极大地限制了碳纳米管在很多领域的应用.为了能够构建理想的结构,获得特定的性能,和应用在特殊的领域,因此对碳纳米管表面改性是具有极其重要意义的。
     到目前为止,在碳纳米管表面接枝聚合物刷主要有“接上去”和“接出来”两个方法。本文利用点击化学这一改性聚合物材料的强有力工具并结合逐层组装(Layer-by-Layer)、大分子引发剂法(Macroinitiator)、可逆加成-断裂链转移(RAFT)聚合、以及原子转移自由基聚合(ATRP),对碳纳米管功能化领域的“接上去”方式进行了推进,将多种功能聚合物和荧光分子以共价连接的方式接枝到碳纳米管表面。具体如下所述
     1.用点击化学和逐层组装法修饰碳纳米管
     提出了一种合成表面带有点击化学反应所需的炔键基团的碳纳米管的方法。然后分别用ATRP与RAFT聚合法合成了两种可点击的侧链基团全为叠氮基团与炔基的聚甲基丙烯酸-2-叠氮乙酯与聚甲基丙烯酸-2-丙炔酯。在Cu(I)/PMDETA催化下,将两种聚合物交替地以点击化学反应的形式接枝到碳纳米管表面。TGA、SEM和TEM测试表明可以通过控制两种聚合物的交替使用次数来控制接枝量并且管壁外聚合物层的厚度是均匀的。XPS和FTIR测试表明,在接枝三层聚合物后,碳纳米管的表面仍然有大量的剩余叠氮基团。然后,将单炔基罗丹明-B和端基为单炔基的聚苯乙烯以点击化学反应的形式接枝到碳纳米管表面从而合成了荧光碳纳米管和聚苯乙烯刷接枝的碳纳米管。结果表明,碳纳米管表面剩余的叠氮基团可进行进一步的点击化学反应,从而制得了基于碳纳米管的可进行点击化学反应的纳米器件。
     2.用点击化学和大分子引发剂法合成两亲性聚合物刷修饰的碳纳米管
     提出了一种新型的结合传统的“接上去”和“接出来”方法的多功能“双接枝”方法来改性碳纳米管和另一种合成表面带有点击化学反应所需的炔键基团的碳纳米管的方法。首先合成了一种新型的可点击大分子引发剂,侧链既含有可进行点击化学反应的叠氮基团,同时侧链又含有能引发APRP反应的烷基溴基团,即聚甲基丙烯酸-3-叠氮-2-(2-溴-2-甲基-丙酰氧)丙基酯。然后,通过点击化学反应,将可点击大分子引发剂接枝到带炔基的多壁/单壁碳纳米管表面,继而进行“接出来”方式的原位ATRP聚合和“接上去”方式的点击化学反应,将聚甲基丙烯酸正丁酯、聚乙二醇和聚苯乙烯接枝到碳纳米管上,制得了两亲性聚合物刷修饰的碳纳米管。TGA、FTIR、RAMAN、XPS、SEM和TEM测试表明,这种“双接枝”的方法可以简便地制备各种多功能聚合物刷修饰的碳纳米管,并且可以很好地控制接枝量。这种方法为制备两性的拥有双功能结构的聚合物刷以及化学修饰其他表面开辟了一条新道路。
Carbon nanotubes (CNTs) as one of the most fascinating nanoobjects have attracted increasing interest, due to their unique electronic and mechanical properties and potential applications in the fields of nanofillers, nanodevices and nanobiotechnology. But their infusibility and lack of functional groups have limited the application in many fields. Modification of the surfaces of CNTs is of extreme importance, especially for the construction of desirable structures, gaining of tailor-made properties, and application of them in expected areas.
     Until now, two main strategies, "grafting onto" and "grafting from", have been presented and widely used to modify the surface of CNTs with polymers, giving rise to so-called polymer brushes. Taking advantage of the merits of click chemistry, a very powerful tool for post-modification of polymeric materials, via combination of living/controlled atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization, this thesis advanced the grafting onto approach, and grafted several different kinds of functional polymer and fluorescent molecular on the surfaces of CNTs. The details are as follows.
