生物柴油催化剂——磁性纳米固体碱的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前生物柴油生产与开发已成为世界各国解决能源短缺问题竞相研究的热点。生物柴油是一种典型的“绿色能源”,工业化生产生物柴油主要是化学催化法,其中催化剂工艺和原料来源、价格是生物柴油工业化生产的关键。
     本文主要研究了碱土金属氧化物系列的负载型磁性催化剂(KF/MO-Fe_3O_4,M=Mg,Ca,Sr)的制备条件的优化和材料表征,并将系列催化剂中催化效率最高、制备最简单的催化剂用于乌桕梓油的酯交换反应制备生物柴油。主要研究内容如下:
     (1)研究了磁性纳米固体碱催化剂KF/MgO-Fe_3O_4的最优制备条件,并采用透射电镜(TEM)、低温N_2吸附-脱附、X-射线粉末衍射(XRD)和Hammett指示剂等方法表征该催化剂的结构、形貌、成分和碱强度。
     (2)研究了磁性纳米固体碱催化剂KF/CaO-Fe_3O_4的最优制备条件,并采用透射电镜(TEM)、低温N_2吸附-脱附、X-射线粉末衍射(XRD)、拉曼(Raman)、Hammett指示剂和振动样品磁强计(VSM)等方法表征该催化剂的结构、形貌、成分和碱强度。
     (3)研究了磁性纳米固体碱催化剂KF/SrO-Fe_3O_4的最优制备条件,并采用透射电镜(TEM)、低温N_2吸附-脱附、拉曼(Raman)和Hammett指示剂等方法表征该催化剂的结构、形貌、成分和碱强度。
     (4)经比较研究发现,在碱土金属氧化物系列的负载型磁性催化剂中,催化剂KF/CaO-Fe_3O_4的制备较简单,并且催化效率较高。因此,选择催化剂KF/CaO-Fe_3O_4以进一步研究该催化剂的最优酯交换反应条件、催化剂耐酸耐水性能和回收、重复利用及再生性能等。初步探讨了催化反应机理。
     (5)设计了磁性纳米固体碱催化剂制备乌桕梓油生物柴油的生产工艺,并设计了一种有效的磁性分离管,用来辅助分离磁性催化剂。
Now biodiesel production and exploitation have been the hot spots in solving the worldwide problem of energy source shortage. The green fuel biodiesel is produced mostly by chemically catalyzed method in industry at home and abroad. Nowadays, catalyst preparation, source and cost of feedstocks are the keys in industrial production of biodiesel.
     In this thesis, optimization of preparation conditions and characterization of composite catalyst of alkaline earth metals oxide group with magnetism (KF/MO-Fe_3O_4, M = Mg, Ca, Sr) have been studied, then the catalyst which has the highest catalytic efficiency and the easiest preparation method was used to produce biodiesel from stillingia oil by transesterification reactions. The main research contents are as follows:
     (1) The optimum preparation conditions of magnetic nano-solid-base KF/MgO-Fe_3O_4 have been studied, and TEM, low temperature N_2 adsorption-desorption, XRD and Hammett indicator methods were adopted to characterize the structure, shape, component and basic strength.
     (2) The optimum preparation conditions of magnetic nano-solid-base KF/CaO-Fe_3O_4 have been studied, and TEM, low temperature N_2 adsorption-desorption, XRD Raman, Hammett indicator and VSM methods were adopted to characterize the structure, shape, component and basic strength.
     (3) The optimum preparation conditions of magnetic nano-solid-base KF/SrO-Fe_3O_4 have been studied, and TEM, low temperature N_2 adsorption-desorption, Raman and Hammett indicator methods were adopted to characterize the structure, shape, component and basic strength.
     (4) Comparing with other composite catalyst of alkaline earth metals oxide with magnetism, KF/CaO-Fe_3O_4 has the advantages of easy preparation and high catalytic efficiency. So the catalyst KF/CaO-Fe_3O_4 was chose to investigate the optimum transesterification conditions, resistance to FFA and water, reclaimation, reuse and regeneration of the catalyst. The mechanism of the catalytic reaction was discussed.