     1. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry
     A new route for preparing the CNTs modified with alkyne groups which are needed for click reaction of Huisgen 1,3-dipolar cycloaddition between azides and alkynes. The clickable polymers of poly(2-azidoethyl methacrylate) and poly(propargyl methacrylate) were synthesized at first by atom transfer radical polymerization (ATRP) of 2-azidoethyl methacrylate and reverse addition-fragmentation chain transfer (RAFT) polymerization of propargyl methacrylate, respectively. The two polymers were then alternately coated on alkyne-modified multiwalled carbon nanotubes using Cu(I)/PMDETA as catalyst system. TGA, SEM and TEM measurements confirm that the quantity and thickness of the clicked polymer shell on MWNTs can be well controlled by adjusting the cycles or numbers of click reaction and the polymer shell is uniform and even. XPS and FTIR measurements showed that there was still a great amount of residual azido groups on the surfaces of the functionalized MWNTs after clicking three layers of polymers. Furthermore, alkyne-modified rhodamine B and monoalkyne-terminated polystyrene were subsequently used to functionalize the clickable polymer-grafted MWNTs, giving rise to fluorescent CNTs and CNT-based polystyrene brushes, respectively. It demonstrates that the residual azido groups on the surfaces of MWNTs are available for further click reaction with various functional molecules.
     2. Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes
     A novel and versatile "Gemini-grafting" strategy to modify the surfaces of CNTs by a combination of conventional "grafting onto" and "grafting from" strategies and another new route for preparing the CNTs modified with alkyne groups are presented. A'clickable'macroinititor poly(3-azido-2-(2-bromo-2-methylpropanoyloxy)propyl methacrylate) (polyBrAzPMA) with alkyl bromo groups for initiating atom transfer radical polymerization (ATRP) and azido groups for click reaction was first synthesized by post-modification of poly(glycidyl methacrylate) with sodium azide followed by 2-bromoisobutyryl bromide. The'clickable' macroinititor was clicked onto alkyne-containing multiwalled/singlewalled carbon nanotubes via Cu(I)-catalyzed'click' reaction of Huisgen 1,3-dipolar cycloaddition between azides and alkynes, resulting in CNT-based clickable macroinitiator. Poly(n-butyl methacrylate), polystyrene and poly(ethylene glycol) were subsequently grown on CNTs via ATRP "grafting from" and click "grafting onto" approaches, affording CNT-supported amphiphilic polymer brushes. The functionalized CNTs were characterized by thermal gravimetric analysis (TGA), FTIR, Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. All of the results demonstrated that it is feasible and facile to grow various multifunctional polymer brushes on CNTs by the clickable macroinitiator strategy, and the grafted polymer content can be well controlled. This versatile strategy can be readily extended to prepare other Janus/bifunctional polymer brushes, opening an avenue for building complex polymer architectures and tailoring surface properties.
引文
[1]Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R.E. C60: Buckminister fullerence. Nature 1985,318,162-163.
    [2]Lijima S. Helical microtubules of graphitic carbon. Nature 1991,354,56-58.
    [3]Hughes, T. V., Chambers, C. R. US 405480.1889.
    [4]Sinha N., Ma J. Z., Yeow J. T. W. Carbon nanotube-based sensors. J. Nanoscience Nanotechnology 2006,6,573-590.
    [5]Moulton S. E., Minett A. I., Wallace G. G. Carbon nanotube based electronic and electrochemical sensors. Sensor Lett 2005,3,183-193.
    [6]Popov V. N. Carbon nanotubes:properties and application. Materials Science & Engineering R-Reports 2004,43,61-102.
    [7]Terrones M. Carbon nanotubes:synthesis and properties, lectronic devices and other emerging applications. Int Mater Rev 2004,49,325-377.
    [8]Banerjee S., Kahn M. G. C. Wong S. S. Rational chemical strategies for carbon nanotube Functionalization. Chem-Eur J 2003,9,1898.
    [9]Saito Y. Carbon nanotube field emitter. J Nanoscience Nanotechnology 2003,3, 39-50.
    [10]Andrews R., Jacques D., Qian D. L., Rantell T. Multiwall carbon nanotubes: Synthesis and application. Ace Chem Res 2002,35,1008-1017.
    [11]Dai H. J. Carbon nanotubes:opportunities and challenges. Surface Sci 2002,500, 218-241.
    [12]Monthioux M. Filling single-wall carbon nanotubes. Carbon 2002,40, 1809-1823.
    [13]Ajayan P. M., Zhou O. Z. Applications of carbon nanotubes. Top Appl Phys 2001, 80,391-425.
    [14]Ajayan P. M. Nanotubes from carbon. Chem Rev 1999,99,1787-1799.
    [15]Riggs J. E., Guo Z, Carroll D. L., et al. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc,2000,122,5879-5880.
    [16]Sun Y P., Liu B., Moton D. K. Preparation and characterization of a highly water-soluble pendant fullerene polymer. Chem Commun,1996,24,2699-2700.
    [17]Sano M., Kamino A., Shinkai S. Construction of carbon nanotube "stars" with dendrimers. Angew Chem Int Ed,2001,40,4661-4663.
    [18]Watts P. C. P., Hsu W. K., Chen G. Z., et al. A low resistance borondoped carbon nanotube-polystyrene composite. J Mater Chem,2001,11,2482-2488.
    [19]Zhu Y. Q., Hsu W. K., Kroto H. W., et al. Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods. Chem Commun,2001,21,2184-2185.
    [20]Tang B. Z., Xu. H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 1999,32, 2569-2576.
    [21]Shim M., Javey A., Shi Kam N. W., et al. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc,2001,123, 11512-11513.
    [22]Gao M., Huang S., Dai L., et al. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew Chem Int Ed,2000,39,3664-3667.
    [23]Zhao W., Song C., Pehrsson P. E. Water-soluble and optically ph-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc,2002, 124,12418-12419.
    [24]Thostenson E. T., Ren Z. F., Chou T. W. Advances in the science and technology of carbon nanotubes and their composites:a review. Composites Sci Tech 2001, 61,1899-1912.
    [25]Zeng H. L., Gao c., Wang Y. P., Paul C. P. Watts, Kong H., Cui X. W., Yan D. Y. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites:mechanical properties and crystallization behavior. Polymer,2006,21,1040-1043.
    [26]Paloniemi H., Aeaeritalo T., Laiho T., Liuke H., Kocharova N., Haapakka K., Terzi F., Seeber R., Lukkari J. Water-soluble full-length single-wall carbon nanotube polyelectrolytes:preparation and characterization. J Phys Chem B 2005, 109,8634-8642.
    [27]Guldi D. M., Rahman G. M. A., Jux N., Balbinot D., Hartnagel U., Tagmatarchis N., Prato M. Functional single-wall carbon nanotube nanohybrids-associating swnts with water-soluble enzyme model systems. J Am Chem Soc 2005,127, 9830-9838.
    [28]Ou Y.-Y., Huang M. H. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 2006,110,2031-2036.
    [29]Leyton P., Gomez-Jeria J. S., Sanchez-Cortes S., Domingo C. Campos-Vallette M. Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons:surface-enhanced resonance Raman spectroscopy and theoretical studies. J Phys Chem B 2006,110,6470-6474.
    [30]Guldi D. M., Menna E., Maggini M., Marcaccio M., Paolucci, D. Paolucci F., Campidelli S., Prato M., Rahman G. M. A., Schergna S. Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes. Chem-Eur J 2006,12, 3975-3983.
    [31]Ehli C., Rahman G. M. A., Jux N., Balbinot D., Guldi D. M., Paolucci F., Marcaccio M., Paolucci D., Melle-Franco M., Zerbetto F., Campidelli S., Prato M. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 2006,128,11222-11231.
    [32]Zhang J., Lee J. K., Wu Y., Murray R. W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett 2003,3,403-407.
    [33]Lu J., Nagase S., Zhang X., Wang D., Ni M., Maeda Y., Wakahara T., Nakahodo T., Tsuchiya T., Akasaka T., Gao Z., Yu D., Ye H., Mei W. N., Zhou Y. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes:critical role of the molecular size and orientation. J Am Chem Soc 2006,128,5114-5118.
    [34]Wang X. B., Liu Y. Q., Qiu W. F., Zhu D. B. Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes:a first step towards the development of new nanomaterials. J Mater Chem 2002,12,1636-1639.
    [35]Ozoemena K. I., Pillay J., Nyokong T. Preferential electrosorption of cobalt (II) tetra-aminophthalocyanine at single-wall carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochemistry Communications 2006, 8,1391-1396.
    [36]Feng W., Li Y., Feng Y., Wu J. Enhanced photoresponse from the ordered microstructure of naphthalocyanine-carbon nanotube composite film. Nanotechnology 2006,17,3274-3279.
    [37]Murakami H., Nomura T., Nakashima N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 2003,378,481-485.
    [38]Li H., Zhou B., Lin Y., Gu L., Wang W., Fernando K. A. S., Kumar S., Allard L. F., Sun Y.-P. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 2004,126,1014-1015.
    [39]Chen J., Collier C. P. Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B 2005,109,7605-7609.
    [40]Guldi D. M., Rahman G. M. A., Jux N., Balbinot D., Tagmatarchis N., Prato M. Multiwalled carbon nanotubes in donor-acceptor nanohybrids-towards long-lived electron transfer products. Chem Commun 2005,15,2038-2040.
    [41]Guldi D. M., Rahman G. M. A., Prato M., Jux N., Qin S., Ford W. Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed 2005,44,2015-2018.
    [42]Hasobe T., Fukuzumi S., Kamat P. V. Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J-and H-aggregates to nanorods. J Am Chem Soc 2005,127,11884-11885.
    [43]Rahman G. M. A., Guldi D. M., Campidelli S., Prato M. Electronically interacting single wall carbon nanotube-porphyrin nanohybrids. J Mater Chem 2006,16, 62-65.