     (5) The preliminary production techniques of stillingia oil biodiesel catalized by magnetic nano-solid-base catalyst have been designed and an effective magnetic separator tube has been designed to separate the magnetic catalyst.
引文
1.陈文伟.乌桕梓油制备生物柴油的研究.[博士学位论文].南昌:南昌大学图书馆,2006
    2.丁灵.生物柴油的制备研究.[硕士学位论文].北京:中国石油大学图书馆,2007
    3.段炼.全球生物柴油产业的发展.日用化学品科学,2009,32(1):7-11
    4.郭登峰,盛梅,罗士平.气相色谱法测定生物柴油中多种脂肪酸甲酯.中国油脂,2004,29(4):44-46
    5.韩明汉,陈和,王金福,金涌.生物柴油制备技术的研究进展.石油化工,2006,35(12):1119-1124
    6.何红波,姚日生,江来恩.生物柴油制备方法研究进展.安徽化工,2008,34(6):7-11
    7.黄彩霞,谢贵水,刘荣厚.生物柴油主要制备方法的研究进展.可再生能源,2008,26(5):53-57
    8.李长秀,唐忠,杨海鹰.气相色谱法测定生物柴油样品中脂肪酸甲酯和脂肪酸甘油酯的含量.分析测试学报,2005,24(5):66-68
    9.李玉芹,曾虹燕.酯交换法制备生物柴油研究.淮海工学院学报(自然科学版),2005,14(2):45-48
    10.刘寿长,关新新,韩家显.脂肪酸酯的均相催化制备的研究.日用化学工业,1999,5:14-17
    11.刘幽燕,庾乐,黄林峰,周涛.生物柴油制备方法的应用研究进展.现代化工,2006,26(4):15-19
    12.孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工,2005,34:282-286
    13.秦润华,姜炜,刘宏英,李凤生.Fe_3O_4纳米粒子的制备与超顺磁性.功能材料,2007,38(6):902-904
    14.全球品牌网.各国生物柴油发展概况.http://www.globrand.com/2009/184160.shtml
    15.孙纯,刘金迪.国内外生物柴油的开发应用现状.中外能源,2006,11(3):97-102
    16.孙世尧,王连鸳,杨基础.超临界甲醇法制备生物柴油的研究现状.精细石油化工,2006,23(1):53-56
    17.武彤,张炳烛,李景印,鲍晓磊.生物柴油的研究及发展现状.河北工业科技,2008,25(3):156-161
    18.邢英,郗怡佳.生物柴油的生产现状及发展前景.广东化工,2006,33(6): 6-9
    19.张贵林,潘丽爱,苏云,石晶,徐立新.NaOH催化甲酯交换法油炸废油制取生物柴油的试验研究.粮油加工与食品机械,2006,7:50-53
    20.张海永,景晓燕,张密林.磁性镁铝水滑石固体碱的制备与表征.应用科技,2002,29(3):61-63
    21.张海永.磁性镁铝水滑石的合成及其催化性能研究.[硕士学位论文].哈尔滨:哈尔滨工程大学图书馆,2002
    22.张良波,李昌珠,欧日明,肖志红,李培旺,李党训.生物柴油产业现状与展望.湖南林业科技,2008,35(2):70-73
    23.中金在线.厄瓜多尔石油部长:预计09年全球原油均价为55-60美元/桶.http://gold.cnfol.com/090408/171,1710,5703176,00.shtml
    24.中证网.《中国能源发展报告(2008)》蓝皮书发布.http://cs.xinhuanet.com/xwzx/05/200804/t20080408_1422930.htm
    25.中证网.世行报告:2009年原油均价或至75美元.http://cs.xinhuanet.com/qhsc/10/d05/03/200812/t20081227_1698632.htm
    26.Akgun N,iscan E.Effects of process variables for biodiesel production by transesterification.Eur J Lipid Sci Technol,2007,109:486-492
    27.Albuquerque M C G,Jimenez-Urbistondo I,Santamaria-Gonzalez J,Merida-Robles J M,Moreno-Tost R,Rodriguez-Castellon E,Jimenez-Lopez A,Azevedo D C S,Cavalcante Jr C L,Maireles-Torres P.CaO supported on mesoporous silicas as basic catalysts for transesterification reactions.Applied Catalysis A:General,2008,334:35-43
    28.Aranda D A G,Santos R T P,Tapanes N C O,Ramos A L D,Antunes O A C.Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids.Catal Lett,2008,122:20-25
    29.Aresta M,Dibenedetto A,Carone M,Colonna T,Fragale C.Production of biodiesel from macroalgae by supercritical CO_2 extraction and thermochemical liquefaction.Environ Chem Lett,2005,3:136-139
    30.Azcan N,Danisman A.Microwave assisted transesterification of rapeseed oil.Fuel,2008,87:1781-1788
    31.Ban K,Hama S,Nishizuka K,Kaieda M,Matsumoto T,Kondo A,Noda H,Fukuda H.Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production.Journal of Molecular Catalysis B:Enzymatic,2002,17:157-165
    32.Ban K,Kaieda M,Matsumoto T,Kondo A,Fukuda H.Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, 2001, 8: 39-43
    33. Barnard T M, Leadbeater N E, Boucher M B, Stencel L M, Wilhite B A. Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuels, 2007, 21: 1777-1781
    34. Cao W L, Han H W, Zhang J C. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel, 2005, 84: 347-351