    [44]Tanaka H., Yajima T., Matsumoto T., Otsuka Y., Ogawa T. Porphyrin molecular nanodevices wired using single-walled carbon nanotubes. Adv Mater 2006,18, 1411-1415.
    [45]Hecht D. S., Ramirez R. J. A., Briman M., Artukovic E., Chichak K. S., Stoddart J. F., Gruener G. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett 2006,6,2031-2036.
    [46]Mhuircheartaigh E. M. N., Giordani S., Blau W. J. Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system. J Phys Chem B 2006,110,23136-23141.
    [47]Yang X., Lu Y., Ma Y., Li Y., Du F., Chen Y Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chem Phys Lett 2006,420,416-420.
    [48]Sceats E. L., Green J. C. Noncovalent interactions between organometallic metallocene complexes and single-walled carbon nanotubes. J Chem Phys 2006, 125,154704/1-154704/12.
    [49]Cheng F., Adronov A. Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem-Eur J 2006,12, 5053-5059.
    [50]Cheng F., Zhang S., Adronov A., Echegoyen L., Diederich F. Triply fused ZnⅡ-Porphyrin oligomers:synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs). Chem Eur J 2006,12,6062-6070.
    [51]Wang D., Ji W.-X., Li Z.-C., Chen L. W. A biomimetic "polysoap" for single-Walled carbon nanotube dispersion. J Am Chem Soc 2006,128, 6556-6557.
    [52]Decher G. Fuzy nanoassemblies:toward layered polymeric multicomposites. Science 1997,277,1232.
    [53]Decher G., Eckle M., Schmitt J., Struth B. Layer-by-layer assembled multicomposite films. Current Opinion In Colloid & Interface Science 1998,3, 32-39.
    [54]Liao K., Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 2001,79,4225-4227.
    [55]Wong M., Paramsothy M., Xu X. J., Ren Y., Li S., Liao K. Physical interactions at carbon nanotube-polymer interface. Polymer 2003,44,7757-7764.
    [56]Wei C., Srivastava D., Cho K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Los Alamos National Laboratory, Preprint Archive, Condensed Matter 2002,1-11.
    [57]Wei C. Adhesion and reinforcement in carbon nanotube polymer composite. Appl Phys Lett 2006,88,093108/1-093108/3.
    [58]Wei C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett 2006,6,1627-1631.
    [59]Yang M., Koutsos V., Zaiser M. Interactions between polymers and carbon nanotubes:a molecular dynamics study. J Phys Chem B 2005,109,10009-10014.
    [60]Richard C., Balavoine F., Schultz P., Ebbesen T. W., Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003,300,775-778.
    [61]Li L.-J., Nicholas R. J., Chen C.-Y., Darton R. C., Baker S. C. Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate. surfactin and polyvinylpyrrolidone. Nanotechnology 2005,16, S202-S205.
    [62]Dieckmann G. R., Dalton A. B., Johnson P. A., Razal J., Chen J., Giordano G. M., Munoz E., Musselman I. H., Baughman R. H., Draper R. K. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc 2003,125,1770-1777.
    [63]Zorbas V., Ortiz-Acevedo A., Dalton A. B., Yoshida M. M., Dieckmann G. R., Draper R. K., Baughman R. H., Jose-Yacaman M., Musselman I. H. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes, J Am Chem Soc 2004,126,7222-7227.
    [64]Xie H., Ortiz-Acevedo A., Zorbas V., Baughman R. H., Draper R. K., Musselman I. H., Dalton A. B., Dieckmann G. R. Peptide cross-linking modulated stability and assembly of peptide-wrapped single-walled carbon nanotubes. J Mater Chem 2005,15,1734-1741.
    [65]Poenitzsch V. Z., Musselman I. H. Atomic force microscopy measurements of peptide-wrapped single-walled carbon nanotube diameters. Microscopy and Microanalysis 2006,12,221-227.
    [66]Rasheed A., Chae H. G., Kumar S., Dadmun M. D. Polymer nanotube nanocomposites:Correlating intermolecular interaction to ultimate properties. Polymer 2006,47,4734-4741.
    [67]Rasheed A., Dadmun M. D., Ivanov I., Britt P. F., Geohegan D. B. Improving dispersion of single-walled carbon nanotubes in a polymer matrix using specific interactions. Chem Mater 2006,18,3513-3522.
    [68]Sahoo N. G., Jung Y. C., Yoo H. J., Cho J. W. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem and Phys 2006,207,1773-1780.
    [69]Lin Y., Taylor S., Li H. P., Fernando K. A. S., Qu L. W., Wang W., Gu L. R., Zhou B., Sun Y.-P. Advances toward bioapplications of carbon nanotubes. J Mater Chem 2004,14,527-541.
    [70]Fu K. F., Sun Y.-P. Dispersion and solubilization of carbon nanotubes. J Nanosci Nanotech 2003,3,351-364.
    [71]Sinnott S. B. Chemical functionalization of carbon nanotubes. J Nanosci Nanotech 2002,2,113-123.
    [72]Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 2002,41,1853-1859.
    [73]Liu L. Q., Guo Z. X., Dai L. M., Zhu D. B. Organic modification of carbon nanotubes. Chin Sci Bull 2002,47,441-447.
    [74]Dai H. J. Carbon nanotubes:Synthesis, integration, and properties. Ace Chem Res 2002,35,1035-1044.
    [75]Sun Y.-P., Fu K.F., Lin Y., Huang W. J. Functionalized carbon nanotubes: Properties and applications. Ace Chem Res 2002,35,1096-1104.
    [76]Levy M., Steinberg M., Szwarc M. The addition of methyl radicals to benzene. J Am Chem Soc 1954,76,3439-3440.
    [77]Levy M., Szwarc M. Methyl affinities of aromatic compounds. J Chem Phys 1954,22,1621-1622.
    [78]Levy M., Newman S., Szwarc M. Methyl affinities of non-planar aromatic hydrocarbons. J Am Chem Soc 1955,77,4225-4226.
    [79]Kitano H., Tachimoto K., Nakaji-Hirabayashi T., Shinohara H. Wrapping of single-walled carbon nanotubes with A-B-A block telomers. Macromol Chem Phys 2004,205,2064-2071.
    [80]Kitano H., Tachimoto K., Gemmei-Ide M., Tsubaki N. interaction between polymer chains covalently fixed to single-walled carbon nano tubes. Macromol Chem Phys 2006,207,812-819.
    [81]Kitano H., Tachimoto K., Anraku Y. Functionalization of single-walled carbon nano tube by the covalent modification with polymer chains. Journal of Colloid and Interface Science 2007,306,28-33.
    [82]Qin S., Qin D., Ford W. T., Resasco D. E., Herrera J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 2004,37,752-757.
    [83]Wu H.-X., Tong R., Qiu X.-Q., Yang H.-F., Lin Y.-H., Cai R.-F., Qian S.-X. Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon 2007,45,152-159.
    [84]Lou X., Detrembleur C., Pagnoulle C., Jerome R., Bocharova V., Kiriy A., Stamm M. Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine):dispersion, selective deposition, and decoration of the nanotubes. Adv Mater 2004,16,2123.
    [85]Liu Y., Yao Z., Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 2005,38, 1172-1179.
    [86]Chen Y., Huang Z., Cai R. The synthesis and characterization of C60 chemically modified poly(N-vinylcarbazole). J Polym Sci Part B Polym Phys 1996,34,631.
    [87]Ederle Y., Mathis C. Grafting of anionic polymers onto C-60 in polar and nonpolar solvents. Macromolecules 1997,30,2546.
    [88]Dai L., Mau A. W. H., Zhang X. Synthesis of fullerene- and fullerol-containing polymers. J Mater Chem 1998,8,325.
    [89]Wu W., Zhang S., Li Y., Li J., Liu L., Qin Y., Guo Z.-X., Dai L., Ye C., Zhu D. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 2003,36,6286-6288.
    [90]Huang H. M., Liu I. C., Chang C. Y., Tsai H. C., Tsiang R. C. C. Preparing a polystyrene-functionalized multiple-walled carbon nanotubes via covalently linking acyl chloride functionalities with living polystyryllithium. J Polym Sci Part A Polym Chem 2004,42,5802-5810.
    [91]Baskaran D., Sakellariou G., Mays J. W., Bratcher M. S. Grafting reactions of living macroanions with multi-walled carbon nanotubes. J Nanosci Nanotech 2007,7,1560-1567.
    [92]Liu I.-C., Huang H.-M., Chang C.-Y., Tsai H.-C., Hsu C.-H., Tsiang R. C.-C. Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes:anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 2004,37,283-287.
    [93]Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry:diverse chemical function from a few good reactions. Angew Chem Int Ed 2001,40,2004-2021.
    [94]Binder W. H., Sachsenhofer R.'Click'chemistry in polymer and materials science. Macromol Rapid Commun 2007,28,15-54.
    [95]Lutz J.-F.1,3-Dipolar cycloadditions of azides and alkynes:a universal ligation tool in polymer and materials science. Angew Chem Int Ed 2001,46,1018-1025.
    [96]Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B. A stepwise huisgen cycloaddition process:copper(i)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed 2002,41,2596-2599.
    [97]Kolb, H. C.; Sharpless, B. K. The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003,8,1128-1137.