    35. Chen W, Huang Z L, Liu Y, He Q J. Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catalysis Communications, 2008, 9: 516-521
    36. Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 2001, 37: 65-71
    37. Dalaigh C O, Corr S A, Gun'ko Y, Connon S J. A magnetic-nanoparticle-supported 4-N, N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery andrecyclability. Angew Chem Int Ed, 2007, 46: 4329-4332
    38. Dossin T F, Reyniers M F, Berger R J, Marin G B. Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Applied Catalysis B: Environmental, 2006, 67: 136-148
    39. Dossin T F, Reyniers M F, Marin G B. Kinetics of heterogeneously MgO-catalyzed transesterification. Applied Catalysis B: Environmental, 2006, 61: 35-45
    40. Gao Y, Tan T W, Nie K L, Wang F. Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chinese Journal of Biotechnology, 2006, 22(1): 114-118
    41. Guan G Q, Kusakabe K, Sakura N, Moriyama K. Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel, 2009, 88(1): 81-86
    42. Gui M M, Lee K T, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008, 33: 1646-1653
    43. Hanh H D, Dong N T, Starvarache C, Okitsu K, Maeda Y, Nishimura R. Methanolysis of triolein by low frequency ultrasonic irradiation. Energy Conversion and Management, 2008, 49: 276-280
    44. Hara T, Kaneta T, Mori K, Mitsudome T, Mizugaki T, Ebitanic K, Kaneda K. Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe_2O_3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen. Green Chem, 2007, 9: 1246-1251
    45. He H Y, Wang T, Zhu S L. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel, 2007, 86: 442-447
    46. Hong R Y, Li J H, Wang J, Li H Z. Comparison of schemes for preparing magnetic Fe_3O_4 nanoparticles. China Particuology, 2007, 5: 186-191
    47. Kawashima A, Matsubara K, Honda K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 2009, 100: 696-700
    48. Kawashima A, Matsubara K, Honda K. Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology, 2008, 99: 3439-3443
    49. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008, 87: 2798-2806
    50. Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 2008, 334: 357-365
    51. Liu X J, He H Y, Wang Y J, Zhu S L, Piao X L. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 2008, 87: 216-221
    52. Liu X J, He H Y, Wang Y J, Zhu S L. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 2007, 8: 1107-1111
    53. Ma F R, Hanna M A. Biodiesel production: a review. Bioresource Technology, 1999,70: 1-15
    54. Ma F, Clements L D, Hanna M A. Biodiesel fuel from animal fat-Ancillary studies on transesterification of beef tallow. Ind Eng Chem Res, 1998, 37: 3768-3771
    55. Ma F, Clements L D, Hanna M A. The effects of catalyst, free fatty acids and water on transesterification of beef tallow. Trans ASAE, 1998,41: 1261-1264
    56. Ma H B, Li S F, Wang B Y, Wang R H, Tian S J. Transesterification of rapeseed oil for synthesizing biodiesel by K/KOH/γ-Al_2O_3 as heterogeneous base catalyst. J Am Oil Chem Soc, 2008, 85: 263-270
    57. Manzanera M, Molina-Munoz M L, Gonzalez-Lopez J. Biodiesel: An Alternative Fuel. Recent Patents on Biotechnology, 2008, 2: 25-34
    58. Marchetti J M, Miguel V U, Errazu A F. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 2007,11: 1300-1311
    59. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the flo1p flocculation functional domain. Applied and Environmental Microbiology, 2002, 68(9): 4517-4522