    [98]Wolfbeis, O. S. The click reaction in the luminescent probing of metal ions, and its implications on biolabeling techniques. Angew Chem Int Ed 2007,46, 2980-2982.
    [99]Lutz, J.F., Borner, H. G. Modern trends in polymer bioconjugates design. Prog. Polym. Sci.2008,33,1-39.
    [100]Huisgen R., Szeimies G., Mobius L. Chem Ber 1967,100,2494.
    [101]Jurgensen K. A. Catalytic Asymmetric hetero-diels-alder reactions of carbonyl compounds and imines. Angew Chem Int Ed 2000,39,3558-3588.
    [102]Cheng H., Li, F., Duft A. M. Adronov A., Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. J Am Chem Soc 2005,127,14518-14524.
    [103]Dyke C. A., Tour J. M. Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 2003,125,1156-1157.
    [104]Tsarevsky N. V., Sumerlin B. S., Matyjaszewski K. Step-growth "click" coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 2005,38,3558-3561.
    [105]Wang J.-S., Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 1995,117,5614.
    [106]Kato M., Kamigaito M., Sawamoto M., Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ii)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization. Macromolecules 1995,28,1721-1723.
    [107]Patten T. E., Xia J., Abernathy T., Matyjaszewski K. Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996,272, 866-868.
    [108]Patten T. E., Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 1998,10,901-915.
    [109]Matyjaszewski K., Xia J. Atom transfer radical polymerization. Chem Rev 2001,101,2921-2990.
    [110]Coessens V., Pintauer T. Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog Polym Sci 2001,26,337-377.
    [111]Kamigaito M., Ando T., Sawamoto M. Metal catalyzed living radical polymerization. Chem Rev 2001,101,3689-3746.
    [112]Matyjaszewski K., Davis T. P. Eds. Handbook of radical polymerization. Wiley: Hoboken,2002.
    [113]Matyjaszewski K. Ed. Advances in controlled/living radical polymerization. ACS Symposium Series 854; American Chemical Society:Washington, DC, 2003.
    [114]Pyun J., Kowalewski T., Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 2003,24, 1043-1059.
    [115]Matyjaszewski K. Ed. Controlled/Living radical polymerization. From Synthesis to Materials. ACS Symposium Series 944; American Chemical Society: Washington, DC,2006.
    [116]Braunecker W. A., Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 2007,32,93-146.
    [117]Tsarevsky N. V., Matyjaszewski K. "Green" atom transfer radical polymerization:from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 2007.107,2270-2299.
    [118]Kong H., Gao C., Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 2004, 126,412-413.
    [119]Kong H., Gao C., Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004,37,4022-4030.
    [120]Gao C., Vo C. D., Jin Y. Z., Li W., Armes S. P. Multihydroxy polymer-functionalized carbon nanotubes:synthesis, derivatization, and metal loading. Macromolecules 2005,38,8634-8648.
    [121]Narain R., Housni A., Lane L. Modification of carboxyl-functionalized single-walled carbon nanotubes with biocompatible, water-soluble phosphorylcholine and sugar-based polymers:bioinspired nanorods. J Polym Sci Part A Polym Chem 2006,44,6558-6568.
    [122]Qin S., Qin D., Ford W. T., Resasco D. E., Herrera J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc 2004,126,170-176.
    [123]Baskaran D., Mays J. W., Bratcher M. S. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 2004, 43,2138-2142.
    [124]Yao Z., Braidy N., Botton G. A., Adronov A. Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J Am Chem Soc 2003,125,16015-116024.
    [125]Georgakilas V., Kordatos K., Prato M., Guldi D. M., Holzinger M., Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc 2002,124, 760-761.
    [126]Georgakilas V., Tagmatarchis N., Pantarotto D., Bianco A., Briand J. P., Prato M. Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 2002,3050-3051.
    [127]Choi J. H., Oh S. B., Chang J., Kim Il, Ha C.-S., Kim B. G., Han J. H., Joo S.-W., Kim G-H., Paik H.-J. Graft polymerization of styrene from single-walled carbon nanotube using atom transfer radical polymerization. Polym. Bull 2005, 55,173-179.
    [128]Matrab T., Chancolon J., L'hermite M. M., Rouzaud J.-N., Deniau G., Boudou J.-P., Chehimi M. M., Delamar M. Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts:a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids and Surfaces A 2006,287,217-221.
    [129]Fragneaud B., Masenelli-Varlot K., Gonzalez-Montiel A., Terrones M., CavailleJ.-Y Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem Phys Lett 2006,419, 567-573.
    [130]Liu M., Yang Y., Zhu T., Liu Z. A general approach to chemical modification of single-walled carbon nanotubes with peroxy organic acids and its application in polymer grafting. J Phys Chem C 2007,111,2379-2385.