    60. Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H, Kondo A. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Applied Microbiology and Biotechnology, 2001, 57: 515-520
    61. Meher L C, Sagar D V, Naik S N. Technical aspects of biodiesel production by transesterification-a review. Renewable and Sustainable Energy Reviews, 2006, 10: 248-268
    62. Mo X H, Lotero E, Lu C Q, Liu Y J, Goodwin J G. A Novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal Lett, 2008, 123: 1-6
    63. Nawrocki J, Rigney M P, McCormick A, Carr P W. Chemistry of zirconia and its use in chromatography. Journal of Chromatography A, 1993, 657: 229-282
    64. Ni J, Meunier F C. Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Applied Catalysis A: General, 2007,333: 122-130
    65. Orcaire O, Buisson P, Pierre A C. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. Journal of Molecular Catalysis B: Enzymatic, 2006, 42: 106-113
    66. Park E Y, Sato M, Kojima S. Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresource Technology, 2008,99:3130-3135
    67. Ranganathan S V, Narasimhan S L, Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource Technology, 2008, 99: 3975-3981
    68. Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 2001, 80: 225-231
    69. Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 2001, 80: 225-231
    70. Saka S. Process for producing fatty acid alkyl ester composition. USA patent, 0025620. 2006-02-02
    71. Serio M D, Tesser R, Lu P M, Santacesaria E. Heterogeneous catalysts for biodiesel production. Energy & Fuels, 2008, 22: 207-217
    72. Sharma Y C, Singh B, Upadhyay S N. Advancements in development and characterization of biodiesel: A review. Fuel, 2008, 87: 2355-2373
    73. Shokouhimehr M, Piao Y Z, Kim J Y, Jang Y J, Hyeon T W. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew Chem Int Ed, 2007, 46: 7039-7043
    74. Singh A K Fernando S D. Transesterification of soybean oil using heterogeneous catalysts. Energy & Fuels, 2008, 22: 2067-2069
    75. Singh A K, Fernando S D. Transesterification of soybean oil using heterogeneous catalysts. Energy & Fuels, 2008,22: 2067-2069
    76. Sun H, Hu K, Lou H, Zheng X M. Biodiesel production from transesterification of rapeseed oil using KF/Eu_2O_3 as a Catalyst. Energy & Fuels, 2008, 22: 2756-2760
    77. Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 2004, 92: 297-305
    78. Wan T, Yu P, Gong S K, Li Q, Luo Y B. Application of KF/MgO as a heterogeneous catalyst in the production of biodiesel from rapeseed oil. Korean J Chem Eng, 2008, 25(5): 998-1003
    79. Xie W L, Huang X M, Li H T. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology, 2007, 98:936-939
    80. Xie W L, Huang X M. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalysis Letters, 2006, 107(1-2): 53-59
    81. Yagiz F, Kazan D, Akin A N. Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chemical Engineering Journal, 2007, 134: 262-267
    82. Zafiropoulos N A, Ngo H L, Foglia T A, Samulski E T, Lin W b. Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks. Chem Commun, 2007, 3670-3672
    83. Zhang H, Qi R, Evans D G, Duan X. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. Journal of Solid State Chemistry, 2004, 177: 772-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700