    [131]Chiefari J., Chong Y. K., Ercole F., Krstina J., Jeffery J., Le T. P. T., Mayadunne R. T. A., Meijs G. F., Moad C. L., Moad G., Rizzardo E., Thang S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process, Macromolecules 1998,31,5559-5562.
    [132]Corpart P., Charmot D., Biadatti T., Zard S. Z., Michelet D. PCT Int. Pat. Appl. WO 9858974,1998.
    [133]Moad G., Chiefari J., Chong B.Y.K., Krstina J., Mayadunne R. T. A., Postma A., Rizzardo E., Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int 2000,49, 993-1001.
    [134]Perrier S., Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization. J Polym Sci Part A Polym Chem 2005,43,5347-5393.
    [135]Moad G., Rizzardo E E., Thang S. H. Living radical polymerization by the RAFT process. Aus J Chem 2005,58,379-410.
    [136]Moad G., Rizzardo E E., Thang S. H. Living radical polymerization by the RAFT process-A first update. Aus J Chem 2006,59,669-692.
    [137]Favier A., Charreyre M. T. Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun 2006,27,653-692.
    [138]Lowe A. B., McCormick C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 2007,32,283-351.
    [139]Cui J., Wang W. P., You Y. Z., Liu C. H., Wang P. H. Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 2004,45,8717-8721.
    [140]Xu G. Y., Wang Y. S., Pang W. M., Wu W. T., Zhu Q. R., Wang P. H. Fabrication of multiwalled carbon nanotubes with polymer shells through surface RAFT polymerization. Polym Int 2007,56,847-852.
    [141]Curran S. A., Zhang D. H., Wondmagegn W. T., Ellis A. V., Cech J., Roth S., Carroll D. L. Dynamic electrical properties of polymer-carbon nanotube composites:enhancement through covalent bonding (RAFT). J Mater Res 2006, 21,1071-1077.
    [142]You Y. Z., Hong C. Y., Pan C. Y. Functionalization of carbon nanotubes with well-defined functional polymers via thiol-coupling reaction. Macromol Rapid Commun 2006,27,2001-2006.
    [143]Hawker C. J., Bosman A. W., Harth E E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev2001,101,3661-3688.
    [144]Charleux B. Nitroxide-mediated polymerization in miniemulsion:A direct way from bulk to aqueous dispersed systems, Advances in Controlled/Living Radical Polymerization ACS Symposium Series 2003,854,438-451.
    [145]Goto A., Fukuda T. Kinetics of living radical polymerization. Prog Polym Sci 2004,29,329-385.
    [146]Ghannam L., Parvole J., Laruelle G., Francois J., Billon L. Surface-initiated nitroxide-mediated polymerization:a tool for hybrid inorganic/organic nanocomposites 'in situ' synthesis. Polym Int 2006,55,1199-1207.
    [147]Dehonor M., Masenelli-Varlot K., Gonzalez-Montiel A., Gauthier C., CavailleJ. Y., Terrones H., Terrones M. Nanotube brushes:polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization. Chem Commun 2005,5349-5351.
    [148]Zhao X. D., Fan X. H., Chen X. F., Chai C. P., Zhou Q. F. Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A Polym Chem 2006,44,4656-4667.
    [149]Wu Peng, Feldman Alina K., Nugent Anne K., Hawker Craig J., Scheel Arnulf, Voit Brigitte, Pyun Jeffrey, Frechet Jean M. J., Sharpless K. Barry, Fokin Valery V. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed,2004,43, 3928-3932.
    [150]Helms Brett, Mynar Justin L., Hawker Craig J., Frechet Jean M. J. Dendronized linear polymers via "click chemistry". J Am Chem Soc 2004,126, 15020-15021.
    [151]Ornelas C., Aranzaes J R., Cloutet., Alves S., Astruc D. Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. Angew Chem Int Ed 2007,46,872-877.
    [152]Gao H., Matyjaszewski K. synthesis of star polymers by a combination of atrp and the "click" coupling method. Macromolecules 2006,39,4960-4965.
    [153]Laurent B. A., Grayson S M. An efficient route to well-defined macrocyclic polymers via "click" cyclization. J Am Chem Soc 2006,128,4238-4239.
    [154]Ladmiral V., Mantovani G., Clarkson G. J., Cauet S., Irwin J. L., Haddleton D. M. Synthesis of neoglycopolymers by a combination of "click chemistry" and living radical polymerization. J Am Chem Soc 2006,128,4823-4830.
    [1]Gao, C., Vo, C. D., Jin, Y. Z., Li, W., Armes, S. P. Multihydroxy polymer-functionalized carbon nanotubes:synthesis, derivatization, and metal loading. Macromolecules 2005,38,8634-8648.
    [2]Sumerlin, B. S., Tsarevsky, N. V., Louche, G., Lee, R. Y., Matyjaszewski, K. Highly efficient "click" functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 2005,38,7540-7545.
    [3]Tsarevsky N. V., Sumerlin B. S., Matyjaszewski K. Step-growth "click" coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 2005,38,3558-3561.
    [4]Lai, J. T., Filla, D., Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002,35,6754-6756.
    [5]Liu, C.; Zhang, Y.; Huang, J. L. Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core. Macromolecules 2008,41,325-331.
    [6]Liu, X. M.; Thakur, A.; Wang, D. Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(i)-catalyzed huisgen 1,3-dipolar cycloaddition. Biomacromolecules 2007,8,2653-2658.
    [7]Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry:diverse chemical function from a few good reactions. Angew Chem Int Ed 2001,40, 2004-2021.
    [8]Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B. A stepwise huisgen cycloaddition process:copper(i)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed 2002,41,2596-2599.
    [9]Gao, C., Jin, Y. Z., Kong, H., Whitby, R. L. D., Acquah, S. F. A., Chen, G. Y., Qian, H., Hartschuh, A., Silva, S. R. P., Henley, S., Fearon, P., Kroto, H. W., Walton, D. R. M. Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and raman spectroscopy. J Phys Chem B 2005,109, 11925-11932.
    [10]Jorio, A., Pimenta, M. A., Filho, A. G. S., Saito, R., Dresselhaus, G., Dresselhaus, M. S. Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 2003,5,139.1-139.17.
    [11]Xu, H. X., Wang, X. B., Zhang, Y. F., Liu, S. Y. Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under 60co g-ray irradiation. Chem Mater 2006,18,2929-2934.
    [12]Fischer, D., Potschke, P., Brunig, H., Janke, A. Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by raman microscopy. Macromol. Symp.2005,230,167-172.
    [13]Wollman, E. W., Kang, D., Frisbie, C. D., Lorkovic, I. M., Wrighton, M. S. Photosensitive Self-Assembled Monolayer on Gold:Photochemistry of surface-confined aryl azide and cyclopentadienylmanganese tricarbonyl. J Am Chem Soc 1994,116,4395-4404.
    [14]Tsyboulski, D. A., Rocha, J.-D. R., Bachilo, S. M., Cognet, L., Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett 2007,7,3080-3085.
    [1]Krishnan, R., Srinivasan, K. S. V. Controlled/living atom transfer radical polymerization of glycidyle methacrylate at ambient temperature. Macromolecules 2003,36,1769-1771.
    [2]Tsarevsky, N. V., Bencherif, S. A., Matyjaszewski, K. Graft copolymers by a combination of atrp and two different consecutive click reactions. Macromolecules 2007,40,4439-4445.
    [3]Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry:diverse chemical function from a few good reactions. Angew Chem Int Ed 2001,40,2004-2021.
    [4]Qin S., Qin D., Ford W. T., Resasco D. E., Herrera J. E. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc 2004,126,170-176.
    [5]Kong H., Gao C., Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 2004,37,4022-4030.
    [6]Liu, Y.-L., Chen, W.-H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization. Macromolecules 2007,40,8881-8886.
    [7]Gao, C., Jin, Y. Z., Kong, H., Whitby, R. L. D., Acquah, S. F. A., Chen, G. Y, Qian, H., Hartschuh, A., Silva, S. R. P., Henley, S., Fearon, P., Kroto, H. W., Walton, D. R. M. Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and raman spectroscopy. J Phys Chem B 2005,109, 11925-11932.
    [8]Jorio, A., Pimenta, M. A., Filho, A. G S., Saito, R., Dresselhaus, G., Dresselhaus, M. S. Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 2003,5,139.1-139.17.
    [9]Xu, H. X., Wang, X. B., Zhang, Y. F., Liu, S. Y. Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under 60co g-ray irradiation. Chem Mater 2006,18,2929-2934.
    [10]Fischer, D., Potschke, P., Brunig, H., Janke, A. Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by raman microscopy. Macromol. Symp.2005,230,167-172.
    [11]Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Single nanotube Raman spectroscopy. Ace. Chem. Res.2002,35, 1070-1078.
    [12]Wollman, E. W., Kang, D., Frisbie, C. D., Lorkovic, I. M., Wrighton, M. S. Photosensitive self-assembled monolayer on gold:photochemistry of surface-confined aryl azide and cyclopentadienylmanganese tricarbonyl. J Am Chem Soc 1994,116,4395-4404.
    [13]Kong, H.; Gao, C.; Yan, D. Constructing Amphiphilic Polymer Brushes on the Convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Mater. Chem.2004,14,1401-1405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700